Gross IP, Lima AL, Sá-Barreto LL, Gelfuso GM, Cunha-Filho M. Recent advances in cutaneous drug delivery by iontophoresis.
Expert Opin Drug Deliv 2025:1-18. [PMID:
40199721 DOI:
10.1080/17425247.2025.2490267]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION
Iontophoresis has been extensively studied for topical and transdermal drug delivery to stimulate the absorption of molecules that would hardly pass through the outermost layer of the skin passively. Recent research has focused on its combination with nanoparticle-based systems or microneedles to expand its therapeutic applications.
AREAS COVERED
This review explores the fundamental principles of iontophoresis, focusing on key factors influencing its drug transport mechanisms, and provides a discussion of the field's current state. A comprehensive analysis of articles published or available online in 2024 was conducted, categorizing studies by their application areas, drug delivery systems, iontophoretic conditions, and experimental limitations.
EXPERT OPINION
The findings reveal a recent focus on wound healing and skin repair, and advancements in treating inflammation, pain, and skin cancer. Market translation requires standardized experimental protocols, particularly for iontophoretic parameters and preclinical models, along with the development of cost-effective commercial devices. Additionally, while advancements in cutaneous drug delivery have increasingly benefited from machine learning approaches, their application to iontophoresis remains underexplored. With the growing interest in associating iontophoresis with the Internet of Things, such an integration, if combined with AI tools, could offer promising opportunities for personalized, real-time treatments in modern dermatology, and therapeutic systems.
Collapse