1
|
Biben JA, Reinhart R, Karina K, Pamungkas KA, Ekaputri K, Sadikin PM. Local Injection versus Topical Microneedling of Platelet-Rich Plasma for Androgenetic Alopecia: A Systematic Review. Arch Plast Surg 2025; 52:59-68. [PMID: 40083615 PMCID: PMC11896732 DOI: 10.1055/a-2510-5517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/29/2024] [Indexed: 03/16/2025] Open
Abstract
Autologous platelet-rich plasma (PRP) has gained popularity for hair restoration due to its effectiveness and safety. PRP could be administered through direct local injections to the scalp or applied topically with the aid of microneedling therapy. This systematic review aims to elaborate on the effectiveness of PRP administered with syringe injection and topical PRP with microneedling combination for the treatment of androgenetic alopecia (AGA). A literature search was employed through PubMed, Cochrane Central Register of Controlled Trials, Embase, Web of Science, and Scopus. The database was searched using terms and keywords: "platelet-rich plasma" and "microneedling" and "androgenetic alopecia." Inclusion criteria are human study, patients with AGA, studies that compare PRP with syringe injection and the combination of PRP and microneedling. Exclusion criteria are animal study, review, case reports, or studies on other form of alopecia. A total of 108 articles found in the database. Title and abstract screening yield 12 articles. After full-text reading three articles were included in the review. A combination of PRP and microneedling appears to yield more superior results than direct syringe injection. Topical PRP and microneedling potentially give better results on AGA cases. Further high-quality studies with uniform protocol are needed to confirm these findings. Level of Evidence I.
Collapse
Affiliation(s)
| | - Ryan Reinhart
- Tobelo Regional General Hospital, Jl.Landbouw, North Halmahera, North Maluku, Indonesia
| | - Karina Karina
- Hayandra Clinic, Hayandra Peduli Foundation, Central Jakarta, Indonesia
- HayandraLab., Yayasan Hayandra Peduli, Central Jakarta, Indonesia
- Faculty of Medicine, Pembangunan Nasional University, Veteran Jakarta, Indonesia
- Stem Cell Study Center, Pembangunan Nasional University Veteran, Jakarta, Indonesia
| | | | - Krista Ekaputri
- Hayandra Clinic, Hayandra Peduli Foundation, Central Jakarta, Indonesia
| | | |
Collapse
|
2
|
Ding YW, Li Y, Zhang ZW, Dao JW, Wei DX. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment. Bioact Mater 2024; 38:95-108. [PMID: 38699241 PMCID: PMC11061199 DOI: 10.1016/j.bioactmat.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Androgenetic alopecia (AGA), the most prevalent clinical hair loss, lacks safe and effective treatments due to downregulated angiogenic genes and insufficient vascularization in the perifollicular microenvironment of the bald scalp in AGA patients. In this study, a hyaluronic acid (HA) based hydrogel-formed microneedle (MN) was designed, referred to as V-R-MNs, which was simultaneously loaded with vascular endothelial growth factor (VEGF) and the novel hair loss drug Ritlecitinib, the latter is encapsulated in slowly biodegradable polyhydroxyalkanoates (PHAs) nanoparticles (R-PHA NPs) for minimally invasive AGA treatment. The integration of HA based hydrogel alongside PHA nanoparticles significantly bolstered the mechanical characteristics of microneedles and enhanced skin penetration efficiency. Due to the biosafety, mechanical strength, and controlled degradation properties of HA hydrogel formed microneedles, V-R-MNs can effectively penetrate the skin's stratum corneum, facilitating the direct delivery of VEGF and Ritlecitinib in a minimally invasive, painless and long-term sustained release manner. V-R-MNs not only promoted angiogenesis and improve the immune microenvironment around the hair follicle to promote the proliferation and development of hair follicle cells, but also the application of MNs to the skin to produce certain mechanical stimulation could also promote angiogenesis. In comparison to the clinical drug minoxidil for AGA treatment, the hair regeneration effect of V-R-MN in AGA model mice is characterized by a rapid onset of the anagen phase, improved hair quality, and greater coverage. This introduces a new, clinically safer, and more efficient strategy for AGA treatment, and serving as a reference for the treatment of other related diseases.
Collapse
Affiliation(s)
- Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zhi-Wei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Jin-Wei Dao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan Province, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- School of Clinical Medicine, Chengdu University, Chengdu, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
| |
Collapse
|
3
|
Marathe D, Bhuvanashree VS, Mehta CH, T. A, Nayak UY. Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery. Adv Pharmacol Pharm Sci 2024; 2024:1247450. [PMID: 38938593 PMCID: PMC11208788 DOI: 10.1155/2024/1247450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
Sonophoresis is the most approachable mode of transdermal drug delivery system, wherein low-frequency sonophoresis penetrates the drug molecules into the skin. It is an alternative method for an oral system of drug delivery and hypodermal injections. The cavitation effect is thought to be the main mechanism used in sonophoresis. The cavitation process involves forming a gaseous bubble and its rupture, induced in the coupled medium. Other mechanisms used are thermal effects, convectional effects, and mechanical effects. It mainly applies to transporting hydrophilic drugs, macromolecules, gene delivery, and vaccine delivery. It is also used in carrier-mediated delivery in the form of micelles, liposomes, and dendrimers. Some synergistic effects of sonophoresis, along with some permeation enhancers, such as chemical enhancers, iontophoresis, electroporation, and microneedles, increased the effectiveness of drug penetration. Sonophoresis-mediated ocular drug delivery, nail drug delivery, gene delivery to the brain, sports medicine, and sonothrombolysis are also widely used. In conclusion, while sonophoresis offers promising applications in diverse fields, further research is essential to comprehensively elucidate the biophysical mechanisms governing ultrasound-tissue interactions. Addressing these gaps in understanding will enable the refinement and optimization of sonophoresis-based therapeutic strategies for enhanced clinical efficacy.
Collapse
Affiliation(s)
- Divya Marathe
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudeva Sampriya Bhuvanashree
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ashwini T.
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
4
|
Corrêa AC, Machado CJ, Carneiro SCS. Split-scalp pilot study to evaluate effectiveness of Minoxidil 0,5% MMP® versus Topical Minoxidil 5% in the treatment of Female Pattern Hair Loss. Arch Dermatol Res 2024; 316:313. [PMID: 38822940 DOI: 10.1007/s00403-024-03053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
Female Pattern Hair Loss (FPHL) is a common form of non-scaring hair loss that occurs in adult women. Although several treatments have already been proposed for FPHL, only Topical Minoxidil accumulated an adequate level of evidence. This study aimed to evaluate the therapeutic response of MMP® (intradermal infiltration) of Minoxidil formulation in the frontal-parietal-vertex regions compared with the gold-standard home administration of Minoxidil 5% Capillary Solution. This self-controlled comparative study evaluated 16 FPHL patients, without treatment for at least 6 months, confirmed by trichoscopy with TrichoLAB® software. They received 4 monthly sessions of MMP® with Minoxidil 0,5% on the right side of the scalp (frontal-parietal-vertex areas), followed by occlusion with plastic film for 12 h and prescription of Minoxidil 5% Solution for home use once a day, on both scalp sides, starting 72 h after the procedure. The reassessment trichoscopy was 6 weeks after the last session and they answered a "self-assessment" questionnaire. Treated scalp areas were compared and showed both treatments, in general, were effective, with no difference between them. If they were analyzed separately by treated areas, there were signs of better response in the parietal-vertex regions with treatment by MMP® with Minoxidil, while clinical treatment indicated a better response in the other regions. When patients were divided into more and less advanced cases, a better response in parietal-vertex regions treated by MMP® with Minoxidil in less advanced patients was confirmed. MMP® with Minoxidil showed a better response in the parietal-vertex regions in less advanced FPHL patients. It represents yet another resource to improve quality of life of these suffering patients.
Collapse
Affiliation(s)
- Adriana C Corrêa
- Faculty of Medical Sciences, Dermatology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | - Carla J Machado
- Faculty of Medicine, Public Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil
| | - Sueli C S Carneiro
- Faculty of Medical Sciences, Dermatology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
5
|
Naeini SE, Bhandari B, Gouron J, Rogers HM, Chagas PS, Naeini GE, Chagas HIS, Khodadadi H, Salles ÉL, Seyyedi M, Yu JC, Grochowska BK, Wang LP, Baban B. Reprofiling synthetic glucocorticoid-induced leucine zipper fusion peptide as a novel and effective hair growth promoter. Arch Dermatol Res 2024; 316:190. [PMID: 38775976 DOI: 10.1007/s00403-024-02988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.
Collapse
Affiliation(s)
- Sahar Emami Naeini
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bidhan Bhandari
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jules Gouron
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hannah M Rogers
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pablo Shimaoka Chagas
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Golnaz Emami Naeini
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Henrique Izumi Shimaoka Chagas
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Évila Lopes Salles
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mohammad Seyyedi
- Piedmont Ear, Nose, Throat and Related Allergy, Atlanta, GA, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | | | - Lei P Wang
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Babak Baban
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Bai L, Wang Y, Wang K, Chen X, Zhao Y, Liu C, Qu X. Materiobiomodulated ROS Therapy for De Novo Hair Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311459. [PMID: 38346345 DOI: 10.1002/adma.202311459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Hair loss is characterized by the inability of hair follicles (HFs) to enter the telogen-anagen transition (TAT) and lack of de novo HFs. Current pharmaceutical therapies and surgical modalities have been largely limited to regulating hair regrowth efficiently without side effects and lacking treatment compliance. Here, this work proposes a materiobiomodulation therapy (MBMT), wherein polydopamine (PDA) nanoparticles with redox activity can be modulated to have a stoichiometric ROS (H2O2) donating ability. These nanoparticles can intracellularly deliver ROS with high-efficiency via the clathrin-dependent endocytosis process. Utilizing homozygote transgenic HyPerion (a genetically-encoded H2O2 biosensor) mice, this work also achieves in vivo dynamic monitoring of intracellular H2O2 elevation induced by ROS donators. Subcutaneous administration with ROS donators results in rapid onset of TAT and subsequent hair regrowth with a specific ROS "hormesis effect." Mechanistically, ROS activate β-catenin-dependent Wnt signaling, upregulating hair follicle stem cell expression. This work further develops a microneedles patch for transdermal ROS delivery, demonstrating long-term, low-dose ROS release. Unlike photobiomodulation therapy (PBMT), MBMT requires no external stimuli, providing a convenient and efficient approach for clinical hair loss treatment. This material-HF communication implicates new avenues in HF-related diseases, achieving targeted ROS delivery with minimal side effects.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yifei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoqian Chen
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai University, Shanghai, 200444, China
| | - Yuzheng Zhao
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai University, Shanghai, 200444, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
7
|
Sadeghi S, Ghane Y, Hajizadeh N, Goodarzi A. Autologous adipose tissue injection in the treatment of alopecia: A mini-review. J Cosmet Dermatol 2024; 23:758-765. [PMID: 37955172 DOI: 10.1111/jocd.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Alopecia may decrease patients' quality of life and self-confidence by limiting their social life. Therefore, the main goal of the treatment is to limit or halt the progression of inflammation, scarring, and hair loss. The promising effect of fat injection on hair regrowth, limited adverse effects, and subsiding inflammation can be proof of its efficacy and safety in treating alopecia. AIMS This review sought to assess the role of autologous fat tissue injection in scarring and non-scarring alopecia. METHODS Accordingly, a thorough search was performed on the Web of Science, Scopus, and PubMed/Medline databases, as well as the Google Scholar search engine, for studies published from inception until September 1st, 2023, using the related keywords. RESULTS Autologous fat grafting (AFG) is a novel and potentially effective modality for treating alopecia, particularly primary and secondary cicatricial alopecia. AFG can be an effective semi-invasive option for treating refractory lichen planopilaris because it induces angiogenesis, which supports hair regrowth. In addition to cicatricial alopecia, AFG held promise for treating non-scarring alopecia, including androgenic alopecia and alopecia areata. The adipose-derived regenerative cells (ADRCs) in adipose tissue (AT) secrete different growth factors, further supporting hair regeneration. Moreover, different anti-inflammatory and anti-oxidative agents are known in AT, preventing further damage to hair follicles. CONCLUSIONS AFG can significantly control inflammatory processes, improve signs and symptoms, and increase hair density and diameter.
Collapse
Affiliation(s)
- Sara Sadeghi
- Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
- Department of Medicine, New York Health System, South Brooklyn Hospital, New York, New York, USA
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Hajizadeh
- Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Faculty of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zheng W, Wang F, Tao N, Wang X, Jin X, Zhang C, Xu C. An androgenetic alopecia remedy based on marine collagen peptide-incorporated dissolving microneedles. Int J Pharm 2024; 650:123629. [PMID: 37992979 DOI: 10.1016/j.ijpharm.2023.123629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Given that current androgenetic alopecia (AGA) medications have adverse effects such as sexual dysfunction and drug dependence, researchers are actively exploring natural bioactive ingredients and innovative approaches (e.g., transdermal drug delivery systems) to effectively combat hair loss with minimal side effects. Herein, we develop a new transdermal drug delivery system incorporating globefish skin collagen peptides with dissolving microneedles (GSCPs-MNs) for hair regrowth. These microneedles generate skin micro-wounds upon application, which not only improves the efficiency of bioactive ingredients delivery, but also stimulates signals involved in hair follicle (HF) regeneration. Our in vivo study shows that minimally invasive implanted GSCPs-MNs are more effective than topical GSCPs in reducing inflammation and promoting collagen formation. Additionally, the upregulation of vascular markers including VEGF and CD31 alongside the downregulation of TNF-α, IL-1β, and malondialdehyde (MDA) index indicate that GSCPs-MNs can significantly alleviate inflammation and oxidation, as well as promoting vascularization and HF functionalization. Overall, our findings suggest that GSCPs-MNs can effectively promote hair regrowth in AGA mice, which offer excellent prospects for the development of new therapeutics and cosmetic supplements for hair loss, along with the combined drug delivery optimization, which could alleviate hair loss in patients with AGA.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; Suzhou Qinpu Biotechnology Pte Ltd, Suzhou, Jiangsu Province 215215, China
| | - Fan Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; Suzhou Qinpu Biotechnology Pte Ltd, Suzhou, Jiangsu Province 215215, China
| | - Ningping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China; National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China; National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China; National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China.
| |
Collapse
|
9
|
Akhtar A, Waqas MK, Mahmood A, Tanvir S, Hussain T, Kazi M, Ijaz M, Asim MH. Development and Characterization of Thiolated Cyclodextrin-Based Nanoparticles for Topical Delivery of Minoxidil. Pharmaceutics 2023; 15:2716. [PMID: 38140057 PMCID: PMC10748369 DOI: 10.3390/pharmaceutics15122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
PURPOSE The aim of this research was to prepare adhesive nanoparticles for the topical application of Minoxidil (MXD). METHODS Thiolated β-CDs were prepared via conjugation of cysteamine with oxidized CDs. MXD was encapsulated within thiolated and unmodified β-CDs. Ionic gelation method was used to prepare nanoparticles (Thio-NP and blank NP) of CDs with chitosan. Nanoparticles were analyzed for size and zetapotential. Inclusion complexes were characterized via FTIR. Drug dissolution studies were carried out. An in vitro adhesion study over human hair was performed. An in vivo skin irritation study was performed. Ex vivo drug uptake was evaluated by using a Franz diffusion cell. RESULTS Thiolated β-CDs presented 1804.68 ± 25 μmol/g thiol groups and 902.34 ± 25 μmol/g disulfide bonds. Nanoparticles displayed particle sizes within a range of 231 ± 07 nm to 354 ± 13 nm. The zeta potential was in the range of -8.1 ± 02 mV, +16.0 ± 05 mV. FTIR analyses confirmed no interaction between the excipients and drug. Delayed drug release was observed from Thio-NP. Thio-NP retained over hair surfaces for a significantly longer time. Similarly, drug retention was significantly improved. Thio-NP displayed no irritation over rabbit skin. CONCLUSION Owing to the above results, nanoparticles developed with MXD-loaded thiolated β-CDs might be a potential drug delivery system for topical scalp diseases.
Collapse
Affiliation(s)
- Ammara Akhtar
- Institute of Pharmaceutical Sciences, UVAS, Lahore 54000, Pakistan; (A.A.)
| | | | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center (HBRC), Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Saira Tanvir
- Riphah Institute of Pharmaceutical Sciences, Ripha International University, Islamabad 44000, Pakistan
| | - Talib Hussain
- Institute of Pharmaceutical Sciences, UVAS, Lahore 54000, Pakistan; (A.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Muhammad Ijaz
- School of Veterinary Medicine, University College Dublin, Belfield, D04 C1P1 Dublin, Ireland
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5 Km Off Raiwind Road, Lahore 54000, Pakistan
| | | |
Collapse
|
10
|
Gupta AK, Polla Ravi S, Wang T, Talukder M, Starace M, Piraccini BM. Systematic review of mesotherapy: a novel avenue for the treatment of hair loss. J DERMATOL TREAT 2023; 34:2245084. [PMID: 37558233 DOI: 10.1080/09546634.2023.2245084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Mesotherapy is a technique by which lower doses of therapeutic agents and bioactive substances are administered by intradermal injections to the skin. Through intradermal injections, mesotherapy can increase the residence time of therapeutic agents in the affected area, thus allowing for the use of lower doses and longer intervals between sessions which may in turn improve the treatment outcome and patient compliance. This systematic review aims to summarize the current literature that evaluates the efficacy of this technique for the treatment of hair loss and provides an overview of the results observed. Of the 416 records identified, 27 articles met the inclusion criteria. To date, mesotherapy using 6 classes of agents and their combinations have been studied; this includes dutasteride, minoxidil, growth factors or autologous suspension, botulinum toxin A, stem cells, and mesh solutions/multivitamins. While several studies report statistically significant improvements in hair growth after treatment, there is currently a lack of standardized regimens. The emergence of adverse effects after mesotherapy has been reported. Further large-scale and controlled clinical trials are warranted to evaluate the utility of mesotherapy for hair loss disorders.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Canada
- Mediprobe Research Inc, London, Canada
| | | | - Tong Wang
- Mediprobe Research Inc, London, Canada
| | - Mesbah Talukder
- Mediprobe Research Inc, London, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Michela Starace
- Dermatology Unit, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Bianca Maria Piraccini
- Dermatology Unit, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| |
Collapse
|
11
|
Sayed S, Shekh M, Song J, Sun Q, Dai H, Xue VW, Liu S, Du B, Zhou G, Stadler FJ, Zhu G, Lu D. ISX9 loaded thermoresponsive nanoparticles for hair follicle regrowth. Mater Today Bio 2023; 23:100849. [PMID: 38033366 PMCID: PMC10682119 DOI: 10.1016/j.mtbio.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
There is a high demand for an optimal drug delivery system to treat androgenetic alopecia. Topical application of ISX9, which is a neurogenesis inducer, has been found to stimulate hair follicle (HF) regrowth by upregulating the Wnt/β-catenin signaling pathway, an essential pathway involved in initiating HF growth and development. In the present study, a temperature-sensitive, biopolymer-based, biocompatible, and eco-friendly drug-delivery system was synthesized. This system comprised chitosan-grafted poly(glycidyl methacrylate-co-N-isopropyl acrylamide) (Poly(GMA-co-NIPAAm)@CS-PGNCS) as the shell component and PF127 as the core polymer. The hydrophobic nature of the PF127 block copolymer efficiently dissolved the partially water-soluble drug, ISX9, and the thermos-responsive shell polymer effectively released the drug at a definite skin temperature. The optimized spherical nanoparticles demonstrated the lowest critical solution temperature (LCST) at 32 ± 2 °C with a diameter of 100-250 nm, which delivered encapsulated ISX9 with greater precision than topical ISX9. In a series of in vivo experiments, we demonstrated that ISX9-coated TBNPs upregulated the expression of β-catenin, active β-catenin, Wnt target genes, stemness marker genes, proliferating cell nuclear antigen, HF stem cell markers, and HF markers including VEGF, TGF, and IGF-1 more effectively than topical ISX9. These results suggest that TBNPs could be employed as a platform for effective transdermal delivery of various hydrophobic drugs.
Collapse
Affiliation(s)
- Sapna Sayed
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Mehdihasan Shekh
- New Energy Materials Laboratory, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiaxing Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Han Dai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Bing Du
- New Energy Materials Laboratory, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Guangqian Zhou
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Florian J. Stadler
- New Energy Materials Laboratory, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Guangming Zhu
- New Energy Materials Laboratory, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
12
|
Wu X, Du YZ. Nanodrug Delivery Strategies to Signaling Pathways in Alopecia. Mol Pharm 2023; 20:5396-5415. [PMID: 37817669 DOI: 10.1021/acs.molpharmaceut.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.
Collapse
Affiliation(s)
- Xiaochuan Wu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong-Zhong Du
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Ibrahim MS, Elsayyad NME, Salama A, Noshi SH. Utilization of response surface design for development and optimization of rosuvastatin calcium-loaded nano-squarticles for hair growth stimulating VEGF and IGF production: in-vitro and in-vivo evaluation. Drug Dev Ind Pharm 2023; 49:580-589. [PMID: 37725083 DOI: 10.1080/03639045.2023.2259993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Countless individuals experience negative emotions as hair loss pattern affects their self-esteem and well-being. Rosuvastatin calcium (Ca-RUV) was reported to stimulate the growth of the hair in the applied area, hence, it was selected as a potential hair loss treatment drug. SIGNIFICANCE This study aims to develop and optimize (Ca-RUV) loaded squarticles (SQRs) and assess their ability to deliver and release Ca-RUV in the hair follicle for the promotion of hair growth. METHODS A response surface design was utilized to study the effect of varying Pluronic® F68 (PF68) and the percentage of liquid lipids within the core of the SQRs and the effects of particle size, entrapment efficiency, and drug released percentage after 24 h (%Q24) were assessed. The optimized formula was subjected to DSC, XRD, and in-vivo evaluation in rats. RESULTS SQRs stabilized by 0.8% PF68 and contained 37.5% liquid lipids showed an acceptable particle size (250 nm), drug entrapment efficiency (75%), and %Q24 (100%). The in-vivo studies illustrated the ability of the formula to regrow hair in animals after 10 days due to the elevation of the vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) to their normal values and by 9% and 54%, respectively, relative to standard therapy minoxidil (5%). CONCLUSION Thus, it can be concluded that the optimized formula of Ca-RUV loaded SQRs showed superior in-vivo results in the promotion of hair growth in a shorter period relative to the marketed product. Therefore, the formula can offer a viable option for the treatment of hair loss.
Collapse
Affiliation(s)
- Mervat Shafik Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Nihal Mohamed Elmahdy Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Shereen H Noshi
- Department of Pharmaceutics and Industrial Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| |
Collapse
|
14
|
Woo MR, Prausnitz MR. Modulation of hair growth by topical drug delivery enhanced by STAR particles. J Control Release 2023; 361:766-776. [PMID: 37595668 DOI: 10.1016/j.jconrel.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Topical treatments to modulate hair growth are generally limited by low drug bioavailability due to poor skin permeability. Here, we studied the use of STAR particles, which are millimeter-sized ceramic particles with protruding microneedles, to form micropores in the skin to increase skin permeability to hair growth-modulating drugs. STAR particle design and fabrication were optimized, and the resulting STAR particles were shown to reduce lag time and increase skin permeability to minoxidil and acyclovir by more than three-fold compared to no treatment in pig skin ex vivo. In rats, STAR particles also improved topical delivery of minoxidil and acyclovir, which resulted in an increase or a decrease in the number, length and/or thickness of hairs and/or the number of anagen-phase hair follicles after minoxidil or acyclovir treatment, respectively. Clinical exam and histological evaluation showed no evidence of skin irritation or other adverse effects of the treatments. We conclude that STAR particles can increase topical delivery of minoxidil and acyclovir to improve modulation of hair growth promotion and inhibition, respectively.
Collapse
Affiliation(s)
- Mi Ran Woo
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA; College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mark R Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Wang R, Zhong T, Bian Q, Zhang S, Ma X, Li L, Xu Y, Gu Y, Yuan A, Hu W, Qin C, Gao J. PROTAC Degraders of Androgen Receptor-Integrated Dissolving Microneedles for Androgenetic Alopecia and Recrudescence Treatment via Single Topical Administration. SMALL METHODS 2023; 7:e2201293. [PMID: 36538748 DOI: 10.1002/smtd.202201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Androgenetic alopecia (AGA) is a transracial and cross-gender disease worldwide with a youth-oriented tendency, but it lacks effective treatment. The binding of androgen receptor (AR) and androgen plays an essential role in the occurrence and progression of AGA. Herein, novel proteolysis targeting chimera degrader of AR (AR-PROTAC) is synthesized and integrated with dissolving microneedles (PROTAC-MNs) to achieve AR destruction in hair follicles for AGA treatment. The PROTAC-MNs possess adequate mechanical capabilities for precise AR-PROTAC delivery into the hair follicle-residing regions for AR degradation. After applying only once topically, the PROTAC-MNs achieve an accelerated onset of hair regeneration as compared to the daily application of the first-line topical drug minoxidil. Intriguingly, PROTAC-MNs via single administration still realize superior hair regeneration in AGA recrudescence, which is the major drawback of minoxidil in clinical practice. With the degradation of AR, the PROTAC-MNs successfully regulate the signaling cascade related to hair growth and activate hair follicle stem cells. Furthermore, the PROTAC-MNs do not cause systemic toxicity or androgen deficiency-related chaos in vivo. Collectively, these AR-degrading dissolving microneedles with long-lasting efficacy, one-step administration, and high biocompatibility provide a great therapeutic potential for AGA treatment.
Collapse
Affiliation(s)
- Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengjiang Zhong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Sai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Anran Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
16
|
Khan N, Ahmed S, Sheraz MA, Anwar Z, Ahmad I. Pharmaceutical based cosmetic serums. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS AND RELATED METHODOLOGY 2023; 48:167-210. [PMID: 37061274 DOI: 10.1016/bs.podrm.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The growth and demand for cosmeceuticals (cosmetic products that have medicinal or drug-like benefits) have been enhanced for the last few decades. Lately, the newly invented dosage form, i.e., the pharmaceutical-based cosmetic serum has been developed and widely employed in various non-invasive cosmetic procedures. Many pharmaceutical-based cosmetic serums contain natural active components that claim to have a medical or drug-like effect on the skin, hair, and nails, including anti-aging, anti-wrinkle, anti-acne, hydrating, moisturizing, repairing, brightening and lightening skin, anti-hair fall, anti-fungal, and nail growth effect, etc. In comparison with other pharmaceutical-related cosmetic products (creams, gels, foams, and lotions, etc.), pharmaceutical-based cosmetic serums produce more rapid and incredible effects on the skin. This chapter provides detailed knowledge about the different marketed pharmaceutical-based cosmetic serums and their several types such as facial serums, hair serums, nail serums, under the eye serum, lip serum, hand, and foot serum, respectively. Moreover, some valuable procedures have also been discussed which provide prolong effects with desired results in the minimum duration of time after the few sessions of the serum treatment.
Collapse
Affiliation(s)
- Nimra Khan
- Department of Pharmacy Practice, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmacy Practice, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan; Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
17
|
Nogueira BL, Bonamigo RR, Heck R. Elevation of transaminases after MMP® session with methotrexate for alopecia areata treatment - how much do we know about the risks of systemic absorption of the technique? An Bras Dermatol 2022; 98:390-391. [PMID: 36581558 PMCID: PMC10173054 DOI: 10.1016/j.abd.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Bianca Lopes Nogueira
- Dermatology Service, Ambulatory of Sanitary Dermatology, Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Renan Rangel Bonamigo
- Dermatology Service, Ambulatory of Sanitary Dermatology, Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Dermatology Service, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Renata Heck
- Dermatology Service, Ambulatory of Sanitary Dermatology, Secretaria de Saúde do Estado do Rio Grande do Sul (SES/RS), Porto Alegre, RS, Brazil; Dermatology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Cheng H, Liu F, Zhou M, Chen S, Huang H, Liu Y, Zhao X, Zhang Q, Zhou X, Li Z, Cai H. Enhancement of hair growth through stimulation of hair follicle stem cells by prostaglandin E2 collagen matrix. Exp Cell Res 2022; 421:113411. [PMID: 36351501 DOI: 10.1016/j.yexcr.2022.113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/02/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Prostaglandin metabolism is involved in the regulation of the periodic process of hair follicles. Preliminary research data reported that prostaglandin E2 (PGE2) exhibits potential in hair growth. However, the relevant evidence is still insufficient. Herein, we prepared a PGE2 matrix by conjugating PGE2 with collagen via crosslinkers to avoid rapid degradation of PGE2 molecules in vivo. First, we measured the physical properties of the PGE2 matrix. A mouse model of hair loss was established, and PGE2 matrix subcutaneous injection was applied to evaluate hair growth. Under different treatments with the PGE2 matrix, the morphology of hair follicles, the dynamic expression of hair follicle stem cell markers and key regulators in the hair growth cycle were explored. Our data revealed that the PGE2 matrix increased the proportion of developing hair follicles at the early growth stage. Improvements in hair follicle stem cells, such as Sox9+ and Lgr5+ cells, have also been confirmed as therapeutic effects of PGE2 to stimulate hair follicle growth. Our study indicated that PGE2 exhibits effective roles in hair development during anagen. Furthermore, the results also highlight the potential of the PGE2 delivery system as a novel therapeutic strategy for the treatment of hair disorders in the future.
Collapse
Affiliation(s)
- Hui Cheng
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Fei Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shang Chen
- Nankai University School of Medicine, Tianjin, China
| | - Haoyan Huang
- Nankai University School of Medicine, Tianjin, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, China
| | - Xiaotong Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiaonan Zhang
- Nankai University School of Medicine, Tianjin, China
| | - Xinrun Zhou
- Nankai University School of Medicine, Tianjin, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Hong Cai
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China.
| |
Collapse
|
19
|
Liatsopoulou A, Varvaresou A, Mellou F, Protopapa E. Iontophoresis in dermal delivery: A review of applications in dermato-cosmetic and aesthetic sciences. Int J Cosmet Sci 2022; 45:117-132. [PMID: 36326063 DOI: 10.1111/ics.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Iontophoresis is defined as the use of electric current to drive molecules across cell membranes through an electrolyte solution. In therapeutic context, it is used to facilitate the administration of bioactive substances, either systemically or locally. The technique presents various advantages and that is why it has been successfully used by a plethora of medical sciences. The constantly developing field of dermato-cosmetic science has also taken advantage of the possibilities offered by iontophoresis, aiming to enhance the delivery of the applied active ingredients and, thus, induce the desired cosmetic effects. METHODS The available literature was examined for evidence-based reports of safe and successful iontophoresis of pharmaceutical and cosmetic substances, in order to explore different iontophoretic applications in the field of dermato-cosmetic and dermato-aesthetic sciences. CONCLUSION Iontophoresis can be safely and successfully used in the treatment of ageing, photoageing, hyperpigmentation, oxidative stress, hair loss, hair removal, acne, acne sequelae and cellulite, providing many possibilities for enhanced treatment results.
Collapse
Affiliation(s)
- Aikaterini Liatsopoulou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Athanasia Varvaresou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Fotini Mellou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Evangelia Protopapa
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
20
|
Melo DF, Cortez de Almeida RF, Frattini SC, Santos LDN, Ramos PM. Minimally invasive procedures for the management of female pattern hair loss. J Cosmet Dermatol 2022; 21:5405-5408. [PMID: 35713007 DOI: 10.1111/jocd.15160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Female Pattern Hair Loss (FPHL) is one of the most common types of hair loss in women. It is characterized by progressive follicular miniaturization leading to diffuse hair thinning over the midfrontal scalp with a negative impact on quality of life. Pharmacological treatments are commonly used, and hair follicle transplantation is an option for those cases with adequate donor area. Minimally invasive procedures, such as microneedling, mesotherapy, microinfusion of drugs into the scalp with tattoo machines (MMP®), and platelet-rich plasma (PRP) have been reported as adjuvant treatments. AIMS This study aims to summarize and discuss the efficacy of minimally invasive procedures described for the management of FPHL. METHODS Published articles indexed on the Pubmed database and Scopus that described minimally invasive procedures for the management of FPHL in humans were considered. Citations were reviewed and added for completeness. The search was for articles in English only. After excluding duplicate titles, 23 relevant articles were considered. CONCLUSION Minimally invasive procedures are promising options and may play a role in FPHL treatment. They can be used as adjunctive therapy for FPHL, in case of poor response to clinical therapy, or when patients prefer other care than the standard. We reinforce that these methods should be performed by an experienced medical professional following strict aseptic techniques. However, microneedling, mesotherapy, MMP, and PRP lack standardization and are supported by a low level of evidence yet. For the future, larger randomized clinical trials are essential to determine the efficacy and optimal protocols for these treatments.
Collapse
Affiliation(s)
- Daniel Fernandes Melo
- Department of Dermatology, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | | | | | - Paulo Müller Ramos
- Department of Dermatology and Radiotherapy, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
21
|
Allam AA, Fathalla D, Safwat MA, Soliman GM. Transferosomes versus transethosomes for the dermal delivery for minoxidil: Preparation and in vitro/ex vivo appraisal. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Ziarani GM, Khademi M, Mohajer F, Badiei A. The Application of Modified SBA-15 as a Chemosensor. CURRENT NANOMATERIALS 2022; 7:4-24. [DOI: 10.2174/2405461506666210420132630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 06/17/2023]
Abstract
:
The Santa Barbara Amorphous (SBA-15), with a large surface area covered with abundant
Si-OH active groups on the walls of its pores, can be modified with various organic compounds
to build organic-inorganic hybrid materials, which can be used as a catalyst in organic reactions,
drug delivery systems, nano sorbent due to its high capacity for removing heavy metals in
waste water and as chemosensors for ions. Tunable and straight channels of SBA-15 facilitate the
entrance and diffusion of ions through the channels. This paper presents a review of the past five
years of literature covering the application of SBA-15 as an ions chemosensor in the liquid and
gaseous media.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Alireza Badiei
- School of
Chemistry, Collage of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Tang Z, Hu Y, Wang J, Fan Z, Qu Q, Miao Y. Current application of mesotherapy in pattern hair loss: A systematic review. J Cosmet Dermatol 2022; 21:4184-4193. [PMID: 35253335 DOI: 10.1111/jocd.14900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyuan Tang
- Department of Plastic and Aesthetic Surgery Nan Fang Hospital of Southern Medical University Guangzhou Guangdong Province 510515 China
| | - Yiming Hu
- Beijing Institute of Technology Zhuhai Guangdong Province 519000 China
- Pace University New York NY10024 USA
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery Nan Fang Hospital of Southern Medical University Guangzhou Guangdong Province 510515 China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery Nan Fang Hospital of Southern Medical University Guangzhou Guangdong Province 510515 China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery Nan Fang Hospital of Southern Medical University Guangzhou Guangdong Province 510515 China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery Nan Fang Hospital of Southern Medical University Guangzhou Guangdong Province 510515 China
| |
Collapse
|
24
|
Panda A, Matadh VA, Suresh S, Shivakumar HN, Murthy SN. Non-dermal applications of microneedle drug delivery systems. Drug Deliv Transl Res 2022; 12:67-78. [PMID: 33629222 DOI: 10.1007/s13346-021-00922-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Microneedles (MNs) are micron-scaled needles measuring 100 to 1000 μm that were initially explored for delivery of therapeutic agents across the skin. Considering the success in transcutaneous drug delivery, the application of microneedles has been extended to different tissues and organs. The review captures the application of microneedles to the oral mucosa, the eye, vagina, gastric mucosa, nail, scalp, and vascular tissues for delivery of vaccines, biologics, drugs, and diagnostic agents. The technology has created easy access to the poorly accessible segments of eye to facilitate delivery of monoclonal antibodies and therapeutic agents in management of neovascular disease. Microporation has been reported to drastically improve the drug delivery through the poorly permeable nail plate. Curved microneedles and spatially designed microneedle cuffs have been found to be capable of delivering stem cells and therapeutic macromolecules directly to the cardiac tissue and the vascular smooth muscle cells, respectively. Besides being minimally invasive and patient compliant, the technology has the potential to offer viable solutions to deliver drugs through impermeable barriers owing to the ability to penetrate several biological barriers. The technology has been successful to overcome the delivery hurdles and enable direct delivery of drug to the target sites, thus maximizing the efficacy thereby reducing the required dose. This review is an attempt to capture the non-dermatological applications of microneedles being explored and provides an insight on the future trends in the field of microneedle technology. Pictorial representation of different microneedle application.
Collapse
Affiliation(s)
- Apoorva Panda
- The University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - V Anusha Matadh
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | - Sarasija Suresh
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | - H N Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
- Department of Pharmaceutics, K.L.E. College of Pharmacy, Bengaluru, India
| | - S Narasimha Murthy
- The University of Mississippi School of Pharmacy, Oxford, MS, USA.
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India.
| |
Collapse
|
25
|
Melo DF, Saceda-Corralo D, Tosti A, Weffort F, Carla Jorge M, de Barros CC, de Melo Carvalho R, Starace M. Frontal edema due to mesotherapy for androgenetic alopecia: A case series. Dermatol Ther 2021; 35:e15247. [PMID: 34877759 DOI: 10.1111/dth.15247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
Androgenetic alopecia (AGA) is the most common form of non-cicatricial alopecia in both genders. Currently approved drugs for the treatment of AGA include topical minoxidil in women and topical minoxidil and oral finasteride in men. Other routes of administration of approved drugs have been proposed to enhance therapeutic results for AGA, including intradermal injections, known as mesotherapy. Mesotherapy-or intradermotherapy-is a non-surgical procedure, consisting of multiple intradermal injections of pharmacological substances diluted in small doses. Although minimally invasive, mesotherapy may be related to mild side effects like burning, erythema and headaches, as a few reports indicate. Among the most serious adverse events, subcutaneous necrosis, scalp abscesses, and angioedema have been described. This multicenter retrospective, descriptive study aims to report 14 cases of frontal edema resulting from mesotherapy for AGA treatment. In our patients, the edema mostly arose in the first two sessions and lasted between 1 and 4 days, with a favorable outcome after a local cold compress. In all our cases of edema, lidocaine was the anesthetic used. Minoxidil and dutasteride might also play a role as causative agents. To the best of our knowledge, this is the largest case series focused on frontal edema after mesotherapy for AGA and gives clinicians helpful information for when performing this technique. Dermatologists should already consider and be conscious of this possible mesotherapy side effect, as it can be remarkably disruptive to affected patients.
Collapse
Affiliation(s)
- Daniel Fernandes Melo
- Department of Dermatology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - David Saceda-Corralo
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Departamento de Medicina, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
| | - Antonella Tosti
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, School of Medicine, University of Miami, Miami, Florida, USA
| | - Flavia Weffort
- Department of Dermatology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Machado Carla Jorge
- Department of Preventive and Social Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Claudia Carreira de Barros
- Department of Dermatology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Dermatology, Santa Casa de Misericórdia of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel de Melo Carvalho
- Department of Dermatology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Michela Starace
- Dermatology - IRCCS, Policlinico Sant'Orsola, Department of Specialized, Experimental and Diagnostic Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
In Vitro Hair Growth Promoting Effect of a Noncrosslinked Hyaluronic Acid in Human Dermal Papilla Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5598110. [PMID: 34754881 PMCID: PMC8572598 DOI: 10.1155/2021/5598110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/21/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Dermal papilla cells (DPCs) are a source of nutrients and growth factors, which support the proliferation and growth of keratinocytes as well as promoting the induction of new hair follicles and maintenance of hair growth. The protection from reactive oxygen species (ROS) and the promotion of angiogenesis are considered two of the basal mechanisms to preserve the growth of the hair follicle. In this study, a noncrosslinked hyaluronic acid (HA) filler (HYDRO DELUXE BIO, Matex Lab S.p.A.) containing several amino acids was tested with in vitro assays on human follicle dermal papilla cells (HFDPCs). The experiments were carried out to investigate the possible protection against oxidative stress and the ability to increase the vascular endothelial growth factor (VEGF) release. The results demonstrated the restoration of cell viability against UVB-induced cytotoxicity and an increase in the VEGF secretion. These data demonstrate the capability of the product to modulate human dermal papilla cells, suggesting a future use in mesotherapy, a minimally invasive local intradermal therapy (LIT), after further clinical investigations.
Collapse
|
27
|
Yuan A, Xia F, Bian Q, Wu H, Gu Y, Wang T, Wang R, Huang L, Huang Q, Rao Y, Ling D, Li F, Gao J. Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment. ACS NANO 2021; 15:13759-13769. [PMID: 34279913 DOI: 10.1021/acsnano.1c05272] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Androgenetic alopecia (AGA) is highly prevalent in current society but lacks effective treatments. The dysregulation of the hair follicle niche induced by excessive reactive oxygen species (ROS) and insufficient vascularization in the perifollicular microenvironment is the leading cause of AGA. Herein, we designed a ceria nanozyme (CeNZ)-integrated microneedles patch (Ce-MNs) that can alleviate oxidative stress and promote angiogenesis simultaneously to reshape the perifollicular microenvironment for AGA treatment. On the basis of the excellent mechanical strength of Ce-MNs, the encapsulated CeNZs with catalase- and superoxide-mimic activities can be efficiently delivered into skin to scavenge excessive ROS. Moreover, the mechanical stimulation induced by the administration of MNs can remodel the microvasculature in the balding region. Compared with minoxidil, a widely used clinical drug for AGA treatment, Ce-MNs exhibited accelerated hair regeneration in the AGA mouse model at a lower administration frequency without inducing significant skin damage. Consequently, such a safe and perifollicular microenvironment-shaping MNs patch shows great potential for clinical AGA treatment.
Collapse
Affiliation(s)
- Anran Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibin Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingling Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaoling Huang
- Hangzhou Third People's Hospital, Hangzhou 310009, China
| | - Yuefeng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China
| |
Collapse
|
28
|
Santos TS, Hernandéz Galvis K, Vañó Galván S, Saceda-Corralo D. Post-chemotherapy alopecia: what the dermatologist needs to know. Int J Dermatol 2021; 60:1313-1317. [PMID: 34348414 DOI: 10.1111/ijd.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
It is estimated that chemotherapy-induced alopecia (CIA) occurs in 65% of chemotherapeutic patients. Forty-seven percent of cancer patients consider hair loss to be the most traumatic aspect of therapy. CIA can be anticipated, depending on the regimen used, and doctors should be aware of the treatments that can minimize it. Careful evaluation before chemotherapy treatment should be performed, and trichoscopy may be useful. Dermatologists do not generally evaluate postchemotherapy alopecia. However, there is an increasing number of reports of permanent chemotherapy-induced alopecia, and these patients require treatment.
Collapse
|
29
|
Oliveira Paggiaro A, Pinheiro R, Soares K, Fernandes Carvalho V, Gemperli R. Evaluation of the evidence level for the use of radiofrequency in aesthetic treatments: A systematic review and meta-analysis. J Cosmet Dermatol 2021; 20:2691-2702. [PMID: 34333828 DOI: 10.1111/jocd.14353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Radiofrequency (RF) is a non-invasive or minimally invasive procedure with a low risk of complications. It has been employed for several aesthetic purposes. AIM This study aimed to conduct a systematic literature review on the use of RF for aesthetic applications and assess the level of accumulated evidence for each condition. METHODS Using the MEDLINE/PubMed and EMBASE databases, we searched for articles published from 2009 to 2019 describing the use of RF treatment for aesthetic purposes. RESULTS Our search approach identified 25 randomized clinical trials investigating the efficacy of RF in the following clinical situations: body contour improvement, facial rejuvenation, acne scar treatment, alopecia, and rosacea. There were problems with the quality of the studies, especially regarding selection, performance, and detection bias. CONCLUSION Our study revealed that RF treatment is potentially promising in all of the evaluated clinical situations; however, we were not able to identify a level of evidence that justifies its use over other therapeutic options currently available on the market.
Collapse
Affiliation(s)
- André Oliveira Paggiaro
- Plastic Surgery Department, São Paulo University, São Paulo, Brazil.,Nursing Post Graduation, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Rafael Pinheiro
- Nursing Post Graduation, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Kaolanna Soares
- Nursing Post Graduation, Guarulhos University, Guarulhos, São Paulo, Brazil
| | | | - Rolf Gemperli
- Plastic Surgery Department, São Paulo University, São Paulo, Brazil
| |
Collapse
|
30
|
Costa C, Fernandes B, Guimarães D, Nogueira E, Martins M, Matamá T, Cavaco-Paulo A. Comparing the delivery to the hair bulb of two fluorescent molecules of distinct hydrophilicities by different nanoparticles and a serum formulation. Int J Pharm 2021; 602:120653. [PMID: 33915189 DOI: 10.1016/j.ijpharm.2021.120653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
The follicular route is an important drug penetration pathway in any topical application, either concerning dermatological and cosmetic skin treatments or any transdermal administration regimen. Efficient transport into follicles will depend on drug inherent properties but also on the chosen vehicle. The main study goal was to compare several systems for the delivery to the hair bulb of two fluorescent molecules of different water affinities: the hydrophobic Nile Red and the quite similar but hydrophilic Nile Blue. Three common nanoparticle types were compared in terms of encapsulation efficiency and stability: liposomes, ethosomes and polymeric nanoparticles. A liquid serum-like formulation was also developed, adjusting the final ethanol amount to the type of dye to be solubilized. Then, this formulation and the nanoparticle systems that successfully passed characterization and stability stages were further studied on their ability to reach the bulb. The serum formulation was able to deliver, both drug models, to deeper follicular regions than nanoparticles. Attending to the envisioned zone target of the follicle, the simplest approach proved to be the best choice from all the systems tested in this work. Nonetheless, nanocarriers and the inherent complexity of their manufacturing processes may be justified under very specific requirements.
Collapse
Affiliation(s)
- Cristiana Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Fernandes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Diana Guimarães
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Eugénia Nogueira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; Solfarcos - Pharmaceutical and Cosmetic Solutions Ltd, Praceta do Vilar, Urbanização Quinta dos Órfãos, Bloco A - Loja 6, 4710-453 Braga, Portugal
| | - Madalena Martins
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; Solfarcos - Pharmaceutical and Cosmetic Solutions Ltd, Praceta do Vilar, Urbanização Quinta dos Órfãos, Bloco A - Loja 6, 4710-453 Braga, Portugal
| | - Teresa Matamá
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
31
|
Oh HA, Kwak J, Kim BJ, Jin HJ, Park WS, Choi SJ, Oh W, Um S. Migration Inhibitory Factor in Conditioned Medium from Human Umbilical Cord Blood-Derived Mesenchymal Stromal Cells Stimulates Hair Growth. Cells 2020; 9:E1344. [PMID: 32481584 PMCID: PMC7349163 DOI: 10.3390/cells9061344] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
Conventional therapeutic applications of mesenchymal stromal cells (MSCs) focus on cell replacement and differentiation; however, increasing evidence suggests that most of their therapeutic effects are carried out by their various secretions. This study investigated the application of conditioned medium (CM) from human umbilical cord blood-derived MSCs (hUCB-MSCs) to improve hair growth and developed a method to reliably produce this optimized CM. Primed MSC-derived CM (P-CM) with combinations of TGF-β1 and LiCl was optimized by comparing its effects on the cell viability of dermal papilla cells (DPCs). P-CM significantly increased the viability of DPCs compared to CM. The secretion of vascular endothelial growth factor (VEGF) in DPCs was regulated by the macrophage migration inhibitory factor (MIF) in the P-CM secreted by MSCs. These findings suggest that P-CM can improve the efficacy in hair growth via a paracrine mechanism and that MIF in P-CM exerts hair growth-promoting effects via a VEGF-related β-catenin and p-GSK-3β [SER9] signaling pathway. Furthermore, clinical trials have shown that 5% P-CM improved androgenetic alopecia through producing an increased hair density, thickness, and growth rate, suggesting that this topical agent may be a novel and effective treatment option for patients with androgenetic alopecia.
Collapse
Affiliation(s)
- Hyun Ah Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (H.A.O.); (J.K.); (H.J.J.); (S.J.C.); (W.O.)
| | - Jihye Kwak
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (H.A.O.); (J.K.); (H.J.J.); (S.J.C.); (W.O.)
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 06974, Korea;
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (H.A.O.); (J.K.); (H.J.J.); (S.J.C.); (W.O.)
| | - Won Seok Park
- Aesthetic Research Team, Amore Pacific Corporation Research and Development Center, Yongin 17074, Korea;
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (H.A.O.); (J.K.); (H.J.J.); (S.J.C.); (W.O.)
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (H.A.O.); (J.K.); (H.J.J.); (S.J.C.); (W.O.)
| | - Soyoun Um
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (H.A.O.); (J.K.); (H.J.J.); (S.J.C.); (W.O.)
| |
Collapse
|