1
|
Durairaj P, Liu ZL. Brain Cytochrome P450: Navigating Neurological Health and Metabolic Regulation. J Xenobiot 2025; 15:44. [PMID: 40126262 PMCID: PMC11932283 DOI: 10.3390/jox15020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain's complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling pathways, modulates enzyme functions, and leads to distinct CYP gene expression and regulation patterns compared to the liver. Despite their relatively low levels of expression, brain CYPs exert significant influence on drug responses, neurotoxin susceptibility, behavior, and neurological disease risk. These enzymes are essential for maintaining brain homeostasis, mediating cholesterol turnover, and synthesizing and metabolizing neurochemicals, neurosteroids, and neurotransmitters. Moreover, they are key participants in oxidative stress responses, neuroprotection, and the regulation of inflammation. In addition to their roles in metabolizing psychotropic drugs, substances of abuse, and endogenous compounds, brain CYPs impact drug efficacy, safety, and resistance, underscoring their importance beyond traditional drug metabolism. Their involvement in critical physiological processes also links them to neuroprotection, with significant implications for the onset and progression of neurodegenerative diseases. Understanding the roles of cerebral CYP enzymes is vital for advancing neuroprotective strategies, personalizing treatments for brain disorders, and developing CNS-targeting therapeutics. This review explores the emerging roles of CYP enzymes, particularly those within the CYP1-3 and CYP46 families, highlighting their functional diversity and the pathological consequences of their dysregulation on neurological health. It also examines the potential of cerebral CYP-based biomarkers to improve the diagnosis and treatment of neurodegenerative disorders, offering new avenues for therapeutic innovation.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
| | - Zixiang Leonardo Liu
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
2
|
Zhang M, Vuist IM, Rottschäfer V, de Lange EC. Exploring K p,uu,BBB values smaller than unity in remoxipride: A physiologically-based CNS model approach highlighting brain metabolism in drugs with passive blood-brain barrier transport. Eur J Pharm Sci 2024; 203:106883. [PMID: 39181172 DOI: 10.1016/j.ejps.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
(AIM) Kp,uu,BBB values are crucial indicators of drug distribution into the brain, representing the steady-state relationship between unbound concentrations in plasma and in brain extracellular fluid (brainECF). Kp,uu,BBB values < 1 are often interpreted as indicators of dominant active efflux transport processes at the blood-brain barrier (BBB). However, the potential impact of brain metabolism on this value is typically not addressed. In this study, we investigated the brain distribution of remoxipride, as a paradigm compound for passive BBB transport with yet unexplained brain elimination that was hypothesized to represent brain metabolism. (METHODS) The physiologically-based LeiCNS pharmacokinetic predictor (LeiCNS-PK model) was used to compare brain distribution of remoxipride with and without Michaelis-Menten kinetics at the BBB and/or brain cell organelle levels. To that end, multiple in-house (IV 0.7, 3.5, 4, 5.2, 7, 8, 14 and 16 mg kg-1) and external (IV 4 and 8 mg kg-1) rat microdialysis studies plasma and brainECF data were analysed. (RESULTS) The incorporation of active elimination through presumed brain metabolism of remoxipride in the LeiCNS-PK model significantly improved the prediction accuracy of experimentally observed brainECF profiles of this drug. The model integrated with brain metabolism in both barriers and organelles levels is named LeiCNS-PK3.5. (CONCLUSION) For drugs with Kp,uu,BBB values < 1, not only the current interpretation of dominant BBB efflux transport, but also potential brain metabolism needs to be considered, especially because these may be concentration dependent. This will improve the mechanistic understanding of the processes that determine brain PK profiles.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, the Netherlands
| | - Ilona M Vuist
- Charles River Laboratories, Groningen, the Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, the Netherlands; Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
| | - Elizabeth Cm de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, the Netherlands.
| |
Collapse
|
3
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
4
|
Furtado A, Duarte AC, Costa AR, Gonçalves I, Santos CRA, Gallardo E, Quintela T. Circadian ABCG2 Expression Influences the Brain Uptake of Donepezil across the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2024; 25:5014. [PMID: 38732233 PMCID: PMC11084460 DOI: 10.3390/ijms25095014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer's disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, the choroid plexus (CP) forms an interface between the cerebrospinal fluid (CSF) and the bloodstream, known as the blood-CSF barrier (BCSFB). Historically, the BCSFB has received little attention as a potential pathway for drug delivery to the central nervous system (CNS). Nonetheless, this barrier is presently viewed as a dynamic transport interface that limits the traffic of molecules into and out of the CNS through the presence of membrane transporters, with parallel activity with the BBB. The localization and expression of drug transporters in brain barriers represent a huge obstacle for drug delivery to the brain and a major challenge for the development of therapeutic approaches to CNS disorders. The widespread interest in understanding how circadian clocks modulate many processes that define drug delivery in order to predict the variability in drug safety and efficacy is the next bridge to improve effective treatment. In this context, this study aims at characterizing the circadian expression of ABCG2 and DNPZ circadian transport profile using an in vitro model of the BCSFB. We found that ABCG2 displays a circadian pattern and DNPZ is transported in a circadian way across this barrier. This study will strongly impact on the capacity to modulate the BCSFB in order to control the penetration of DNPZ into the brain and improve therapeutic strategies for the treatment of AD according to the time of the day.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Ana R. Costa
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Cecília R. A. Santos
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Eugenia Gallardo
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
5
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Han F, Gao J, Lv G, Liu T, Hu Q, Zhu M, Du Z, Yang J, Yao Z, Fang X, Ni D, Zhang J. Magnetic resonance imaging with upconversion nanoprobes capable of crossing the blood-cerebrospinal fluid barrier. J Nanobiotechnology 2024; 22:43. [PMID: 38287357 PMCID: PMC10826186 DOI: 10.1186/s12951-024-02301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The central nervous system (CNS) maintains homeostasis with its surrounding environment by restricting the ingress of large hydrophilic molecules, immune cells, pathogens, and other external harmful substances to the brain. This function relies heavily on the blood-cerebrospinal fluid (B-CSF) and blood-brain barrier (BBB). Although considerable research has examined the structure and function of the BBB, the B-CSF barrier has received little attention. Therapies for disorders associated with the central nervous system have the potential to benefit from targeting the B-CSF barrier to enhance medication penetration into the brain. In this study, we synthesized a nanoprobe ANG-PEG-UCNP capable of crossing the B-CSF barrier with high targeting specificity using a hydrocephalus model for noninvasive magnetic resonance ventriculography to understand the mechanism by which the CSF barrier may be crossed and identify therapeutic targets of CNS diseases. This magnetic resonance nanoprobe ANG-PEG-UCNP holds promising potential as a safe and effective means for accurately defining the ventricular anatomy and correctly locating sites of CSF obstruction.
Collapse
Affiliation(s)
- Fang Han
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Guanglei Lv
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Tao Liu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Qingfeng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Meilin Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Jing Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Xiangming Fang
- Department of Medical Imaging, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023, P.R. China.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China.
| |
Collapse
|
7
|
Liu G, Bai X, Yang J, Duan Y, Zhu J, Xiangyang L. Relationship between blood-brain barrier changes and drug metabolism under high-altitude hypoxia: obstacle or opportunity for drug transport? Drug Metab Rev 2023; 55:107-125. [PMID: 36823775 DOI: 10.1080/03602532.2023.2180028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The blood-brain barrier is essential for maintaining the stability of the central nervous system and is also crucial for regulating drug metabolism, changes of blood-brain barrier's structure and function can influence how drugs are delivered to the brain. In high-altitude hypoxia, the central nervous system's function is drastically altered, which can cause disease and modify the metabolism of drugs in vivo. Changes in the structure and function of the blood-brain barrier and the transport of the drug across the blood-brain barrier under high-altitude hypoxia, are regulated by changes in brain microvascular endothelial cells, astrocytes, and pericytes, either regulated by drug metabolism factors such as drug transporters and drug-metabolizing enzymes. This article aims to review the effects of high-altitude hypoxia on the structure and function of the blood-brain barrier as well as the effects of changes in the blood-brain barrier on drug metabolism. We also hypothesized and explore the regulation and potential mechanisms of the blood-brain barrier and associated pathways, such as transcription factors, inflammatory factors, and nuclear receptors, in regulating drug transport under high-altitude hypoxia.
Collapse
Affiliation(s)
- Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Yabin Duan
- Affiliated Hospital of Qinghai University, Xining, China
| | - Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Li Xiangyang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
8
|
Fatima GN, Maurya P, Nishtha, Saraf SK. In-situ Gels for Brain Delivery: Breaching the Barriers. Curr Pharm Des 2023; 29:3240-3253. [PMID: 37534480 DOI: 10.2174/1381612829666230803114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
The blood-brain barrier (BBB) regulates blood and chemical exchange in the central nervous system. It is made up of brain parenchyma capillary endothelial cells. It separates the interstitial cerebrospinal fluid from the circulation and limits brain drug entry. Peptides, antibodies, and even tiny hydrophilic biomolecules cannot flow across the BBB due to their semi-permeability. It protects the brain from poisons, chemicals, and pathogens, and blood cells penetrate brain tissue. BBB-facilitated carrier molecules allow selective permeability of nutrients such as D-glucose, L-lactic acid, L-phenylalanine, L-arginine, and hormones, especially steroid hormones. Brain barriers prevent drug molecules from entering, making medication delivery difficult. Drugs can reach specific brain regions through the nasal cavity, making it a preferred route. The in-situ gels are mucoadhesive, which extends their stay in the nasal cavity, allows them to penetrate deep and makes them a dependable way of transporting numerous medications, including peptides and proteins, straight into the central nervous system. This approach holds great potential for neurological therapy as they deliver drugs directly to the central nervous system, with less interference and better drug release control. The brain affects daily life by processing sensory stimuli, controlling movement and behaviour, and sustaining mental, emotional, and cognitive functioning. Unlike systemic routes, the nasal mucosa is extensively vascularized and directly contacts olfactory sensory neurons. Compared to the systemic circulation, this improves brain bioavailability of medications. Drugs can be delivered to the brain using in-situ gel formulations safely and efficiently, with a greater therapeutic impact than with traditional techniques.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| | - Priyanka Maurya
- Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| | - Nishtha
- Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| | - Shailendra K Saraf
- Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| |
Collapse
|
9
|
Cen Y, Shan Y, Zhao J, Xu X, Nie Z, Zhang J. Multiple drug transporters contribute to the brain transfer of levofloxacin. CNS Neurosci Ther 2022; 29:445-457. [PMID: 36253925 PMCID: PMC9804084 DOI: 10.1111/cns.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS The aim of this study was to assess the influence of the major transporters at blood-brain barrier and blood-cerebrospinal fluid barrier on levofloxacin (LVFX) pharmacokinetics in rat. To explore the different effects of transporters on drug concentrations in cerebrospinal fluid (CSF) and brain extracellular fluid (ECF). METHODS High-performance liquid chromatography coupled with microdialysis was used to continuously and synchronously measure unbound concentrations of LVFX in rat blood, hippocampal ECF, and lateral ventricle CSF for comprehensive characterization of brain pharmacokinetics. The role of transporters in the brain efflux mechanism of LVFX was analyzed in the absence and presence of various transporter inhibitors. RESULTS Following LVFX (50 mg/kg) administration, the unbound partition coefficient of LVFX in brain ECF and CSF (Kp,uu,ECF and Kp,uu,CSF ) were 34.0 ± 1.7% and 41.2 ± 2.4%, respectively. When probenecid was coadministered with LVFX, the AUC and the mean residence time (MRT) in rat blood increased significantly (p < 0.05). After MK571 intervention, 1.35-fold and 1.16-fold increases in Kp,uu,ECF and Kp,uu,CSF were observed, respectively (p < 0.05). Treatment with Ko143 increased the levels of LVFX in brain ECF. The difference in LVFX concentration in brain ECF and CSF was <3-fold with or without treatment with transporter inhibitors. CONCLUSION Efflux of LVFX from the central nervous system (CNS) involves multidrug resistance-associated proteins (MRPs), breast cancer resistance protein (BCRP), and organic anion transporters (OATs). MRPs play an important role in mediating the brain/CSF-to-blood efflux of LVFX. LVFX concentrations in CSF can be used as a surrogate to predict the concentrations inside brain parenchyma.
Collapse
Affiliation(s)
- Yuying Cen
- Medical School of Chinese PLABeijingChina,Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Yuheng Shan
- Medical School of Chinese PLABeijingChina,Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Jiahua Zhao
- Medical School of Chinese PLABeijingChina,Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Xiaojiao Xu
- Medical School of Chinese PLABeijingChina,Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyAcademy of Military Medical SciencesBeijingChina
| | - Jiatang Zhang
- Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| |
Collapse
|
10
|
Zhang S, Gan L, Cao F, Wang H, Gong P, Ma C, Ren L, Lin Y, Lin X. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res Bull 2022; 190:69-83. [PMID: 36162603 DOI: 10.1016/j.brainresbull.2022.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Three different barriers are formed between the cerebrovascular and the brain parenchyma: the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the cerebrospinal fluid-brain barrier (CBB). The BBB is the main regulator of blood and central nervous system (CNS) material exchange. The semipermeable nature of the BBB limits the passage of larger molecules and hydrophilic small molecules, Food and Drug Administration (FDA)-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Although the complexity of the BBB affects CNS drug delivery, understanding the composition and function of the BBB can provide a platform for the development of new methods for CNS drug delivery. This review summarizes the classification of the brain barrier, the composition and role of the basic structures of the BBB, and the transport, barrier, and destruction mechanisms of the BBB; discusses the advantages and disadvantages of different drug delivery methods and prospects for future drug delivery strategies.
Collapse
Affiliation(s)
- Shanshan Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Lin Gan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Fengye Cao
- Yiyang The First Hospital of Traditional Chinese Medicine, Yiyang, Hunan Province, 413000, China
| | - Hao Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Peng Gong
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Congcong Ma
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Li Ren
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yubo Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xianming Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
11
|
Dabbagh F, Schroten H, Schwerk C. In Vitro Models of the Blood–Cerebrospinal Fluid Barrier and Their Applications in the Development and Research of (Neuro)Pharmaceuticals. Pharmaceutics 2022; 14:pharmaceutics14081729. [PMID: 36015358 PMCID: PMC9412499 DOI: 10.3390/pharmaceutics14081729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
The pharmaceutical research sector has been facing the challenge of neurotherapeutics development and its inherited high-risk and high-failure-rate nature for decades. This hurdle is partly attributable to the presence of brain barriers, considered both as obstacles and opportunities for the entry of drug substances. The blood–cerebrospinal fluid (CSF) barrier (BCSFB), an under-studied brain barrier site compared to the blood–brain barrier (BBB), can be considered a potential therapeutic target to improve the delivery of CNS therapeutics and provide brain protection measures. Therefore, leveraging robust and authentic in vitro models of the BCSFB can diminish the time and effort spent on unproductive or redundant development activities by a preliminary assessment of the desired physiochemical behavior of an agent toward this barrier. To this end, the current review summarizes the efforts and progresses made to this research area with a notable focus on the attribution of these models and applied techniques to the pharmaceutical sector and the development of neuropharmacological therapeutics and diagnostics. A survey of available in vitro models, with their advantages and limitations and cell lines in hand will be provided, followed by highlighting the potential applications of such models in the (neuro)therapeutics discovery and development pipelines.
Collapse
|
12
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
13
|
Eneberg E, Jones C, Jensen T, Langthaler K, Bundgaard C. Practical Application of Rodent Transporter Knockout Models to assess Brain Penetration in Drug Discovery. Drug Metab Lett 2022; 15:12-21. [PMID: 35196975 DOI: 10.2174/1872312815666220222091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Compound X is a drug candidate for the treatment of neurodegenerative diseases. Its brain distribution was evaluated as part of the lead identification and optimization of early drug discovery. METHODS The brain distribution of compound X was studied in genetic transporter knockout rodent models, in vivo models with a chemical inhibitor and in vitro transporter cell systems. RESULTS Compound X was found to be a substrate for human Breast Cancer-Resistance Protein (BCRP) in vitro (efflux ratio 8.1) and rodent Bcrp in vivo (Kp,uuKO/Kp,uuWT = 0.15/0.057 = 2.7, p < 0.05) but not a substrate for human P-glycoprotein (P-gp) in vitro (efflux ratio 1.0) nor rodent P-gp in vivo (Kp,uuKO/Kp,uuWT = 0.056/0.051 = 1.1, p > 0.05). When both transporters were knocked out in vivo, Kp,uu increased to 0.51 ± 0.02. Similar patterns observed across compounds with related chemistry corroborated structure-activity relationship. CONCLUSION While in vitro assays showed compound X to be a substrate for human BCRP and not P-gp, in vivo studies indicated a synergistic effect between rodent efflux transporters. However, this only accounted for ~50% of restricted BBB-transport, suggesting involvement from other efflux transporters. Given Kp,uu is a key criterion for assessing technical quality of CNS candidates before progression into clinical development, it is important to identify relevant screening assays for a better understanding of low Kp,uu and brain distribution in pre-clinical models for translation to humans.
Collapse
Affiliation(s)
- Elin Eneberg
- Translational DMPK, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Christopher Jones
- Translational DMPK, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Thomas Jensen
- Medicinal Chemistry, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | | | | |
Collapse
|
14
|
Dunn JF, Isaacs AM. The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers. J Appl Physiol (1985) 2021; 131:977-985. [PMID: 34264124 DOI: 10.1152/japplphysiol.00108.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The blood-brain barrier (BBB), blood-cerebrospinal fluid (CSF) barrier (BCSFB), and CSF-brain barriers (CSFBB) are highly regulated barriers in the central nervous system comprising complex multicellular structures that separate nerves and glia from blood and CSF, respectively. Barrier damage has been implicated in the pathophysiology of diverse hypoxia-related neurological conditions, including stroke, multiple sclerosis, hydrocephalus, and high-altitude cerebral edema. Much is known about the damage to the BBB in response to hypoxia, but much less is known about the BCSFB and CSFBB. Yet, it is known that these other barriers are implicated in damage after hypoxia or inflammation. In the 1950s, it was shown that the rate of radionucleated human serum albumin passage from plasma to CSF was five times higher during hypoxic than normoxic conditions in dogs, due to BCSFB disruption. Severe hypoxia due to administration of the bacterial toxin lipopolysaccharide is associated with disruption of the CSFBB. This review discusses the anatomy of the BBB, BCSFB, and CSFBB and the impact of hypoxia and associated inflammation on the regulation of those barriers.
Collapse
Affiliation(s)
- Jeff F Dunn
- Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Albert M Isaacs
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Bryniarski MA, Ren T, Rizvi AR, Snyder AM, Morris ME. Targeting the Choroid Plexuses for Protein Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12100963. [PMID: 33066423 PMCID: PMC7602164 DOI: 10.3390/pharmaceutics12100963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Delivery of therapeutic agents to the central nervous system is challenged by the barriers in place to regulate brain homeostasis. This is especially true for protein therapeutics. Targeting the barrier formed by the choroid plexuses at the interfaces of the systemic circulation and ventricular system may be a surrogate brain delivery strategy to circumvent the blood-brain barrier. Heterogenous cell populations located at the choroid plexuses provide diverse functions in regulating the exchange of material within the ventricular space. Receptor-mediated transcytosis may be a promising mechanism to deliver protein therapeutics across the tight junctions formed by choroid plexus epithelial cells. However, cerebrospinal fluid flow and other barriers formed by ependymal cells and perivascular spaces should also be considered for evaluation of protein therapeutic disposition. Various preclinical methods have been applied to delineate protein transport across the choroid plexuses, including imaging strategies, ventriculocisternal perfusions, and primary choroid plexus epithelial cell models. When used in combination with simultaneous measures of cerebrospinal fluid dynamics, they can yield important insight into pharmacokinetic properties within the brain. This review aims to provide an overview of the choroid plexuses and ventricular system to address their function as a barrier to pharmaceutical interventions and relevance for central nervous system drug delivery of protein therapeutics. Protein therapeutics targeting the ventricular system may provide new approaches in treating central nervous system diseases.
Collapse
|
16
|
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Proteomics of Drug-Metabolizing Enzymes and Transporters. Molecules 2020; 25:molecules25112718. [PMID: 32545386 PMCID: PMC7321193 DOI: 10.3390/molecules25112718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics is a powerful tool for identifying and quantifying proteins in biological samples, outperforming conventional antibody-based methods in many aspects. LC-MS/MS-based proteomics studies have revealed the protein abundances of many drug-metabolizing enzymes and transporters (DMETs) in tissues relevant to drug metabolism and disposition. Previous studies have consistently demonstrated marked interindividual variability in DMET protein expression, suggesting that varied DMET function is an important contributing factor for interindividual variability in pharmacokinetics (PK) and pharmacodynamics (PD) of medications. Moreover, differential DMET expression profiles were observed across different species and in vitro models. Therefore, caution must be exercised when extrapolating animal and in vitro DMET proteomics findings to humans. In recent years, DMET proteomics has been increasingly utilized for the development of physiologically based pharmacokinetic models, and DMET proteins have also been proposed as biomarkers for prediction of the PK and PD of the corresponding substrate drugs. In sum, despite the existence of many challenges in the analytical technology and data analysis methods of LC-MS/MS-based proteomics, DMET proteomics holds great potential to advance our understanding of PK behavior at the individual level and to optimize treatment regimens via the DMET protein biomarker-guided precision pharmacotherapy.
Collapse
|
17
|
Duarte AC, Santos J, Costa AR, Ferreira CL, Tomás J, Quintela T, Ishikawa H, Schwerk C, Schroten H, Ferrer I, Carro E, Gonçalves I, Santos CRA. Bitter taste receptors profiling in the human blood-cerebrospinal fluid-barrier. Biochem Pharmacol 2020; 177:113954. [PMID: 32251676 DOI: 10.1016/j.bcp.2020.113954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023]
Abstract
The choroid plexus (CP) epithelial cells establish an important blood-brain interface, the blood-cerebrospinal fluid barrier (BCSFB), which constitutes a complementary gateway to the blood-brain-barrier for the entrance of several molecules into the central nervous system (CNS). However, the mechanisms that operate at the BCSFB to regulate the molecular traffic are still poorly understood. The taste signalling machinery, present in many extra-oral tissues, is involved in the chemical sensing of the composition of body fluids. We have identified this pathway in rat CP and hypothesised that it could also be present in the human BCSFB. In this study, we characterised the bitter taste receptors (TAS2Rs) expression profiling in human CP by combining data retrieved from available databases of the human CP transcriptome with its expression analysis in a human CP cell line and immunohistochemistry of human CP sections from men and women. TAS2R4, 5, 14 and 39 expression was confirmed in human CP tissue by immunohistochemistry and in HIBCPP cells by RT-PCR, immunofluorescence and Western blot. Moreover, the presence of downstream effector proteins GNAT3, PLCβ2 and TRPM5 was also detected in HIBCPP cells. Then, we demonstrated that HIBCPP cells respond to chloramphenicol via TAS2R39 and to quercetin via TAS2R14. Our findings support an active role of TAS2Rs at the human BCSFB, as surveyors of the bloodstream and CSF compositions. These findings open new avenues for studies on the uptake of relevant compounds for targeted therapies of the CNS.
Collapse
Affiliation(s)
- Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Catarina L Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Neuropathology, Bellvitge University Hospital-IDIBELL, CIBERNED, Hospitalet de Llobregat, Spain
| | - Eva Carro
- Instituto de Investigacion Hospital 12 de Octubre (i+12), Network Center for Biomedical Research in Neurodegenerative Diseases. CIBERNED, Madrid, Spain
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
18
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|
19
|
Jafari B, Pourseif MM, Barar J, Rafi MA, Omidi Y. Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin Drug Deliv 2019; 16:583-605. [DOI: 10.1080/17425247.2019.1614911] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Behzad Jafari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia,
Iran
| | - Mohammad M. Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Mohammad A. Rafi
- Department of Neurology, College of Medicine, Thomas Jefferson University, Philadelphia,
PA, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz,
Iran
| |
Collapse
|
20
|
Chaturvedi S, Rashid M, Malik MY, Agarwal A, Singh SK, Gayen JR, Wahajuddin M. Neuropharmacokinetics: a bridging tool between CNS drug development and therapeutic outcome. Drug Discov Today 2019; 24:1166-1175. [PMID: 30898661 DOI: 10.1016/j.drudis.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
Abstract
WHO classified neurological disorders to be among 6.3% of the global disease burden. Among the most central aspects of CNS drug development is the ability of novel molecules to cross the blood-brain barrier (BBB) to reach the target site over a desired time period for therapeutic action. Based on various aspects, brain pharmacokinetics is considered to be one of the foremost perspectives for the higher attrition rate of CNS biologics. Although drug traits are important, the BBB and blood-cerebrospinal fluid barrier together with transporters become the mechanistic approach behind CNS drug delivery. The present review emphasizes neuropharmacokinetic parameters, their importance, an assessment approach and the vast effect of transporters to brain drug distribution for CNS drug discovery.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Mohd Yaseen Malik
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun Agarwal
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sandeep K Singh
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
21
|
Nanoemulsions in CNS drug delivery: recent developments, impacts and challenges. Drug Discov Today 2019; 24:1104-1115. [PMID: 30914298 DOI: 10.1016/j.drudis.2019.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/03/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
Despite enormous efforts, treatment of CNS diseases remains challenging. One of the main issues causing this situation is limited CNS access for the majority of drugs used as part of the therapeutic regimens against life-threatening CNS diseases. Regarding the inarguable position of the nanocarrier systems in neuropharmacokinetic enhancement of the CNS drugs, this review discusses the latest findings on nanoemulsions (NEs) as one of the most promising candidates of this type, to overcome the challenges of CNS drug delivery. Future development of NE-based CNS drug delivery needs to consider so many aspects not only from a physicochemical point of view but also related to the biointerface of these very small droplets before achieving clinical value.
Collapse
|
22
|
Wang Q, Peng S, Hu Y, Wong CH, Kwan KM, Chan HYE, Zuo Z. Efficient brain uptake and distribution of an expanded CAG RNA inhibitor DB213 via intranasal administration. Eur J Pharm Sci 2018; 127:240-251. [PMID: 30391403 DOI: 10.1016/j.ejps.2018.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
DB213 is an expanded CAG RNA inhibitor targeting polyglutamine diseases. This current study aims to investigate biopharmaceutic characteristics of DB213 as well as its brain uptake and distribution in C57 wild type mice, R6/2 Huntington's disease mice and Sprague-Dawley (SD) rats via intranasal administration. The biopharmaceutic characteristics of DB213 were investigated in vitro using Calu-3/MDCK/HEK293 cell lines and brain slices for its membrane transport, equilibrium dialysis for its plasma protein/brain tissue bindings and liver/brain microsomes incubation for its enzyme kinetics profiles. In vivo study of DB213 brain distribution was conducted in rats via intravenous and intranasal routes at 50 mg/kg followed by its brain uptake evaluation in mice at 25 mg/kg via intranasal route. In vitro membrane transport studies found that DB213 not only had a limited passive diffusion with a Papp (a→b) value of 1.75 × 10-6 cm/s in Calu-3 cell monolayer model but also was substrate of MRP2, MRP3, and amino acid transporter. Furthermore, DB213 demonstrated higher binding towards brain homogenate (80%) than plasma (10%) with limited metabolism in liver and brain. After intranasal administration of DB213, both olfactory bulb and trigeminal nerve served as its entry points to reach brain as demonstrated in rats while efficient brain uptake was observed in mice. In summary, limited nasal epithelium permeability and MRP2/MRP3 mediated efflux transport of DB213 could be overcome by its influx transport via amino acid transporter and minimal liver and brain metabolism, which further contribute to its rapid brain uptake and distribution in mice and rats.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Shaohong Peng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yue Hu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - H Y Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|