1
|
Ma Y, Wu M, Mo F, Chen Z, Lu J, Sun D. Enhanced Electrochemical Characterization of the Immune Checkpoint Protein PD-L1 using Aptamer-Functionalized Magnetic Metal-Organic Frameworks. Adv Healthc Mater 2024; 13:e2303103. [PMID: 38164814 DOI: 10.1002/adhm.202303103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Programmed death ligand 1 (PD-L1) is highly expressed in cancer cells and participates in the immune escape process of tumor cells. However, as one of the most promising biomarkers for cancer immunotherapy monitoring, the key problem ahead of practical usage is how to effectively improve the detection sensitivity of PD-L1. Herein, an electrochemical aptasensor for the evaluation of tumor immunotherapy is developed based on the immune checkpoint protein PD-L1. The fundamental principle of this method involves the utilization of DNA nanotetrahedron (NTH)-based capture probes and aptamer-modified magnetic metal-organic framework nanocomposites as signaling probes. A synergistic enhancement is observed in the electrocatalytic effect between Fe3O4 and UiO-66 porous shells in Fe3O4@UiO-66 nanocomposites. Therefore, the integration of aptamer-modified Fe3O4@UiO-66@Au with NTH-assisted target immobilization as an electrochemical sensing platform can significantly enhance sensitivity and specificity for target detection. This method enables the detection of targets at concentrations as low as 7.76 pg mL-1 over a wide linear range (0.01 to 1000 ng mL-1). The authors have successfully employed this sensor for in situ characterization of PD-L1 on the cell surface and for monitoring changes in PD-L1 expression during drug therapy, providing a cost-effective yet robust alternative to highly expensive and expertise-dependent flow cytometry.
Collapse
Affiliation(s)
- Ying Ma
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Maoqiang Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Fayin Mo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Zuanguang Chen
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| |
Collapse
|
2
|
Zheng Z, Su J, Bao X, Wang H, Bian C, Zhao Q, Jiang X. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front Immunol 2023; 14:1247268. [PMID: 37600785 PMCID: PMC10436604 DOI: 10.3389/fimmu.2023.1247268] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Radiotherapy (RT) is an effective treatment option for cancer patients, which induces the production of reactive oxygen species (ROS) and causes oxidative stress (OS), leading to the death of tumor cells. OS not only causes apoptosis, autophagy and ferroptosis, but also affects tumor immune response. The combination of RT and immunotherapy has revolutionized the management of various cancers. In this process, OS caused by ROS plays a critical role. Specifically, RT-induced ROS can promote the release of tumor-associated antigens (TAAs), regulate the infiltration and differentiation of immune cells, manipulate the expression of immune checkpoints, and change the tumor immune microenvironment (TME). In this review, we briefly summarize several ways in which IR induces tumor cell death and discuss the interrelationship between RT-induced OS and antitumor immunity, with a focus on the interaction of ferroptosis with immunogenic death. We also summarize the potential mechanisms by which ROS regulates immune checkpoint expression, immune cells activity, and differentiation. In addition, we conclude the therapeutic opportunity improving radiotherapy in combination with immunotherapy by regulating OS, which may be beneficial for clinical treatment.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xueying Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Qin Zhao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
3
|
Wei X, Yu CY, Wei H. Application of Cyclodextrin for Cancer Immunotherapy. Molecules 2023; 28:5610. [PMID: 37513483 PMCID: PMC10384645 DOI: 10.3390/molecules28145610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor immunotherapy, compared with other treatment strategies, has the notable advantage of a long-term therapeutic effect for preventing metastasis and the recurrence of tumors, thus holding great potential for the future of advanced tumor therapy. However, due to the poor water solubility of immune modulators and immune escape properties of tumor cells, the treatment efficiency of immunotherapy is usually significantly reduced. Cyclodextrin (CD) has been repeatedly highlighted to be probably one of the most investigated building units for cancer therapy due to its elegant integration of an internal hydrophobic hollow cavity and an external hydrophilic outer surface. The application of CD for immunotherapy provides new opportunities for overcoming the aforementioned obstacles. However, there are few published reviews, to our knowledge, summarizing the use of CD for cancer immunotherapy. For this purpose, this paper provides a comprehensive summary on the application of CD for immunotherapy with an emphasis on the role, function, and reported strategies of CD in mediating immunotherapy. This review summarizes the research progress made in using CD for tumor immunotherapy, which will facilitate the generation of various CD-based immunotherapeutic delivery systems with superior anticancer efficacy.
Collapse
Affiliation(s)
- Xiaojie Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Yang Z, Li H, Zhang W, Zhang M, He J, Yu Z, Sun X, Ni P. CD163 Monoclonal Antibody Modified Polymer Prodrug Nanoparticles for Targeting Tumor-Associated Macrophages (TAMs) to Enhance Anti-Tumor Effects. Pharmaceutics 2023; 15:pharmaceutics15041241. [PMID: 37111726 PMCID: PMC10144748 DOI: 10.3390/pharmaceutics15041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor-associated macrophages (TAMs)-based immunotherapy is a promising strategy. Since TAMs are mainly composed of M2-type macrophages, they have a promoting effect on tumor growth, invasion, and metastasis. M2-type macrophages contain a specific receptor CD163 on their surface, providing a prerequisite for active targeting to TAMs. In this study, we prepared CD163 monoclonal antibody modified doxorubicin-polymer prodrug nanoparticles (abbreviated as mAb-CD163-PDNPs) with pH responsiveness and targeted delivery. First, DOX was bonded with the aldehyde group of a copolymer by Schiff base reaction to form an amphiphilic polymer prodrug, which could self-assemble into nanoparticles in the aqueous solution. Then, mAb-CD163-PDNPs were generated through a "Click" reaction between the azide group on the surface of the prodrug nanoparticles and dibenzocyclocytyl-coupled CD163 monoclonal antibody (mAb-CD163-DBCO). The structure and assembly morphology of the prodrug and nanoparticles were characterized by 1H NMR, MALDI-TOF MS, FT-IR UV-vis spectroscopy, and dynamic light scattering (DLS). In vitro drug release behavior, cytotoxicity, and cell uptake were also investigated. The results show that the prodrug nanoparticles have regular morphology and stable structure, especially mAb-CD163-PDNPs, which can actively target TAMs at tumor sites, respond to the acidic environment in tumor cells, and release drugs. While depleting TAMs, mAb-CD163-PDNPs can actively enrich drugs at the tumor site and have a strong inhibitory effect on TAMs and tumor cells. The result of the in vivo test also shows a good therapeutic effect, with a tumor inhibition rate of 81%. This strategy of delivering anticancer drugs in TAMs provides a new way to develop targeted drugs for immunotherapy of malignant tumors.
Collapse
Affiliation(s)
- Zun Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Haijiao Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenrui Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Mingzu Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jinlin He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zepeng Yu
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Xingwei Sun
- Intervention Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Peihong Ni
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Shi N, Zhou Y, Liu Y, Zhang R, Jiang X, Ren C, Gao X, Luo L. PD-1/LAG-3 bispecific antibody potentiates T cell activation and increases antitumor efficacy. Front Immunol 2022; 13:1047610. [PMID: 36518768 PMCID: PMC9742559 DOI: 10.3389/fimmu.2022.1047610] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Several clinical studies demonstrate that there exist other immune checkpoints overexpressed in some PD-1 inhibitor-resistant tumor patients. Among them, Lymphocyte-activation gene 3 (LAG-3) is one of the important immune checkpoint molecules and has been clinically demonstrated to have synergistic anti-tumor effects in combination with PD-1 antibody. In this study, we designed a novel 'knob-in-hole' PD-1/LAG-3 bispecific antibody (BsAb) YG-003D3. In conclusion, the BsAb maintained the similar affinity and thermal stability to the parental antibody, and the BsAb structure can be independent of each other in the process of double-target recognition, and the recognition activity will not be affected. Moreover, the BsAb can not only target PD-1 and LAG-3 on single cell simultaneously, but also bridge the two kinds of cells expressing PD-1 and LAG-3, so as to release the 'brake system of immune checkpoints' and activate immune cells to exert anti-tumor effects more effectively. Especially in the PBMCs activation assay, YG-003D3 induced stronger IFN-γ, IL-6, and TNF-α secretion compared to anti-PD-1 or anti-LAG-3 single drug group or even combined drug group. In the tumor killing experiment of PBMC in vitro, YG-003D3 has a better ability to activate PBMC to kill tumor cells than anti-PD-1 or anti-LAG-3 single drug group or even combined drug group, and the killing rate is as high as 20%. In a humanized PD-1/LAG-3 transgenic mouse subcutaneous tumor-bearing model, YG-003D3 showed good anti-tumor activity, even better than that of the combination group at the same molar concentration. Further studies have shown that YG-003D3 could significantly alter the proportion of immune cells in the tumor microenvironment. In particular, the proportion of CD45+, CD3+ T, CD8+ T cells in tumor tissue and the proportion of CD3+ T, CD8+ T, CD4+ T cells in peripheral blood were significantly increased. These results suggest that YG-003D3 exerts a potent antitumor effect by activating the body 's immune system. In summary, the BsAb YG-003D3 has good anti-tumor activity, which is expected to become a novel drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Ning Shi
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yangyihua Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xingjun Jiang
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Caiping Ren
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| |
Collapse
|
6
|
Xu Z, Liu J, Liu Z, Zhang H. MARCH1 as a novel immune-related prognostic biomarker that shapes an inflamed tumor microenvironment in lung adenocarcinoma. Front Oncol 2022; 12:1008753. [PMID: 36313698 PMCID: PMC9606618 DOI: 10.3389/fonc.2022.1008753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
E3 ubiquitin ligases (E3s), the second most common cancer-related functional protein family, play vital roles in multiple tumors. However, their importance in prognosis and immunotherapy of lung adenocarcinoma (LUAD) is not clear. First, utilizing the data from The Cancer Genome Atlas (TCGA), we comprehensively assessed the expression profile and immunological association of 13 E3s in LUAD patients. Consequently, MARCH1 was considered a candidate for further study. Second, several algorithms were applied to assess the correlation between MARCH1 and immunological characteristics in the LUAD tumor microenvironment. Third, an immune risk score (IRS) was developed to predict the prognosis. Finally, the immunological relationship of MARCH1 in pan-cancer was also estimated. We found that E3s were disordered in LUAD. Among them, MARCH1 was positively correlated with most immunological characteristics, indicating that MARCH1 designed an inflamed TME in LUAD. Coincidently, LUAD with low MARCH1 expression had a poor prognosis and was not sensitive to immune checkpoint blockers. In addition, the IRS could accurately predict the prognosis. In pan-cancer, MARCH1 was also positively correlated with most immunological characteristics. In conclusion, MARCH1 could be a novel and promising biomarker for immune status and effectiveness of immunotherapy for LUAD patients.
Collapse
Affiliation(s)
- Zhiyong Xu
- Department of Oncology, the Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiotherapy, Southern Theater General Hospital, Guangzhou, China
| | - Jun Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Zichuan Liu
- Internal Medicine Section2, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Zichuan Liu, ; Haibo Zhang,
| | - Haibo Zhang
- Department of Oncology, the Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zichuan Liu, ; Haibo Zhang,
| |
Collapse
|
7
|
Xu XX, Chen SY, Yi NB, Li X, Chen SL, Lei Z, Cheng DB, Sun T. Research progress on tumor hypoxia-associative nanomedicine. J Control Release 2022; 350:829-840. [PMID: 36100192 DOI: 10.1016/j.jconrel.2022.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/17/2022]
Abstract
Hypoxia at the solid tumor site is generally related to the unrestricted proliferation and metabolism of cancerous cells, which can cause tumor metastasis and aggravate tumor progression. Besides, hypoxia plays a substantial role in tumor treatment, and it is one of the main reasons that malignant tumors are difficult to cure and have a poor prognosis. On account of the tumor specific hypoxic environment, many hypoxia-associative nanomedicine have been proposed for tumor treatment. Considering the enhanced targeting effect, designing hypoxia-associative nanomedicine can not only minimize the adverse effects of drugs on normal tissues, but also achieve targeted therapy at the lesion site. Mostly, there can be three strategies for the treatment of hypoxic tumor, including improvement of hypoxic environment, hypoxia responsive drug release and hypoxia activated prodrug. The review describes the design principle and applications of tumor hypoxia-associative nanomedicine in recent years, and also explores its development trends in solid tumor treatment. Moreover, this review presents the current limitations of tumor hypoxia-associative nanomedicine in chemotherapy, radiotherapy, photodynamic therapy, sonodynamic therapy and immunotherapy, which may provide a reference for clinic translation of tumor hypoxia-associative nanomedicine.
Collapse
Affiliation(s)
- Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Si-Lin Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| |
Collapse
|
8
|
Wang LJ, Lv P, Lou Y. A Novel TAF-Related Signature Based on ECM Remodeling Genes Predicts Glioma Prognosis. Front Oncol 2022; 12:862723. [PMID: 35574375 PMCID: PMC9093456 DOI: 10.3389/fonc.2022.862723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
The composition and abundance of immune and stromal cells in the tumor microenvironment (TME) dramatically affect prognosis. Infiltration of immunosuppressive tumor-associated fibroblasts (TAFs) is a hallmark of glioma. However, the mechanisms regulating TAF infiltration and the prognostic value of TAF-related genes in glioma remain unclear. In this study, we analyzed TAF infiltration by Estimating the Proportion of Immune and Cancer cells (EPIC) algorithm based on multiple glioma databases, including Glioblastoma and low-grade glioma merged cohort from The Cancer Genome Atlas (TCGA GBMLGG) cohort, the Chinese Glioma Genome Atlas (CGGA) #325 cohort, and the CGGA #693 cohort. TAF infiltration was increased in glioblastoma (GBM), and elevated TAF infiltration predicted poorer survival in gliomas. Gene enrichment analyses revealed that differentially expressed genes (DEGs) between low-grade glioma (LGG) and GBM were significantly enriched in the extracellular matrix (ECM) remodeling-related signaling, which may contribute to immune escape and resistance to immune checkpoint blockers (ICBs). To identify co-expression modules and candidate hub genes that may be associated with TAF infiltration, we performed weighted correlation network analysis (WGCNA) of DEGs. Afterward, univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analyses were performed to screen the positive prognostic hub genes. Finally, a high-efficacy prediction signature was constructed based on the expression of S100A4, PLAUR, and EMP3. The signature correlated with the abundance of TAF infiltration in glioma and was an independent risk factor for glioma. In conclusion, our findings suggested that the TAF-related signature was a valuable prognostic biomarker in glioma and provided potential targets for integrative therapy of gliomas.
Collapse
Affiliation(s)
- Lin-Jian Wang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.,Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Peipei Lv
- Department of Radiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongli Lou
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
10
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
11
|
Wang Y, Liu T, Li X, Sheng H, Ma X, Hao L. Ferroptosis-Inducing Nanomedicine for Cancer Therapy. Front Pharmacol 2021; 12:735965. [PMID: 34987385 PMCID: PMC8722674 DOI: 10.3389/fphar.2021.735965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Ferroptosis, a new iron- and reactive oxygen species-dependent form of regulated cell death, has attracted much attention in the therapy of various types of tumors. With the development of nanomaterials, more and more evidence shows the potential of ferroptosis combined with nanomaterials for cancer therapy. Recently, there has been much effort to develop ferroptosis-inducing nanomedicine, specially combined with the conventional or emerging therapy. Therefore, it is necessary to outline the previous work on ferroptosis-inducing nanomedicine and clarify directions for improvement and application to cancer therapy in the future. In this review, we will comprehensively focus on the strategies of cancer therapy based on ferroptosis-inducing nanomedicine currently, elaborate on the design ideas of synthesis, analyze the advantages and limitations, and finally look forward to the future perspective on the emerging field.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Tianfu Liu
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- China Medical University-The Queen’s University of Belfast Joint College, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Hui Sheng
- Physical College, Liaoning University, Shenyang, China
| | - Xiaowen Ma
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|