1
|
Deshpande S, Weinzimer SA, Gibbons K, Nally LM, Weyman K, Carria L, Zgorski M, Laffel LM, Doyle FJ, Dassau E. Feasibility and Preliminary Safety of Smartphone-Based Automated Insulin Delivery in Adolescents and Children With Type 1 Diabetes. J Diabetes Sci Technol 2024; 18:363-371. [PMID: 35971681 PMCID: PMC10973844 DOI: 10.1177/19322968221116384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND A smartphone-based automated insulin delivery (AID) controller device can facilitate use of interoperable components and acceptance in adolescents and children. METHODS Pediatric participants (N = 20, 8F) with type 1 diabetes were enrolled in three sequential age-based cohorts: adolescents (12-<18 years, n = 8, 5F), school-age (8-<12 years, n = 7, 2F), and young children (2-<8 years, n = 5, 1F). Participants used the interoperable artificial pancreas system (iAPS) and zone model predictive control (MPC) on an unlocked smartphone for 48 hours, consumed unrestricted meals of their choice, and engaged in various unannounced exercises. Primary outcomes and stopping criteria were defined using fingerstick blood glucose (BG) data; secondary outcomes compared continuous glucose monitoring (CGM) data with preceding sensor augmented pump (SAP) therapy. RESULTS During AID, there was no more than one BG <50 mg/dL except in one young child participant; no instance of more than two episodes of BG ≥300 mg/dL lasting longer than 2 hours; and no adverse events. Despite large meals (total of 404.9 grams of carbs) and unannounced exercise (total of 182 minutes), overall CGM percent time in range (TIR) of 70 to 180 mg/dL during AID was statistically similar to SAP (63.5% vs 57.3%, respectively, P = .145). Overnight glucose standard deviation was 43 mg/dL (vs SAP 57.9 mg/dL, P = .009) and coefficient of variation was 25.7% (vs SAP 34.9%, P < .001). The percent time in closed-loop mode and connected to the CGM was 92.7% and 99.6%, respectively. Surveys indicated that participants and parents/guardians were satisfied with the system. CONCLUSIONS The smartphone-based AID was feasible and safe in sequentially younger cohorts of adolescents and children. CLINICALTRIALS.GOV NCT04255381 (https://clinicaltrials.gov/ct2/show/NCT04255381).
Collapse
Affiliation(s)
- Sunil Deshpande
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | | | | | | | - Kate Weyman
- Yale University School of Medicine, New Haven, CT, USA
| | - Lori Carria
- Yale University School of Medicine, New Haven, CT, USA
| | | | - Lori M. Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Francis J. Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Huang Y, Wang JB, Parker JJ, Shivacharan R, Lal RA, Halpern CH. Spectro-spatial features in distributed human intracranial activity proactively encode peripheral metabolic activity. Nat Commun 2023; 14:2729. [PMID: 37169738 PMCID: PMC10174612 DOI: 10.1038/s41467-023-38253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Mounting evidence demonstrates that the central nervous system (CNS) orchestrates glucose homeostasis by sensing glucose and modulating peripheral metabolism. Glucose responsive neuronal populations have been identified in the hypothalamus and several corticolimbic regions. However, how these CNS gluco-regulatory regions modulate peripheral glucose levels is not well understood. To better understand this process, we simultaneously measured interstitial glucose concentrations and local field potentials in 3 human subjects from cortical and subcortical regions, including the hypothalamus in one subject. Correlations between high frequency activity (HFA, 70-170 Hz) and peripheral glucose levels are found across multiple brain regions, notably in the hypothalamus, with correlation magnitude modulated by sleep-wake cycles, circadian coupling, and hypothalamic connectivity. Correlations are further present between non-circadian (ultradian) HFA and glucose levels which are higher during awake periods. Spectro-spatial features of neural activity enable decoding of peripheral glucose levels both in the present and up to hours in the future. Our findings demonstrate proactive encoding of homeostatic glucose dynamics by the CNS.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jeffrey B Wang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
- Medical Scientist Training Program, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jonathon J Parker
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Rajat Shivacharan
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Rayhan A Lal
- Department of Medicine (Endocrinology), Stanford University Medical Center, Stanford, CA, 94305, USA.
- Department of Pediatrics (Endocrinology), Stanford University Medical Center, Stanford, CA, 94305, USA.
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Phillip M, Nimri R, Bergenstal RM, Barnard-Kelly K, Danne T, Hovorka R, Kovatchev BP, Messer LH, Parkin CG, Ambler-Osborn L, Amiel SA, Bally L, Beck RW, Biester S, Biester T, Blanchette JE, Bosi E, Boughton CK, Breton MD, Brown SA, Buckingham BA, Cai A, Carlson AL, Castle JR, Choudhary P, Close KL, Cobelli C, Criego AB, Davis E, de Beaufort C, de Bock MI, DeSalvo DJ, DeVries JH, Dovc K, Doyle FJ, Ekhlaspour L, Shvalb NF, Forlenza GP, Gallen G, Garg SK, Gershenoff DC, Gonder-Frederick LA, Haidar A, Hartnell S, Heinemann L, Heller S, Hirsch IB, Hood KK, Isaacs D, Klonoff DC, Kordonouri O, Kowalski A, Laffel L, Lawton J, Lal RA, Leelarathna L, Maahs DM, Murphy HR, Nørgaard K, O’Neal D, Oser S, Oser T, Renard E, Riddell MC, Rodbard D, Russell SJ, Schatz DA, Shah VN, Sherr JL, Simonson GD, Wadwa RP, Ward C, Weinzimer SA, Wilmot EG, Battelino T. Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Endocr Rev 2023; 44:254-280. [PMID: 36066457 PMCID: PMC9985411 DOI: 10.1210/endrev/bnac022] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2022] [Indexed: 02/06/2023]
Abstract
The significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers, and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past 6 years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage.
Collapse
Affiliation(s)
- Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
- Sacker Faculty of Medicine, Tel-Aviv University, 39040 Tel-Aviv, Israel
| | - Revital Nimri
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
- Sacker Faculty of Medicine, Tel-Aviv University, 39040 Tel-Aviv, Israel
| | - Richard M Bergenstal
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | | | - Thomas Danne
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Roman Hovorka
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Boris P Kovatchev
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Laurel H Messer
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Roy W Beck
- Jaeb Center for Health Research Foundation, Inc., Tampa, FL 33647, USA
| | - Sarah Biester
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Torben Biester
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Julia E Blanchette
- College of Nursing, University of Utah, Salt Lake City, UT 84112, USA
- Center for Diabetes and Obesity, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Hospital and San Raffaele Vita Salute University, Milan, Italy
| | - Charlotte K Boughton
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Marc D Breton
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Sue A Brown
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bruce A Buckingham
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA 94304, USA
| | - Albert Cai
- The diaTribe Foundation/Close Concerns, San Diego, CA 94117, USA
| | - Anders L Carlson
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Jessica R Castle
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pratik Choudhary
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Kelly L Close
- The diaTribe Foundation/Close Concerns, San Diego, CA 94117, USA
| | - Claudio Cobelli
- Department of Woman and Child’s Health, University of Padova, Padova, Italy
| | - Amy B Criego
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Elizabeth Davis
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Perth, Australia
| | - Carine de Beaufort
- Diabetes & Endocrine Care Clinique Pédiatrique DECCP/Centre Hospitalier Luxembourg, and Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch sur Alzette, GD Luxembourg/Department of Paediatrics, UZ-VUB, Brussels, Belgium
| | - Martin I de Bock
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Daniel J DeSalvo
- Division of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77598, USA
| | - J Hans DeVries
- Amsterdam UMC, University of Amsterdam, Internal Medicine, Amsterdam, The Netherlands
| | - Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children’s Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Laya Ekhlaspour
- Lucile Packard Children’s Hospital—Pediatric Endocrinology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Naama Fisch Shvalb
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
| | - Gregory P Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Satish K Garg
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana C Gershenoff
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Linda A Gonder-Frederick
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ahmad Haidar
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Sara Hartnell
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simon Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Irl B Hirsch
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Korey K Hood
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Diana Isaacs
- Cleveland Clinic, Endocrinology and Metabolism Institute, Cleveland, OH 44106, USA
| | - David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA 94010, USA
| | - Olga Kordonouri
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | | | - Lori Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Julia Lawton
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Rayhan A Lal
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lalantha Leelarathna
- Manchester University Hospitals NHS Foundation Trust/University of Manchester, Manchester, UK
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA 94304, USA
| | - Helen R Murphy
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen and Department of Clinical Medicine, University of Copenhagen, Gentofte, Denmark
| | - David O’Neal
- Department of Medicine and Department of Endocrinology, St Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Sean Oser
- Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tamara Oser
- Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, and Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Michael C Riddell
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Canada
| | - David Rodbard
- Biomedical Informatics Consultants LLC, Potomac, MD, USA
| | - Steven J Russell
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL 02114, USA
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer L Sherr
- Department of Pediatrics, Yale University School of Medicine, Pediatric Endocrinology, New Haven, CT 06511, USA
| | - Gregg D Simonson
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - R Paul Wadwa
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Candice Ward
- Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Stuart A Weinzimer
- Department of Pediatrics, Yale University School of Medicine, Pediatric Endocrinology, New Haven, CT 06511, USA
| | - Emma G Wilmot
- Department of Diabetes & Endocrinology, University Hospitals of Derby and Burton NHS Trust, Derby, UK
- Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, Nottingham, England, UK
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children’s Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Zhang L, Xu H, Liu L, Bi Y, Li X, Kan Y, Liu H, Li S, Zou Y, Yuan Y, Gong W, Zhang Y. Related factors associated with fear of hypoglycemia in parents of children and adolescents with type 1 diabetes - A systematic review. J Pediatr Nurs 2022; 66:125-135. [PMID: 35716460 DOI: 10.1016/j.pedn.2022.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022]
Abstract
PROBLEM Fear of hypoglycemia is a significant concern for parents of children/ adolescents with type 1 diabetes. Although some studies have explained the parental fear of hypoglycemia, the related factors were yet to be determined. This systematic review aims to identify the related factors of fear of hypoglycemia in the parents of children and adolescents with type 1 diabetes and provide a theoretical basis for further intervention. ELIGIBILITY CRITERIA PubMed, MEDLINE, EMBASE, Scopus, CINAHL, EBSCO, Web of Science, and Cochrane Library were systematically searched from 2010 to 2021. Studies evaluating the fear of hypoglycemia of parents and its associated factors were included. SAMPLE Twenty-three observational articles met the criteria. RESULTS Significant associations were found between fear of hypoglycemia and specific factors, including motherhood, nocturnal hypoglycemia, and the number of blood glucose monitoring. Psychological factors, including anxiety, depression, pediatric parenting stress, mindfulness, self-efficacy, quality of life, and sleep disorders, were conclusive and associations with parental fear of hypoglycemia. CONCLUSIONS Understanding parental fear of hypoglycemia can help parents prevent potential problems in diabetes management, thus promoting children's growth. According to current evidence, effective targeted interventions based on modifiable relevant factors can be developed to reduce the fear of hypoglycemia in parents while maintaining optimal blood glucose control in children/ adolescents. IMPLICATIONS Health professionals should pay more attention to the mental health of parents, and parents should be involved in the care plan and have the opportunity to discuss their fear of hypoglycemia in the most appropriate way to manage type 1 diabetes.
Collapse
Affiliation(s)
- Lu Zhang
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Huiwen Xu
- School of Nursing, Yangzhou University, Yangzhou, China; Nagano College of Nursing, Komagane, Nagano 399-4117, Japan
| | - Lin Liu
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Yaxin Bi
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Xiangning Li
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Yinshi Kan
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Hongyuan Liu
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Shuang Li
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Yan Zou
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Yuan Yuan
- Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Yu Zhang
- School of Nursing, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China.
| |
Collapse
|
5
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care 2022; 45:3-22. [PMID: 34782355 PMCID: PMC8753760 DOI: 10.2337/dci21-0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/03/2023]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T. Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher L. Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - C. Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital, Vancouver, British Columbia, Canada
- UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Norman D. Rosenblum
- Canadian Institutes of Health Research Institute of Nutrition, Metabolism and Diabetes, Toronto, Ontario, Canada
- Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Program in Stem Cell and Developmental Biology, Research Institute, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Can J Diabetes 2021; 45:697-713. [PMID: 34794897 DOI: 10.1016/j.jcjd.2021.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States.
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Christopher L Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital, Vancouver, British Columbia, Canada; UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes, Toronto, Ontario, Canada; Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; Program in Stem Cell and Developmental Biology, Research Institute, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes 2021; 71:db210777. [PMID: 34782351 PMCID: PMC8763877 DOI: 10.2337/db21-0777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher L Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
- UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Fuchs J, Hovorka R. Benefits and Challenges of Current Closed-Loop Technologies in Children and Young People With Type 1 Diabetes. Front Pediatr 2021; 9:679484. [PMID: 33996702 PMCID: PMC8119627 DOI: 10.3389/fped.2021.679484] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
Recent advances in diabetes technology have led to the development of closed-loop insulin delivery systems for the management of type 1 diabetes. Several such systems are now commercially available for children and young people. While all available systems have been shown to improve glycaemic control and quality of life in this population, qualitative data also highlights the challenges in using closed-loop systems, which vary among different pediatric age-groups. Very young children require systems that are able to cope with low insulin doses and significant glycaemic variability due to their high insulin sensitivity and unpredictable eating and exercise patterns. Adolescents' compliance is often related to size and number of devices, usability of the systems, need for calibrations, and their ability to interact with the system. Given the speed of innovations, understanding the capabilities and key similarities and differences of current systems can be challenging for healthcare professionals, caregivers and young people with type 1 diabetes alike. The aim of this review is to summarize the key evidence on currently available closed-loop systems for children and young people with type 1 diabetes, as well as commenting on user experience, where real-world data are available. We present findings on a system-basis, as well as identifying specific challenges in different pediatric age-groups and commenting on how current systems might address these. Finally, we identify areas for future research with regards to closed-loop technology tailored for pediatric use and how these might inform reimbursement and alleviate disease burden.
Collapse
Affiliation(s)
- Julia Fuchs
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Roman Hovorka
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper presents a comprehensive survey about the fundamental components of the artificial pancreas (AP) system including insulin administration and delivery, glucose measurement (GM), and control strategies/algorithms used for type 1 diabetes mellitus (T1DM) treatment and control. Our main focus is on the T1DM that emerges due to pancreas’s failure to produce sufficient insulin due to the loss of beta cells (β-cells). We discuss various insulin administration and delivery methods including physiological methods, open-loop, and closed-loop schemes. Furthermore, we report several factors such as hyperglycemia, hypoglycemia, and many other physical factors that need to be considered while infusing insulin in human body via AP systems. We discuss three prominent control algorithms including proportional-integral- derivative (PID), fuzzy logic, and model predictive, which have been clinically evaluated and have all shown promising results. In addition, linear and non-linear insulin infusion control schemes have been formally discussed. To the best of our knowledge, this is the first work which systematically covers recent developments in the AP components with a solid foundation for future studies in the T1DM field.
Collapse
|