1
|
Dereje DM, Bianco F, Pontremoli C, Fiorio Pla A, Barbero N. NIR pH-Responsive PEGylated PLGA Nanoparticles as Effective Phototoxic Agents in Resistant PDAC Cells. Polymers (Basel) 2025; 17:1101. [PMID: 40284366 PMCID: PMC12030558 DOI: 10.3390/polym17081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its resistance to conventional therapies that is attributed to its dense and acidic tumor microenvironment. Chemotherapy based on gemcitabine usually lacks efficacy due to poor drug penetration and the metabolic characteristics of the cells adapted to grow at a more acidic pHe, thus presenting a more aggressive phenotype. In this context, photodynamic therapy (PDT) offers a promising alternative since it generally does not suffer from the same patterns of cross-resistance observed with chemotherapy drugs. In the present work, a novel bromine-substituted heptamethine-cyanine dye (BrCY7) was synthesized, loaded into PEG-PLGA NPs, and tested on the pancreatic ductal adenocarcinoma cell line cultured under physiological (PANC-1 CT) and acidic (PANC-1 pH selected) conditions, which promotes the selection of a more aggressive phenotype. The cytotoxicity of BrCY7-PEG-PLGA is dose-dependent, with an IC50 of 2.15 µM in PANC-1 CT and 2.87 µM in PANC-1 pH selected. Notably, BrCY7-PEG-PLGA demonstrated a phototoxic effect against PANC-1 pH selected cells but not on PANC-1 CT, which makes these findings particularly relevant since PANC-1 pH selected cells are more resistant to gemcitabine as compared with PANC-1 CT cells.
Collapse
Affiliation(s)
- Degnet Melese Dereje
- NIS Interdepartmental and INSTM Reference Centre, Department of Chemistry, University of Torino, Via G. Quarello 15A, 10135 Torino, Italy; (D.M.D.); (N.B.)
- Bahir Dar Institute of Technology, Department of Chemical Engineering, Bahir Dar University, Polypeda 01, Bahir Dar 0026, Ethiopia
| | - Francesca Bianco
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy; (F.B.); (A.F.P.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell’ Elce di Sotto 8, 06123 Perugia, Italy
| | - Carlotta Pontremoli
- NIS Interdepartmental and INSTM Reference Centre, Department of Chemistry, University of Torino, Via G. Quarello 15A, 10135 Torino, Italy; (D.M.D.); (N.B.)
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy; (F.B.); (A.F.P.)
| | - Nadia Barbero
- NIS Interdepartmental and INSTM Reference Centre, Department of Chemistry, University of Torino, Via G. Quarello 15A, 10135 Torino, Italy; (D.M.D.); (N.B.)
- Institute of Science and Technology for Ceramics (ISSMC-CNR), Via Granarolo, 64, 48018 Faenza, Italy
| |
Collapse
|
2
|
Chen C, Guo L, Shen Y, Hu J, Gu J, Ji G. Oxidative damage and cardiotoxicity induced by 2-aminobenzothiazole in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135032. [PMID: 38959826 DOI: 10.1016/j.jhazmat.2024.135032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
There is limited information available on cardiovascular toxicity of 2-Aminobenzothiazole (NTH), a derivative of benzothiazole (BTH) commonly used in tire production, in aquatic organisms. In the present study, the zebrafish embryos were exposed to varying concentrations of NTH (0, 0.05, 0.5, and 5 mg/L) until adulthood and the potential cardiovascular toxicity was assessed. NTH exposure resulted in striking aberrations in cardiac development, including heart looping failure and interference with atrioventricular canal differentiation. RNA-sequencing analysis indicated that NTH causes oxidative damage to the heart via ferroptosis, leading to oxygen supply disruption, cardiac malformation, and ultimately, zebrafish death. Quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated the dysregulation of genes associated with early heart development, contraction, and oxidative stress. Additionally, reactive oxygen species accumulation and glutathione/malondialdehyde levels changes suggested a potential link between cardiac developmental toxicity and oxidative stress. In adult zebrafish, NTH exposure led to ventricular enlargement, decreased heart rate, reduced blood flow, and prolonged RR, QRS, and QTc intervals. To the best of our knowledge, this study is the first to provide evidence of cardiac toxicity and the adverse effects of ontogenetic NTH exposure in zebrafish, revealing the underlying toxic mechanisms connected with oxidative stress damage. These findings may provide crucial insights into the environmental risks associated with NTH and other BTHs.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuehong Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jun Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Shik AV, Stepanova IA, Doroshenko IA, Podrugina TA, Beklemishev MK. Carbocyanine-Based Optical Sensor Array for the Discrimination of Proteins and Rennet Samples Using Hypochlorite Oxidation. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094299. [PMID: 37177503 PMCID: PMC10181777 DOI: 10.3390/s23094299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Optical sensor arrays are widely used in obtaining fingerprints of samples, allowing for solutions of recognition and identification problems. An approach to extending the functionality of the sensor arrays is using a kinetic factor by conducting indicator reactions that proceed at measurable rates. In this study, we propose a method for the discrimination of proteins based on their oxidation by sodium hypochlorite with the formation of the products, which, in turn, feature oxidation properties. As reducing agents to visualize these products, carbocyanine dyes IR-783 and Cy5.5-COOH are added to the reaction mixture at pH 5.3, and different spectral characteristics are registered every several minutes (absorbance in the visible region and fluorescence under excitation by UV (254 and 365 nm) and red light). The intensities of the photographic images of the 96-well plate are processed by principal component analysis (PCA) and linear discriminant analysis (LDA). Six model proteins (bovine and human serum albumins, γ-globulin, lysozyme, pepsin, and proteinase K) and 10 rennet samples (mixtures of chymosin and pepsin from different manufacturers) are recognized by the proposed method. The method is rapid and simple and uses only commercially available reagents.
Collapse
Affiliation(s)
- Anna V Shik
- Department of Chemistry, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991 Moscow, Russia
| | - Irina A Stepanova
- Department of Chemistry, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991 Moscow, Russia
| | - Irina A Doroshenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991 Moscow, Russia
| | - Tatyana A Podrugina
- Department of Chemistry, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991 Moscow, Russia
| | - Mikhail K Beklemishev
- Department of Chemistry, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991 Moscow, Russia
| |
Collapse
|
4
|
Zonjić I, Radić Stojković M, Crnolatac I, Tomašić Paić A, Pšeničnik S, Vasilev A, Kandinska M, Mondeshki M, Baluschev S, Landfester K, Glavaš-Obrovac L, Jukić M, Kralj J, Brozovic A, Horvat L, Tumir LM. Styryl dyes with N-Methylpiperazine and N-Phenylpiperazine Functionality: AT-DNA and G-quadruplex binding ligands and theranostic agents. Bioorg Chem 2022; 127:105999. [DOI: 10.1016/j.bioorg.2022.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
5
|
Djuidje EN, Barbari R, Baldisserotto A, Durini E, Sciabica S, Balzarini J, Liekens S, Vertuani S, Manfredini S. Benzothiazole Derivatives as Multifunctional Antioxidant Agents for Skin Damage: Structure–Activity Relationship of a Scaffold Bearing a Five-Membered Ring System. Antioxidants (Basel) 2022; 11:antiox11020407. [PMID: 35204288 PMCID: PMC8869097 DOI: 10.3390/antiox11020407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Skin diseases often give multifactorial damages; therefore, the development of multifunctional compounds represents a suitable approach especially against disorders that are induced by oxidative stress. Thus, taking into account the successful results we achieved on benzimidazoles, we have devised a new series of isosteric benzothiazoles and investigated their antioxidant, photoprotective, antifungal and antiproliferative activity. Particular attention has been paid to synergistic antioxidant and photoprotective properties. For compounds 9a and 10a, a multifunctional profile was outlined, supported by an excellent filtering capacity, mainly UVB, which has higher capacities than those of the reference PBSA which is currently in the market as a UV sunscreen filter. The two compounds were also the best in terms of growth inhibition of dermatophytes and Candida albicans, and 10a also showed good antioxidant activity. Furthermore, 9a was also effective on melanoma tumor cells (SK-Mel 5), making these compounds good candidates in the development of new skin protective and preventive agents.
Collapse
Affiliation(s)
- Ernestine Nicaise Djuidje
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Riccardo Barbari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy;
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
- Correspondence: (A.B.); (S.V.); Tel.: +39-0532-455258 (A.B.); +39-0532-455294 (S.V.)
| | - Elisa Durini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Sabrina Sciabica
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, University of Leuven, B-3000 Leuven, Belgium; (J.B.); (S.L.)
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, University of Leuven, B-3000 Leuven, Belgium; (J.B.); (S.L.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
- Correspondence: (A.B.); (S.V.); Tel.: +39-0532-455258 (A.B.); +39-0532-455294 (S.V.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| |
Collapse
|
6
|
Li D, Smith BD. Deuterated Indocyanine Green (ICG) with Extended Aqueous Storage Shelf-Life: Chemical and Clinical Implications. Chemistry 2021; 27:14535-14542. [PMID: 34403531 PMCID: PMC8530945 DOI: 10.1002/chem.202102816] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Indocyanine Green (ICG) is a clinically approved near-infrared fluorescent dye that is used extensively for various imaging and diagnostic procedures. One drawback with ICG is its instability in water, which means that reconstituted clinical doses have to be used very shortly after preparation. Two deuterated versions of ICG were prepared with deuterium atoms on the heptamethine chain, and the spectral, physiochemical, and photostability properties were quantified. A notable mechanistic finding is that self-aggregation of ICG in water strongly favors dye degradation by a photochemical oxidative dimerization reaction that gives a nonfluorescent product. Storage stability studies showed that replacement of C-H with C-D decreased the dimerization rate constant by a factor of 3.1, and it is likely that many medical and preclinical procedures will benefit from the longer shelf-lives of these two deuterated ICG dyes. The discovery that ICG self-aggregation promotes photoinduced electron transfer can be exploited as a new paradigm for next-generation photodynamic therapies.
Collapse
Affiliation(s)
- Dong‐Hao Li
- Department of Chemistry & BiochemistryUniversity of Notre Dame251 Nieuwland Science HallNotre DameIN, 46545USA
| | - Bradley D. Smith
- Department of Chemistry & BiochemistryUniversity of Notre Dame251 Nieuwland Science HallNotre DameIN, 46545USA
| |
Collapse
|
7
|
Photochemical synthesis, intercalation with DNA and antitumor evaluation in vitro of benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives. Bioorg Chem 2021; 115:105267. [PMID: 34426158 DOI: 10.1016/j.bioorg.2021.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
A new anticancer benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives were synthesized and characterized. Anticancer evaluation in vitro against four cancer cell lines including adenocarcinomic human alveolar basal epithelial cells (A549), hepatocellular carcinoma (HepG2), prostate cancer (PC3) and breast cancer (MCF7) indicated that some of prepared compounds shows higher selectivity in comparison with doxorubicin. DNA interaction studies by optical, CD, NMR spectroscopies showed the high affinity of benzothiazole ligands towards the dsDNA. The ligand-DNA interaction occurs through the intercalation of benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives with nucleic acid. The investigation of formed ligand - DNA complexes by docking and molecular dynamic calculations was applied for analysis of the relationship between structure and anticancer activity. The results suggested that benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives might serve as a novel scaffold for the future development to new antitumor agents.
Collapse
|
8
|
Tokala R, Mahajan S, Kiranmai G, Sigalapalli DK, Sana S, John SE, Nagesh N, Shankaraiah N. Development of β-carboline-benzothiazole hybrids via carboxamide formation as cytotoxic agents: DNA intercalative topoisomerase IIα inhibition and apoptosis induction. Bioorg Chem 2020; 106:104481. [PMID: 33261848 DOI: 10.1016/j.bioorg.2020.104481] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 01/02/2023]
Abstract
In quest of promising anticancer agents, the pharmacophores of natural (β-carboline) and synthetic origin (benzothiazole) were adjoined by a carboxamide bridge and three-point diversification was accomplished. The in vitro cytotoxic ability of the compounds was established on adherent and suspension human cancer cell lines and compounds 8u and 8f advanced as pre-eminent molecules with IC50 values of 1.46 and 1.81 μM respectively in A549 cell line. The cytospecificity was entrenched for potent compounds 8u and 8f by evaluating against normal human lung epithelial cells and selectivity index was calculated. Furthermore, EtBr displacement, relative viscosity and gel-based topoisomerase II target assays unveiled the intercalative topo-II inhibitory capability and DNA binding studies (absorbance) revealed the dissociation constant (Kd) for compounds 8u and 8f as 98 and 103 μM respectively. Additionally, cell-based flow cytometric assays like Annexin-V/PI dual staining aids in the quantification of apoptosis induced and JC-1 staining disclosed the depolarization of mitochondrial membrane potential by compound 8u in A549 cells in a dose-dependent manner. Moreover, wound healing assay established the inhibition of in vitro cell migration by compound 8u on A549 cells. In addition, molecular docking studies proved the binding of compounds 8u and 8f in the active site of DNA complexed with topo IIα and stabilized by interactions with DNA base pairs and amino acid residues. Remarkably, the compounds 8u and 8f follow Lipinski's rule of five and are in the recommended range for Jorgensen's rule of three with a minimal violation and other pharmacokinetic parameters revealing druggability of the synthesized hybrids.
Collapse
Affiliation(s)
- Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Surbhi Mahajan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Gaddam Kiranmai
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Stephy Elza John
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
9
|
Lawrence CL, Okoh AO, Vishwapathi V, McKenna ST, Critchley ME, Smith RB. N-alkylated linear heptamethine polyenes as potent non-azole leads against Candida albicans fungal infections. Bioorg Chem 2020; 102:104070. [PMID: 32682157 DOI: 10.1016/j.bioorg.2020.104070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In this study, eighteen heptamethine dyes were synthesised and their antifungal activities were evaluated against three clinically relevant yeast species.. The eighteen dyes were placed within classes based on their core subunit i.e. 2,3,3-trimethylindolenine (5a-f), 1,1,2-trimethyl-1H-benzo[e]indole (6a-f), or 2-methylbenzothiazole (7a-f). The results presented herein imply that the three families of cyanine dyes, in particular compounds 5a-f, show high potential as selective scaffolds to treat C. albicans infections. This opens up the opportunity for further optimisation and investigation of this class compounds for potential antifungal treatment.
Collapse
Affiliation(s)
- Clare L Lawrence
- UCLan Research Centre for Drug Design and Development, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Adeyi Okoh Okoh
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK
| | - Vinod Vishwapathi
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sean T McKenna
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK
| | - Megan E Critchley
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK
| | - Robert B Smith
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
10
|
Talianová V, Bříza T, Krčová L, Dolenský B, Králová J, Martásek P, Král V, Havlík M. Coumarin Tröger's base derivatives with cyanine substitution as selective and sensitive fluorescent lysosomal probes. Bioorg Chem 2019; 94:103447. [PMID: 31810756 DOI: 10.1016/j.bioorg.2019.103447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022]
Abstract
The fluorescent probes based on Tröger's base motive with both coumarin and cyanine substitution 11-13 have been synthesized by multi-step synthesis in high overall yields. Intracellular localization of prepared probes have been tested using four different cell lines (HF-P4, BLM, U-2 OS and A-2058). Prepared probes have intensive green and red fluorescence. Co-localization with commercial lysosome specific marker LysoTracker Blue DND 22 has been confirmed that all prepared fluorescent probes labeled lysosomal compartment with high selectivity and probes show excellent brightness at low concentration.
Collapse
Affiliation(s)
- Veronika Talianová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Tomáš Bříza
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Lucie Krčová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Bohumil Dolenský
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Jarmila Králová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 08 Prague, Czech Republic
| | - Vladimír Král
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Martin Havlík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
11
|
Braun AB, Wehl I, Kölmel DK, Schepers U, Bräse S. New Polyfluorinated Cyanine Dyes for Selective NIR Staining of Mitochondria. Chemistry 2019; 25:7998-8002. [PMID: 30947363 DOI: 10.1002/chem.201900412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Indexed: 12/26/2022]
Abstract
In this communication, the synthesis of three unknown polyfluorinated cyanine dyes and their application as selective markers for mitochondria are presented. By incorporating fluorous side chains into cyanine dyes, their remarkable photophysical properties were enhanced. To investigate their biological application, several different cell lines were incubated with the synthesized cyanine dyes. It was discovered that the presented dyes can be utilized for selective near-infrared-light (NIR) staining of mitochondria, with very low cytotoxicity determined by MTT assay. This is the first time that polyfluorinated cyanine fluorophores are presented as selective markers for mitochondria. Due to the versatile applications of polyfluorinated fluorophores in bioimaging and materials science, it is expected that the presented fluorophores will be stimulating for the scientific community.
Collapse
Affiliation(s)
- Alexander B Braun
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik K Kölmel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Štacková L, Štacko P, Klán P. Approach to a Substituted Heptamethine Cyanine Chain by the Ring Opening of Zincke Salts. J Am Chem Soc 2019; 141:7155-7162. [DOI: 10.1021/jacs.9b02537] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lenka Štacková
- Department of Chemistry and RECETOX, Masaryk University, Kamenice
5, 625 00 Brno, Czech Republic
| | - Peter Štacko
- Department of Chemistry and RECETOX, Masaryk University, Kamenice
5, 625 00 Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry and RECETOX, Masaryk University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Kurutos A, Ryzhova O, Tarabara U, Trusova V, Gorbenko G, Gadjev N, Deligeorgiev T. Novel synthetic approach to near-infrared heptamethine cyanine dyes and spectroscopic characterization in presence of biological molecules. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Keri RS, Patil MR, Patil SA, Budagumpi S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur J Med Chem 2014; 89:207-51. [PMID: 25462241 DOI: 10.1016/j.ejmech.2014.10.059] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
Benzothiazole (BTA) and its derivatives are the most important heterocyclic compounds, which are common and integral feature of a variety of natural products and pharmaceutical agents. BTA shows a variety of pharmacological properties, and its analogs offer a high degree of structural diversity that has proven useful for the search of new therapeutic agents. The broad spectrum of pharmacological activity in individual BTA derivative indicates that, this series of compounds is of an undoubted interest. The related research and developments in BTA-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous BTA-based compounds as clinical drugs have been extensively used in practice to treat various types of diseases with high therapeutic potency. This work systematically gives a comprehensive review in current developments of BTA-based compounds in the whole range of medicinal chemistry as anticancer, antibacterial, antifungal, antiinflammatory, analgesic, anti-HIV, antioxidant, anticonvulsant, antitubercular, antidiabetic, antileishmanial, antihistaminic, antimalarial and other medicinal agents. It is believed that, this review article is helpful for new thoughts in the quest for rational designs of more active and less toxic BTA-based drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Rangappa S Keri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India.
| | - Mahadeo R Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| |
Collapse
|