1
|
Yao L, Liu Y, Li M, Zheng H, Sun M, He M, Zhong Z, Ma S, Huang H, Wang H. The central regulatory effects of acupuncture in treating primary insomnia: a review. Front Neurol 2024; 15:1406485. [PMID: 39719980 PMCID: PMC11666528 DOI: 10.3389/fneur.2024.1406485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic insomnia has the potential to significantly impact physical well-being, occupational performance, and overall quality of life. This review summarizes the clinical and basic research on the central regulatory mechanism of acupuncture in treating primary insomnia (PI), aiming to explore the clinical effectiveness and possible mechanism of acupuncture in treating PI. The currently available drugs for insomnia exhibit notable adverse effects and tend to induce dependence. Empirical evidence from clinical investigations has demonstrated that acupuncture has a favorable safety profile while substantially enhancing the sleep quality of individuals diagnosed with PI. The combination of acupuncture and medication has been shown to augment the therapeutic efficacy of medication while reducing the dosage and mitigating the occurrence of unwanted effects. A review of the current clinical and basic research on the effects of acupuncture on central alterations in PI patients revealed that acupuncture exerts a regulatory influence on the functional activity of brain regions implicated in cognitive and emotional processes. Additionally, acupuncture has been found to impact metabolite levels and circadian clock gene expression and enhance inflammatory responses and energy metabolism. Notably, a single acupuncture intervention had a modulatory effect on functional brain regions similar to that of cumulative acupuncture. The current clinical trials on acupuncture have been limited in scale, and basic research has focused on a single objective. With the continuous progress of brain research, extensive clinical randomized controlled trials of high quality can be combined with various neuroimaging technology modalities. Moreover, different targets and pathways can be explored through basic research. This may serve to enhance the understanding of the fundamental central nervous system mechanisms involved in the efficacy of acupuncture in treating PI.
Collapse
Affiliation(s)
- Lin Yao
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanze Liu
- Acupuncture and Tuina Center, The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Mengyuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Mengmeng Sun
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min He
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Haipeng Huang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Hongfeng Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Jie Z, Qin S, Liu F, Xu D, Sun J, Qin G, Hou X, Xu P, Zhang W, Gao C, Lu J. Analysis on dynamic changes of etizolam and its metabolites and exploration of its development prospect using UPLC-Q-exactive-MS. J Pharm Biomed Anal 2024; 240:115936. [PMID: 38183733 DOI: 10.1016/j.jpba.2023.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
As one of the most widely abused designer benzodiazepines in the world, etizolam has been found in many cases in many countries. In this study, UPLC-Q-Exactive-MS was used for the first time to establish a dynamic change model of etizolam and its metabolites in rats. Compared with previous studies, the detection sensitivity and reproducibility of the instrument were higher. In the experiment, we optimized the traditional pharmacokinetic model based on Gauss function. According to the significant difference of etizolam in the plasma elimination phase of rats, a new pharmacokinetic model based on Lorentz function was established to describe the dynamic changes of etizolam more rigorously, which made the error effects lower and the accuracy of the pharmacokinetic parameters was improved. At the same time, the pharmacokinetic parameters of etizolam were compared with four other designer benzodiazepines reported in previous studies in rats, and we found the direct reason for the popularity of etizolam in the NPS market and explored the future development of etizolam for the first time. In addition, 21 metabolites were found through rat experiments to effectively detect etizolam abuse for a long time, of which 4 metabolites had the longest detection window and could be used as long-acting metabolites for experiments, which greatly prolongs the detection window and extends the time range in which etizolam was detected in real cases. This study is the first to conduct a systematic and comprehensive study on the metabolism and pharmacokinetics of etizolam and find out the direct reason for the prevalence of etizolam abuse, and we also discuss the development trend of etizolam in the future market of new psychoactive substances, which is beneficial for forensic experts to assess the trend of drug abuse and can provide reference for relevant drug control and drug treatment.
Collapse
Affiliation(s)
- Zhaowei Jie
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Shiyang Qin
- Forensic Science Service of Beijing Public Security Bureau, Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, China
| | - Fubang Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Duoqi Xu
- Shanghai Key Laboratory of Forensic Medicine, Scientific Research Institute of Forensic Expertise, Shanghai 200063, China
| | - Jing Sun
- Forensic Science Service of Beijing Public Security Bureau, Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, China
| | - Ge Qin
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Xiaolong Hou
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Peng Xu
- Key Laboratory of Drug Monitoring, Control and Anti drug Key Technologies of the Ministry of Public Security, Anti drug Information Technology Center of the Ministry of Public Security, Beijing 100193, China
| | - Wenfang Zhang
- Forensic Science Service of Beijing Public Security Bureau, Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, China.
| | - Chunfang Gao
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jianghai Lu
- Drug and Food Anti-doping Laboratory, China Anti-Doping Agency, 1st Anding Road, Chaoyang, Beijing 100029, China.
| |
Collapse
|
3
|
Zhao B, Bi Y, Chen Y, Zhang J, Zhang S, Zhang D, Rong P. Altered functional connectivity of the thalamus in patients with insomnia disorder after transcutaneous auricular vagus nerve stimulation therapy. Front Neurol 2023; 14:1164869. [PMID: 37483453 PMCID: PMC10357469 DOI: 10.3389/fneur.2023.1164869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
The pathogenesis of insomnia is related to the dysfunction of the thalamus. Transcutaneous auricular vagus nerve stimulation (taVNS) has proved to be effective in treating insomnia. However, whether taVNS alleviates insomnia through modulating thalamus-related functional connectivity remains unclear. To elucidate the instant modulating effects of taVNS on the resting state functional connectivity (RSFC) of the thalamus, 20 patients with insomnia disorder were recruited to receive taVNS treatment and their resting state functional magnetic resonance imaging (fMRI) data were collected immediately before and after stimulation. The fMRI data were compared with 20 age- and gender-matched healthy subjects who received no stimulation and had RSFC fMRI data collected once. RSFC analyses of the thalamus were performed in both groups. In addition to assessing the group differences between ID patients and healthy controls regarding the RSFC of the thalamus, we examined the taVNS-induced changes of RSFC of the thalamus in ID patients. Before taVNS treatment, the ID patients showed increased RSFC of the thalamus with the right insula and inferior frontal gyrus than healthy controls. After taVNS treatment, the RSFC between the thalamus and the right angular gyrus, left anterior cingulate gyrus, and precuneus were significantly decreased in patients. This study provides insights into the instant brain effects involving the thalamus-related functional connectivity of taVNS performed on insomnia disorder patients.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Acupuncture, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanzhi Bi
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongshu Zhang
- Department of Acupuncture, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Changes in Alprazolam Metabolism by CYP3A43 Mutants. Biomedicines 2022; 10:biomedicines10123022. [PMID: 36551778 PMCID: PMC9775082 DOI: 10.3390/biomedicines10123022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022] Open
Abstract
Alprazolam is a triazolobenzodiazepine which is most commonly used in the short-term management of anxiety disorders, often in combination with antipsychotics. The four human members of the CYP3A subfamily are mainly responsible for its metabolism, which yields the main metabolites 4-hydroxyalprazolam and α-hydroxyalprazolam. We performed a comparison of alprazolam metabolism by all four CYP3A enzymes upon recombinant expression in the fission yeast Schizosaccharomyces pombe. CYP3A4 and CYP3A5 show the highest 4-hydroxyalprazolam production rates, while CYP3A5 alone is the major producer of α-hydroxyalprazolam. For both metabolites, CYP3A7 and CYP3A43 show lower activities. Computational simulations rationalize the difference in preferred oxidation sites observed between the exemplary enzymes CYP3A5 and CYP3A43. Investigations of the alprazolam metabolites formed by three previously described CYP3A43 mutants (L293P, T409R, and P340A) unexpectedly revealed that they produce 4-hydroxy-, but not α-hydroxyalprazolam. Instead, they all also make a different metabolite, which is 5-N-O alprazolam. With respect to 4-hydroxyalprazolam, the mutants showed fourfold (T409R) to sixfold (L293P and P340A) higher production rates compared to the wild-type (CYP3A43.1). In the case of 5-N-O alprazolam, the production rates were similar for the three mutants, while no formation of this metabolite was found in the wild-type incubation.
Collapse
|
5
|
Sun Y, He M, Sun Y, Wei J. 4-O-galloylalbiflorin inhibits the activity of CYP3A, 2C9, and 2D in human liver microsomes. Xenobiotica 2021; 51:871-876. [PMID: 34082641 DOI: 10.1080/00498254.2021.1936688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effect of 4-O-galloylalbiflorin on the activity of cytochrome P450 enzymes (CYP450s) is an important factor that may induce drug-drug interaction.The effect of 4-O-galloylalbiflorin on the activity of CYP450s was evaluated in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM 4-O-galloylalbiflorin in pooled human liver microsomes. The inhibition model and corresponding parameters were assessed b fitting with Lineweaver-Burk plots. The time-dependent study was performed with the incubation time of 0, 5, 10, 15, and 30 min.4-O-galloylalbiflorin significantly inhibited the activity of CYP3A, 2C9, and 2 D in a concentration-dependent manner with the IC50 values of 8.2, 13, and 11 μM, respectively. The inhibition of CYP3A was found to be non-competitive and time-dependent with the Ki value of 4.0 μM and the KI/Kinact value of 2.2/0.030 (μM·min). The inhibition of CYP2C9 and 2 D was not affected by the incubation time but was found to be competitive with the Ki values of 6.7 and 6.6 μM, respectively.The inhibitory effect of 4-O-galloylalbiflorin on the activity of CYP3A, 2C9, and 2 D implying the potential drug-drug interaction between 4-O-galloylalbiflorin and the drugs metabolized by these CYP450s.
Collapse
Affiliation(s)
- Yu Sun
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Mengya He
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Yanling Sun
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Jianhong Wei
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|