1
|
Caliskan S, Aslan V, Tandoğan M, Özdemir M, Balekoglu S. Influence of gamma irradiation treatments on the germination, moisture, viability and radicle length of Quercus frainetto acorns. Int J Radiat Biol 2025; 101:531-540. [PMID: 40009798 DOI: 10.1080/09553002.2025.2470208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE The objective of this study was to ascertain the impact of varying dosages of gamma irradiation on the germination and development of Quercus frainetto acorns. MATERIALS AND METHODS The acorns were subjected to gamma radiation from a cobalt-60 source at doses of 25, 50, 100, and 200 gray. The germination percentage, mean germination time, and radicle length of the acorns were quantified. Images were used to evaluate the radicle length. Correlation was employed to investigate the relationships between gamma radiation treatments and moisture content, tetrazolium staining, germination percentage, mean germination time, and radicle length. RESULTS The impact of gamma-ray radiation on acorns was found to significantly affect moisture content, viability, germination percentage, mean germination time, and radicle length. The germination percentage indicated a decline, particularly at 100 Gy. The acorn lots subjected to 25 grays had the highest germination percentage (92%). The germination percentage in the acorn lots treated with 200 grays decreased by approximately half (44%) in comparison to the control (86%), while the radicle length decreased from 14.8 cm to approximately one-tenth (1.4 cm). CONCLUSIONS The findings demonstrated that the germination percentage and radicle length declined with elevated gamma radiation intensity. While low doses of gamma (25 grays) radiation may facilitate germination, higher doses can exert detrimental effects, including the suppression or complete inhibition of germination. The application of gamma treatment has been demonstrated to be an effective method of inhibiting radicle length elongation, a process that is crucial for the storage and postharvest seeding of acorns.
Collapse
Affiliation(s)
- Servet Caliskan
- Faculty of Forestry, Department of Silviculture, İstanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Vedat Aslan
- Marmara Forestry Research Institute, Maslak, Sarıyer, Istanbul, Türkiye
| | - Mesut Tandoğan
- Marmara Forestry Research Institute, Maslak, Sarıyer, Istanbul, Türkiye
| | - Mehmet Özdemir
- Marmara Forestry Research Institute, Maslak, Sarıyer, Istanbul, Türkiye
| | - Safa Balekoglu
- Faculty of Forestry, Department of Silviculture, İstanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
2
|
Duarte GT, Volkova PY, Fiengo Perez F, Horemans N. Chronic Ionizing Radiation of Plants: An Evolutionary Factor from Direct Damage to Non-Target Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1178. [PMID: 36904038 PMCID: PMC10005729 DOI: 10.3390/plants12051178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical applications, and as a result of radiation disasters or nuclear tests. In the current review, we discuss modern sources of radioactivity, its direct and indirect effects on different plant species, and the scope of the radiation protection of plants. We present an overview of the molecular mechanisms of radiation responses in plants, which leads to a tempting conjecture of the evolutionary role of IR as a limiting factor for land colonization and plant diversification rates. The hypothesis-driven analysis of available plant genomic data suggests an overall DNA repair gene families' depletion in land plants compared to ancestral groups, which overlaps with a decrease in levels of radiation exposure on the surface of Earth millions of years ago. The potential contribution of chronic IR as an evolutionary factor in combination with other environmental factors is discussed.
Collapse
Affiliation(s)
| | | | | | - Nele Horemans
- Belgian Nuclear Research Centre—SCK CEN, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
3
|
Wang J, Zhang Y, Zhou L, Yang F, Li J, Du Y, Liu R, Li W, Yu L. Ionizing Radiation: Effective Physical Agents for Economic Crop Seed Priming and the Underlying Physiological Mechanisms. Int J Mol Sci 2022; 23:15212. [PMID: 36499532 PMCID: PMC9737873 DOI: 10.3390/ijms232315212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To overcome various factors that limit crop production and to meet the growing demand for food by the increasing world population. Seed priming technology has been proposed, and it is considered to be a promising strategy for agricultural sciences and food technology. This technology helps to curtail the germination time, increase the seed vigor, improve the seedling establishment, and enhance the stress tolerance, all of which are conducive to improving the crop yield. Meanwhile, it can be used to reduce seed infection for better physiological or phytosanitary quality. Compared to conventional methods, such as the use of water or chemical-based agents, X-rays, gamma rays, electron beams, proton beams, and heavy ion beams have emerged as promising physics strategies for seed priming as they are time-saving, more effective, environmentally friendly, and there is a greater certainty for yield improvement. Ionizing radiation (IR) has certain biological advantages over other seed priming methods since it generates charged ions while penetrating through the target organisms, and it has enough energy to cause biological effects. However, before the wide utilization of ionizing priming methods in agriculture, extensive research is needed to explore their effects on seed priming and to focus on the underlying mechanism of them. Overall, this review aims to highlight the current understanding of ionizing priming methods and their applicability for promoting agroecological resilience and meeting the challenges of food crises nowadays.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhang
- School of Biological Sciences, The University of Edinburgh, 57 George Square, Edinburgh EH89JU, UK
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingpeng Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yan Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyuan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Labudda M, Dziurka K, Fidler J, Gietler M, Rybarczyk-Płońska A, Nykiel M, Prabucka B, Morkunas I, Muszyńska E. The Alleviation of Metal Stress Nuisance for Plants—A Review of Promising Solutions in the Face of Environmental Challenges. PLANTS 2022; 11:plants11192544. [PMID: 36235410 PMCID: PMC9571535 DOI: 10.3390/plants11192544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 12/04/2022]
Abstract
Environmental changes are inevitable with time, but their intensification and diversification, occurring in the last several decades due to the combination of both natural and human-made causes, are really a matter of great apprehension. As a consequence, plants are exposed to a variety of abiotic stressors that contribute to their morpho-physiological, biochemical, and molecular alterations, which affects plant growth and development as well as the quality and productivity of crops. Thus, novel strategies are still being developed to meet the challenges of the modern world related to climate changes and natural ecosystem degradation. Innovative methods that have recently received special attention include eco-friendly, easily available, inexpensive, and, very often, plant-based methods. However, such approaches require better cognition and understanding of plant adaptations and acclimation mechanisms in response to adverse conditions. In this succinct review, we have highlighted defense mechanisms against external stimuli (mainly exposure to elevated levels of metal elements) which can be activated through permanent microevolutionary changes in metal-tolerant species or through exogenously applied priming agents that may ensure plant acclimation and thereby elevated stress resistance.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-59326-61
| |
Collapse
|
5
|
El-Beltagi HS, Basit A, Mohamed HI, Ali I, Ullah S, Kamel EAR, Shalaby TA, Ramadan KMA, Alkhateeb AA, Ghazzawy HS. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. AGRONOMY 2022; 12:1881. [DOI: 10.3390/agronomy12081881] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
This research was carried out in order to demonstrate that mulching the ground helps to conserve water, because agricultural sustainability in dryland contexts is threatened by drought, heat stress, and the injudicious use of scarce water during the cropping season by minimizing surface evaporation. Improving soil moisture conservation is an ongoing priority in crop outputs where water resources are restricted and controlled. One of the reasons for the desire to use less water in agriculture is the rising demand brought on by the world’s growing population. In this study, the use of organic or biodegradable mulches was dominated by organic materials, while inorganic mulches are mostly comprised of plastic-based components. Plastic film, crop straw, gravel, volcanic ash, rock pieces, sand, concrete, paper pellets, and livestock manures are among the materials put on the soil surface. Mulching has several essential applications, including reducing soil water loss and soil erosion, enriching soil fauna, and improving soil properties and nutrient cycling in the soil. It also reduces the pH of the soil, which improves nutrient availability. Mulching reduces soil deterioration by limiting runoff and soil loss, and it increases soil water availability by reducing evaporation, managing soil temperature, or reducing crop irrigation requirements. This review paper extensively discusses the benefits of organic or synthetic mulches for crop production, as well as the uses of mulching in soil and water conservation. As a result, it is very important for farmers to choose mulching rather than synthetic applications.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar 25120, Pakistan
| | - Heba I. Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11341, Egypt
| | - Iftikhar Ali
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar 25120, Pakistan
| | - Sana Ullah
- Department of Agricultural Leadership, Education & Communication, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Ehab A. R. Kamel
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11341, Egypt
| | - Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Abdulmalik A. Alkhateeb
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt
| |
Collapse
|
6
|
El-Beltagi HS, Ahmad I, Basit A, Shehata WF, Hassan U, Shah ST, Haleema B, Jalal A, Amin R, Khalid MA, Noor F, Mohamed HI. Ascorbic Acid Enhances Growth and Yield of Sweet Peppers (Capsicum annum) by Mitigating Salinity Stress. GESUNDE PFLANZEN 2022; 74:423-433. [DOI: 10.1007/s10343-021-00619-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 10/26/2023]
|
7
|
El-Beltagi HS, Ahmad I, Basit A, Abd El-Lateef HM, Yasir M, Tanveer Shah S, Ullah I, Elsayed Mohamed Mohamed M, Ali I, Ali F, Ali S, Aziz I, Kandeel M, Zohaib Ikram M. Effect of Azospirillum and Azotobacter Species on the Performance of Cherry Tomato under Different Salinity Levels. GESUNDE PFLANZEN 2022; 74:487-499. [DOI: 10.1007/s10343-022-00625-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 10/26/2023]
|
8
|
Öztürk O, Karaburç ŞN, Saydan M, Keskin ÜS. High rate X-ray radiation shielding ability of cement-based composites incorporating strontium sulfate (SrSO4) minerals. KERNTECHNIK 2022. [DOI: 10.1515/kern-2021-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Exposure of radioactivity applications should be handled reliably in repositories, radiotherapy rooms, and research centers built with cement-based composites which is generally used as an engineering barrier. The design of certain materials for radioactive exposure requires special handling considering the degradation mechanism of host composite environment and barrier capability. In this study, celestite (SrSO4) minerals having favoring properties for shielding ability was used as aggregates in barrier composites. Strontium mineral-based aggregates were partially replaced with conventional concrete aggregates at different ratios. The high rate X-ray shielding ability and mechanical performance of developed composites were holistically investigated in the presence of real-case radiation. The use of celestite mineral resulted in higher performance both in mechanical and shielding capability of X-rays at a certain level. Microstructural findings also revealed that interface properties of composite paste and celestite minerals were compatible up to 30% of celestite aggregate replacement.
Collapse
Affiliation(s)
- Oğuzhan Öztürk
- Construction Materials Division, Department of Civil Engineering , Konya Technical University , Konya , Turkey
| | - Şeyma Nur Karaburç
- Construction Materials Division, Department of Civil Engineering , Konya Technical University , Konya , Turkey
| | - Murat Saydan
- Construction Materials Division, Department of Civil Engineering , Konya Technical University , Konya , Turkey
| | - Ülkü Sultan Keskin
- Construction Materials Division, Department of Civil Engineering , Konya Technical University , Konya , Turkey
| |
Collapse
|
9
|
EL-BELTAGI HS, ULLAH I, SAJID M, BASIT A, SHEHATA WF, SHAH ST, ALTURKI SM, ULLAH A, AZIZ I, ALI F. Influence of maturity stages on postharvest physico-chemical properties of grapefruit (Citrus paradisi var. ‘Shamber Tarnab’) under different storage durations. NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA 2022; 50:12620. [DOI: 10.15835/nbha50112620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The present study was conducted to evaluate the effect of maturity stages on the physicochemical characteristics of grapefruit (Citrus paradisi cv. ‘Shamber Tarnab’) under storage conditions for 60 days at ambient temperature (16±1 °C with 55-60% relative humidity). Grapefruits were harvested at different maturity stages, namely mature green (MG) and full ripe (FR). The fruits of both stages were assessed for different physical quality parameters at 15 days interval. The experimental results showed that ascorbic acid content, titratable acidity, fruit firmness, percent disease incidence was higher at FR stage. In contrast, weight loss, percent juice content, total soluble solid (TSS), and TSS/acid ratio at MG (mature green) were lower than that of FR fruits. Regarding storage durations, the fruit firmness, titratable acidity, percent juice content, ascorbic acid content decreased significantly, whilst total soluble solid, TSS/Acid ratio, weight loss, and percent disease incidence increased significantly with the extension of storage duration from 0 to 60 days. As concerned to its interactive effects, the highest ascorbic acid content, titratable acidity, percent juice content, and maximum fruit firmness were observed in fresh grapefruit, harvested at (MG) mature green stages, whereas the maximum total soluble solid, percent disease incidence, and TSS/Acid ratio were recorded in fruit harvested at (FR) full ripe stage, stored for 60 days at room temperature. Similarly, the Pearson’s Correlation Analysis (p> 0.05) of grapefruit was positive effect for most of the quality traits of grapefruit at different storage durations and maturity stages. It was concluded that grapefruit could be harvested at the mature green stage (MG) for sustaining quality attributes up to 60 days of storage at room temperature.
Collapse
|
10
|
Piovesan A, Vancauwenberghe V, Van De Looverbosch T, Verboven P, Nicolaï B. X-ray computed tomography for 3D plant imaging. TRENDS IN PLANT SCIENCE 2021; 26:1171-1185. [PMID: 34404587 DOI: 10.1016/j.tplants.2021.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
X-ray computed tomography (CT) is a valuable tool for 3D imaging of plant tissues and organs. Applications include the study of plant development and organ morphogenesis, as well as modeling of transport processes in plants. Some challenges remain, however, including attaining higher contrast for easier quantification, increasing the resolution for imaging subcellular features, and decreasing image acquisition and processing time for high-throughput phenotyping. In addition, phase contrast, multispectral, dark-field, soft X-ray, and time-resolved imaging are emerging. At the same time, a large amount of 3D image data are becoming available, posing challenges for data management. We review recent advances in the area of X-ray CT for plant imaging, and describe opportunities for using such images for studying transport processes in plants.
Collapse
Affiliation(s)
- Agnese Piovesan
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium
| | - Valérie Vancauwenberghe
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium
| | - Tim Van De Looverbosch
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium
| | - Pieter Verboven
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium.
| | - Bart Nicolaï
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium; Flanders Centre of Postharvest Technology (VCBT), Willem de Croylaan 42, BE-3001 Leuven, Belgium
| |
Collapse
|
11
|
Impact of Proton Beam Irradiation on the Growth and Biochemical Indexes of Barley ( Hordeum vulgare L.) Seedlings Grown under Salt Stress. PLANTS 2020; 9:plants9091234. [PMID: 32962044 PMCID: PMC7570119 DOI: 10.3390/plants9091234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022]
Abstract
The present paper examines the effects of salt stress on the growth, pigments, lipid peroxidation and antioxidant ability of barley (Hordeum vulgare L.) seedlings raised from proton beam irradiated caryopses. In order to assess the effects of radiation on the early stages of plant growth and analyze its possible influence on the alleviation of salinity, 3 and 5 Gy doses were used on dried barley seeds and germination occurred in the presence/absence of NaCl (100 mM and 200 mM). After treatment, photosynthetic pigments increased in the 5 Gy variant, which registered a higher value than the control. Among the antioxidant enzymes studied (SOD, CAT, and POD) only CAT activity increased in proton beam irradiated seeds germinated under salinity conditions, which indicates the activation of antioxidant defense. The malondialdehyde (MDA) content declined with the increase of irradiation doses on seeds germinated at 200 mM NaCl. On the other hand, the concentration of 200 mM NaCl applied alone or combined with radiation revealed an increase in soluble protein content. The growth rate suggests that 3 Gy proton beam irradiation of barley seeds can alleviate the harmful effects of 100 mM NaCl salinity, given that seedlings' growth rate increased by 1.95% compared to the control.
Collapse
|