1
|
Abdurashtov AS, Proshin PI, Sukhorukov GB. The pursuit of linear dosage in pharmacy: reservoir-based drug delivery systems from macro to micro scale. Expert Opin Drug Deliv 2025; 22:219-238. [PMID: 39764701 DOI: 10.1080/17425247.2024.2448026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies. AREAS COVERED The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications. Detailed examination of reservoir-based systems, their design, mechanisms of action and materials used are highlighted. By addressing these areas, the discussion aims to provide a thorough understanding of most recent zero-order drug delivery systems, their performance advantages and methods of their manufacturing. To ensure the complete coverage of the explored research area, modern AI-assistant tools were used to find not only the most relevant, but also connected and similar articles. EXPERT OPINION Future developments in reservoir-based drug delivery systems are expected to significantly enhance therapeutic effectiveness and patient outcomes through the integration of innovative materials and technologies. The fabrication of intelligent drug delivery systems that utilize sensors and feedback mechanisms can enable real-time monitoring of drug release and patient reactions.
Collapse
Affiliation(s)
- Arkady S Abdurashtov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Pavel I Proshin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Gleb B Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| |
Collapse
|
2
|
Brako F, Nkwo M. Leveraging artificial intelligence for better translation of fibre-based pharmaceutical systems into real-world benefits. Pharm Dev Technol 2024; 29:793-804. [PMID: 39166418 DOI: 10.1080/10837450.2024.2395422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
The increasing prominence of biologics in the pharmaceutical market requires more advanced delivery systems to deliver these delicate and complex drug molecules for better therapeutic outcomes. Fibre technology has emerged as a promising approach for creating controlled and targeted drug delivery systems. Fibre-based drug delivery systems offer unprecedented opportunities for improving drug administration, fine-tuning release profiles, and advancing the realm of personalized medicine. These applications range from localized delivery at specific tissue sites to systemic drug administration while safeguarding the stability and integrity of delicate therapeutic compounds. Notwithstanding the promise of fibre-based drug delivery, several challenges such as non-scalability impede cost-effectiveness in the mass production of fibre systems. Biocompatibility and toxicity concerns must also be addressed. Furthermore, issues relating to stability, in-vitro in-vivo correlations, degradation rates, and by-product safety present additional hurdles. Pharmacoinformatics shows the impact of technologies in pharmaceutical processes. Emerging technologies such as Artificial Intelligence (AI) are a transformative force, progressively being applied to enhance various facets of pharmacy, medication development, and clinical healthcare support. However, there is a dearth of studies about the integration of AI in facilitating the translation of predominantly lab-scale pharmaceutical technologies into real-world healthcare interventions. This article explores the application of AI in fibre technology, its potential, challenges, and practical applications within the pharmaceutical field. Through a comprehensive analysis, it presents how the immense capabilities of AI can be leveraged with existing fibre technologies to revolutionize drug delivery and shape the future of therapeutic interventions by enhancing scalability, material integrity, synthesis, and development.
Collapse
Affiliation(s)
- Francis Brako
- Department of Engineering and Science, University of Greenwich, London, UK
| | - Makuochi Nkwo
- Department of Engineering and Science, School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, London, UK
| |
Collapse
|
3
|
Electrosprayed Chitosan-Copper Complex Microspheres with Uniform Size. MATERIALS 2021; 14:ma14195630. [PMID: 34640029 PMCID: PMC8509822 DOI: 10.3390/ma14195630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022]
Abstract
Chitosan-based nano- and microspheres have shown great potential in a broad range of applications, including drug delivery, bone tissue engineering, wastewater treatments, etc. The preparation of uniformly sized spheres with controlled morphology and microstructure is still a challenge. This work investigates the influence of cupric ions (Cu2+) on the size, shape, morphology and stability of electrosprayed chitosan–copper (CHT–Cu2+) complex microspheres, using chitosans with different degrees of deacetylation. The dynamic viscosity of CHT–Cu2+ solutions was measured by Höppler viscometer, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used for the identification of dried microspheres. The size, shape and morphology of microspheres were analyzed by light microscope and scanning electron microscopy (SEM), while stability of dried microspheres was evaluated in different buffer solutions. The volume ratio of wet and dry microspheres was assessed based on the estimated diameter of microspheres. The higher concentration of Cu2+ ions resulted in a decrease in viscosity of CHT–Cu2+ solutions and volume ratio of prepared microspheres. Changes in the intensities and wave numbers of absorption bands of amino and hydroxyl groups, amide I and amide II suggested that the nitrogen and oxygen atoms in chitosan are coordinating the cupric ions. Micrographs obtained by light microscope and SEM showed that all prepared samples are spherical. The increase of cupric ions concentration changed the topography of microspheres and decreased their size. These results indicated the successful electrospraying of CHT–Cu2+ microspheres with uniform size and good stability in aqueous medium.
Collapse
|
4
|
Zhang Y, Zhang X, Yan Y, Chen Z. Microencapsulation of Photochromic Solution with Polyurea by Interfacial Polymerization. Polymers (Basel) 2021; 13:polym13183049. [PMID: 34577948 PMCID: PMC8469062 DOI: 10.3390/polym13183049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023] Open
Abstract
Photochromic materials are interesting materials because of their color-changing property under UV light and visible light irradiation. However, they are vulnerable to many factors, such as pH oxygen, ion, solvent, etc. because of the unsaturated bonds existing on the photochromic molecular. Microencapsulation of the photochromic materials can separate them from the surroundings. Here, photochromic microcapsules using 3,3-Diphenyl-3H-naphtho[2,1-b] pyran (NP)/solution as core and polyurea as shell via interfacial polymerization were prepared, and bis(2,2,6,6-tetramethyl-4-piperidinyl)sebacate (HALS 770) was used as photostabilizer. Fourier transform infrared spectroscopy (FTIR), a laser particle size analyzer, a scanning electron microscope (SEM), a thermogravimetric analyzer and an ultraviolet-visible spectrophotometer were used for characterization. The results showed that the microcapsules had a uniform particle size of about 0.56 μm when the percentage of the oil phase (core) in the emulsion was less than 15%, the addition amount of the emulsifier was 0.4%, and the stirring rate was 1800 r/min. The microcapsules showed better performance in thermal stability when the core/shell ratio was 1:1. The photostabilizer had little impact on the color-changing property of the microcapsule, but it could protect the microcapsules from UV light radiation aging.
Collapse
|
5
|
Rohani Shirvan A, Hemmatinejad N, Bahrami SH, Bashari A. Fabrication of multifunctional mucoadhesive buccal patch for drug delivery applications. J Biomed Mater Res A 2021; 109:2640-2656. [PMID: 34190400 DOI: 10.1002/jbm.a.37257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 01/20/2023]
Abstract
Mucoadhesive buccal patch is a promising dosage form for a successful oral drug delivery, which provides unique advantages for various applications such as treatment of periodontal disease and postdental surgery disorders. The aim of this study is to synthesize a novel multifunctional mucoadhesive buccal patch in a multilayer reservoir design for therapeutic applications. The patches were fabricated through simultaneous electrospinning of chitosan/poly(vinylalcohol) (PVA)/ibuprofen and electrospraying of phenylalanine amino acid nanotubes (PhNTs) containing metronidazole into the electrospun mats through a layer-by-layer process. An electrospun poly(caprolactone) (PCL) was used as an impermeable backing layer to protect the mucoadhesive component from tongue movement and drug loss. Buccal patches were characterized using scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and also evaluated in terms of physicomechanical parameters such as pH, weight, thickness, tensile strength, folding endurance, and mucoadhesive properties. The swelling index of the patches was examined with respect to the PVA/chitosan ratio. The effect of genipin addition to the electrospinning solution was also studied on mucoadhesive and swelling properties. The cell viability of buccal patches was assessed by methylthiazolydiphenyl-tetrazolium bromide test on L929 fibroblast cell line. The patch with an optimal amount of mucoadhesive polymers (PVA/chitosan 80:20) and crosslinking agent (0.05 g) indicated an ideal hemostatic activity along with antibacterial properties against Streptococcus mutans bacteria. The synthesized multifunctional mucoadhesive patch with a novel composition and design has a great potential for oral therapeutic applications.
Collapse
Affiliation(s)
| | - Nahid Hemmatinejad
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Azadeh Bashari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Ejeta F, Gabriel T, Joseph NM, Belete A. Formulation, Optimization and In Vitro Evaluation of Fast Disintegrating Tablets of Salbutamol Sulphate using a Combination of Superdisintegrant and Subliming Agent. Curr Drug Deliv 2021; 19:129-141. [PMID: 34126894 DOI: 10.2174/1567201818666210614094646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/23/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
AIM The present research work was aimed to formulate fast disintegrating tablets (FDTs) of salbutamol sulphate (SBS) using a combination of superdisintegrant and subliming agent, optimize the formulation and evaluate the in vitro performance of the developed FDTs. MATERIALS AND METHODS A formulation of SBS FDT was developed using a combination of superdisintegrant - crospovidone and subliming agent - ammonium bicarbonate (AB) in which formulation variables, namely levels of crospovidone and microcrystalline cellulose (MCC):Mannitol (MNTL) ratio were evaluated for their effects on the response variables - disintegration time, hardness, friability and wetting time of the resulting FDTs. By employing a central composite design (CCD) methodology, the FDTs were optimized to achieve optimum levels of the formulation factors. RESULTS The desired optimum condition was obtained at 7.82% crospovidone and 70% of 1.56:1 MCC: MNTL ratio while maintaining AB at 5% level for aesthetic reasons. Under the optimized conditions, the disintegration time, hardness, friability and wetting time were 14.57±0.53 sec, 7.17±0.82 kg/cm2, 0.311% and 13.14±0.69 sec, respectively. The experimentally observed responses were found to be in close agreement with the predicted values for the optimized formulation. Moreover, the validity of the obtained optimal point was confirmed by the low magnitude of percent prediction error (<5%). CONCLUSION FDTs of SBS were successfully formulated and optimized using CCD employing a combination of superdisintegrant and subliming agents.
Collapse
Affiliation(s)
- Fikadu Ejeta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfaye Gabriel
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nisha Mary Joseph
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Anteneh Belete
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Tycova A, Prikryl J, Kotzianova A, Datinska V, Velebny V, Foret F. Electrospray: More than just an ionization source. Electrophoresis 2020; 42:103-121. [PMID: 32841405 DOI: 10.1002/elps.202000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Electrospraying (ES) is a potential-driven process of liquid atomization, which is employed in the field of analytical chemistry, particularly as an ionization technique for mass spectrometric analyses of biomolecules. In this review, we demonstrate the extraordinary versatility of the electrospray by overviewing the specifics and advanced applications of ES-based processing of low molecular mass compounds, biomolecules, polymers, nanoparticles, and cells. Thus, under suitable experimental conditions, ES can be used as a powerful tool for highly controlled deposition of homogeneous films or various patterns, which may sometimes even be organized into 3D structures. We also emphasize its capacity to produce composite materials including encapsulation systems and polymeric fibers. Further, we present several other, less common ES-based applications. This review provides an insight into the remarkable potential of ES, which can be very useful in the designing of innovative and unique strategies.
Collapse
Affiliation(s)
- Anna Tycova
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Jan Prikryl
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Adela Kotzianova
- R&D Department, Contipro a.s., Dolni Dobrouc, 561 02, Czech Republic
| | - Vladimira Datinska
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Vladimir Velebny
- R&D Department, Contipro a.s., Dolni Dobrouc, 561 02, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| |
Collapse
|
8
|
Cam ME, Hazar-Yavuz AN, Cesur S, Ozkan O, Alenezi H, Turkoglu Sasmazel H, Sayip Eroglu M, Brako F, Ahmed J, Kabasakal L, Ren G, Gunduz O, Edirisinghe M. A novel treatment strategy for preterm birth: Intra-vaginal progesterone-loaded fibrous patches. Int J Pharm 2020; 588:119782. [PMID: 32822780 DOI: 10.1016/j.ijpharm.2020.119782] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
Progesterone-loaded poly(lactic) acid fibrous polymeric patches were produced using electrospinning and pressurized gyration for intra-vaginal application to prevent preterm birth. The patches were intravaginally inserted into rats in the final week of their pregnancy, equivalent to the third trimester of human pregnancy. Maintenance tocolysis with progesterone-loaded patches was elucidated by recording the contractile response of uterine smooth muscle to noradrenaline in pregnant rats. Both progesterone-loaded patches indicated similar results from release and thermal studies, however, patches obtained by electrospinning had smaller average diameters and more uniform dispersion compared to pressurized gyration. Patches obtained by pressurized gyration had better results in production yield and tensile strength than electrospinning; thereby pressurized gyration is better suited for scaled-up production. The patches did not affect cell attachment, viability, and proliferation on Vero cells negatively. Consequently, progesterone-loaded patches are a novel and successful treatment strategy for preventing preterm birth.
Collapse
Affiliation(s)
- Muhammet Emin Cam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey.
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey
| | - Sumeyye Cesur
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ozan Ozkan
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hussain Alenezi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Department of Manufacturing Engineering, College of Technological Studies, PAAET, 13092 Kuwait City, Kuwait
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Mehmet Sayip Eroglu
- Department of Chemical Engineering, Marmara University, Faculty of Engineering, Goztepe Campus, 34722 Kadikoy/Istanbul, Turkey; TUBITAK-UME, Chemistry Group Laboratories, 41470 Gebze/Kocaeli, Turkey
| | - Francis Brako
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Levent Kabasakal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey
| | - Guogang Ren
- Mechanical and Mechatronics Engineering Division, School of Engineering and Technology, University of Hertfordshire, UK
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
9
|
Kowalczyk D, Skrzypek T, Basiura-Cembala M, Łupina K, Mężyńska M. The effect of potassium sorbate on the physicochemical properties of edible films based on pullulan, gelatin and their blends. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Zhang Y, Zhang R, Illangakoon UE, Harker AH, Thrasivoulou C, Parhizkar M, Edirisinghe M, Luo CJ. Copolymer Composition and Nanoparticle Configuration Enhance in vitro Drug Release Behavior of Poorly Water-soluble Progesterone for Oral Formulations. Int J Nanomedicine 2020; 15:5389-5403. [PMID: 32801695 PMCID: PMC7398683 DOI: 10.2147/ijn.s257353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/30/2020] [Indexed: 02/02/2023] Open
Abstract
HYPOTHESIS Developing oral formulations to enable effective release of poorly water-soluble drugs like progesterone is a major challenge in pharmaceutics. Coaxial electrospray can generate drug-loaded nanoparticles of strategic compositions and configurations to enhance physiological dissolution and bioavailability of poorly water-soluble drug progesterone. EXPERIMENTS Six formulations comprising nanoparticles encapsulating progesterone in different poly(lactide-co-glycolide) (PLGA) matrix configurations and compositions were fabricated and characterized in terms of morphology, molecular crystallinity, drug encapsulation efficiency and release behavior. FINDINGS A protocol of fabrication conditions to achieve 100% drug encapsulation efficiency in nanoparticles was developed. Scanning electron microscopy shows smooth and spherical morphology of 472.1±54.8 to 588.0±92.1 nm in diameter. Multiphoton Airyscan super-resolution confocal microscopy revealed core-shell nanoparticle configuration. Fourier transform infrared spectroscopy confirmed presence of PLGA and progesterone in all formulations. Diffractometry indicated amorphous state of the encapsulated drug. UV-vis spectroscopy showed drug release increased with hydrophilic copolymer glycolide ratio while core-shell formulations with progesterone co-dissolved in PLGA core exhibited enhanced release over five hours at 79.9±1.4% and 70.7±3.5% for LA:GA 50:50 and 75:25 in comparison with pure progesterone without polymer matrix in the core at 67.0±1.7% and 57.5±2.8%, respectively. Computational modeling showed good agreement with the experimental drug release behavior in vitro.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Mechanical Engineering, University College London, LondonWC1E 7JE, UK
| | - Rui Zhang
- Department of Mechanical Engineering, University College London, LondonWC1E 7JE, UK
| | - Upulitha Eranka Illangakoon
- Department of Mechanical Engineering, University College London, LondonWC1E 7JE, UK
- UCL School of Pharmacy, University College London, LondonWC1N 1AX, UK
| | - Anthony Henry Harker
- Department of Physics & Astronomy, University College London, LondonWC1E 6BT, UK
| | - Christopher Thrasivoulou
- Cell & Developmental Biology, Division of Biosciences, University College London, LondonWC1E 6BT, UK
| | - Maryam Parhizkar
- Department of Mechanical Engineering, University College London, LondonWC1E 7JE, UK
- UCL School of Pharmacy, University College London, LondonWC1N 1AX, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, LondonWC1E 7JE, UK
| | - C J Luo
- Department of Mechanical Engineering, University College London, LondonWC1E 7JE, UK
| |
Collapse
|
11
|
Valente J, Dias J, Sousa A, Alves N. Composite Central Face Design-An Approach to Achieve Efficient Alginate Microcarriers. Polymers (Basel) 2019; 11:E1949. [PMID: 31783615 PMCID: PMC6960800 DOI: 10.3390/polym11121949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022] Open
Abstract
Microparticulated drug delivery systems have been used as promising encapsulation systems for protecting drugs for in vitro and in vivo applications, enhancing its stability, providing an increased surface to volume ratio, reducing adverse effects, and hence an improvement in bioavailability. Among the studied microparticles, there is a rising interest in the research of alginate microparticles for pharmaceutical and biomedical fields confirming its potential to be used as an effective matrix for drug and cell delivery. Moreover, calcium alginate has been one of the most extensively forming microparticles in the presence of divalent cations providing prolonged drug release and suitable mucoadhesive properties. Regarding the above mentioned, in this research work, we intended to produce Ca-alginate micro-vehicles through electrospraying, presenting high encapsulation efficiency (EE%), reduced protein release across the time, reduced swelling effect, and high sphericity coefficient. To quickly achieve these characteristics and to perform an optimal combination among the percentage of alginate and CaCl2, design of Experiments was applied. The obtained model presented to be statistically significant (p-value < 0.05), with a coefficient of determination of 0.9207, 0.9197, 0.9499, and 0.9637 for each output (EE%, release, swelling, and sphericity, respectively). Moreover, the optimal point (4% of alginate and 6.6% of CaCl2) was successfully validated.
Collapse
Affiliation(s)
- J.F.A. Valente
- CDRsp-IPL-Centre Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal (N.A.)
| | - J.R. Dias
- CDRsp-IPL-Centre Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal (N.A.)
| | - A. Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - N. Alves
- CDRsp-IPL-Centre Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal (N.A.)
| |
Collapse
|