• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (88)
For: Benigni R. Predictive toxicology today: the transition from biological knowledge to practicable models. Expert Opin Drug Metab Toxicol 2016;12:989-92. [PMID: 27351633 DOI: 10.1080/17425255.2016.1206889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Number Cited by Other Article(s)
1
Daghighi A, Casanola-Martin GM, Iduoku K, Kusic H, González-Díaz H, Rasulev B. Multi-Endpoint Acute Toxicity Assessment of Organic Compounds Using Large-Scale Machine Learning Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024;58:10116-10127. [PMID: 38797941 DOI: 10.1021/acs.est.4c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
2
Maoz BM, Asplund M, Maggio N, Vlachos A. Technology-based approaches toward a better understanding of neuro-coagulation in brain homeostasis. Cell Tissue Res 2022;387:493-498. [PMID: 34850274 PMCID: PMC8975761 DOI: 10.1007/s00441-021-03560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
3
Rahman SM, Lan J, Kaeli D, Dy J, Alshawabkeh A, Gu AZ. Machine learning-based biomarkers identification from toxicogenomics - Bridging to regulatory relevant phenotypic endpoints. JOURNAL OF HAZARDOUS MATERIALS 2022;423:127141. [PMID: 34560480 PMCID: PMC9628282 DOI: 10.1016/j.jhazmat.2021.127141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 05/30/2023]
4
Jain S, Siramshetty VB, Alves VM, Muratov EN, Kleinstreuer N, Tropsha A, Nicklaus MC, Simeonov A, Zakharov AV. Large-Scale Modeling of Multispecies Acute Toxicity End Points Using Consensus of Multitask Deep Learning Methods. J Chem Inf Model 2021;61:653-663. [PMID: 33533614 DOI: 10.1021/acs.jcim.0c01164] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
5
Benigni R, Bassan A, Pavan M. In silico models for genotoxicity and drug regulation. Expert Opin Drug Metab Toxicol 2020;16:651-662. [DOI: 10.1080/17425255.2020.1785428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
6
Novak R, Ingram M, Marquez S, Das D, Delahanty A, Herland A, Maoz BM, Jeanty SSF, Somayaji MR, Burt M, Calamari E, Chalkiadaki A, Cho A, Choe Y, Chou DB, Cronce M, Dauth S, Divic T, Fernandez-Alcon J, Ferrante T, Ferrier J, FitzGerald EA, Fleming R, Jalili-Firoozinezhad S, Grevesse T, Goss JA, Hamkins-Indik T, Henry O, Hinojosa C, Huffstater T, Jang KJ, Kujala V, Leng L, Mannix R, Milton Y, Nawroth J, Nestor BA, Ng CF, O'Connor B, Park TE, Sanchez H, Sliz J, Sontheimer-Phelps A, Swenor B, Thompson G, Touloumes GJ, Tranchemontagne Z, Wen N, Yadid M, Bahinski A, Hamilton GA, Levner D, Levy O, Przekwas A, Prantil-Baun R, Parker KK, Ingber DE. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat Biomed Eng 2020;4:407-420. [PMID: 31988458 DOI: 10.1038/s41551-019-0497-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
7
Wang H, Liu R, Schyman P, Wallqvist A. Deep Neural Network Models for Predicting Chemically Induced Liver Toxicity Endpoints From Transcriptomic Responses. Front Pharmacol 2019;10:42. [PMID: 30804783 PMCID: PMC6370634 DOI: 10.3389/fphar.2019.00042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]  Open
8
Gozalbes R, Vicente de Julián-Ortiz J. Applications of Chemoinformatics in Predictive Toxicology for Regulatory Purposes, Especially in the Context of the EU REACH Legislation. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/ijqspr.2018010101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
9
Benigni R, Battistelli CL, Bossa C, Giuliani A, Tcheremenskaia O. Endocrine Disruptors: Data-based survey of in vivo tests, predictive models and the Adverse Outcome Pathway. Regul Toxicol Pharmacol 2017;86:18-24. [PMID: 28232102 DOI: 10.1016/j.yrtph.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/04/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA