1
|
Yalçın N, Dirik Y, Bayraktar İ, Umaroğlu M, Allegaert K. Optimizing Individualized Antimicrobial Dosing in Pediatric Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Drug Investig 2025; 45:1-16. [PMID: 39699827 DOI: 10.1007/s40261-024-01415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) and target concentration intervention (TCI) represent significant advancements in individualized medicine, aiming to tailor dosages based on patient-specific characteristics. These approaches account for intra- and inter-individual physiological and clinical variability, with the goal of improving target attainment and clinical remission while reducing treatment failure and adverse effects. OBJECTIVES The objective is to assess and enhance the current body of randomized controlled trials (RCTs) that have investigated alternative personalized dosing strategies, such as TDM and TCI, in terms of their efficacy and safety for individualized antimicrobial dosing in pediatric populations. Only studies that compared different dosing regimens and reported plasma concentrations were included in the analysis. METHODS Databases such as MEDLINE, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials were searched until January 3rd, 2024. Only published, peer-reviewed RCTs were considered for inclusion. The study focused on human subjects aged < 18 years who were receiving an antimicrobial drug. The interventions compared experimental dosing versus standard dosing with TDM or TCI. The risk of bias was assessed using version 2 of the Cochrane risk-of-bias tool for randomized trials. The primary outcome was the attainment of target concentrations, while secondary outcomes included adverse effects, clinical remission, and treatment failure. Data synthesis was performed using the restricted maximum likelihood method, and the risk ratio (RR) was used as the measure of effect size. RESULTS Only 11 TDM-based RCTs were included in the study [experimental vs standard doses: 592 (51.3%) patients vs 563 (48.7%) patients]. Experimental dose was significantly associated with improvement in target attainment (RR 1.2587, OR 1.0717-1.4786; p = 0.0051). However, experimental antimicrobial dose optimization was non-significantly associated with a numerical decrease in treatment failure (RR 0.8966, OR 0.7749-1.0374; p = 0.1424). In addition, it was not significant associated with higher adverse effects [RR 1.3408, odds ratio (OR) 0.1783-10.0825; p = 0.7757] and clinical remission rates (RR 4.0589, OR 0.2494-66.0558; p = 0.3250). CONCLUSIONS This meta-analysis showed that only target attainment using TDM was significantly improved in pediatric patients treated with experimental doses of antimicrobials compared to standard doses. Larger TCI-focused RCTs are needed to significantly improve treatment failure, adverse effects, and clinical remission.
Collapse
Affiliation(s)
- Nadir Yalçın
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
- Department of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium.
| | - Yağmur Dirik
- Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - İzgi Bayraktar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Mutlu Umaroğlu
- Institutional Big Data Management Coordination Office, Middle East Technical University, Ankara, Turkey
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
- Department of Development and Regeneration, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Shuai W, Cao J, Qian M, Tang Z. Physiologically Based Pharmacokinetic Modeling of Vancomycin in Critically Ill Neonates: Assessing the Impact of Pathophysiological Changes. J Clin Pharmacol 2024; 64:1552-1565. [PMID: 39092894 DOI: 10.1002/jcph.6107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Dosing vancomycin for critically ill neonates is challenging owing to substantial alterations in pharmacokinetics (PKs) caused by variability in physiology, disease, and clinical interventions. Therefore, an adequate PK model is needed to characterize these pathophysiological changes. The intent of this study was to develop a physiologically based pharmacokinetic (PBPK) model that reflects vancomycin PK and pathophysiological changes in neonates under intensive care. PK-sim software was used for PBPK modeling. An adult model (model 0) was established and verified using PK profiles from previous studies. A neonatal model (model 1) was then extrapolated from model 0 by scaling age-dependent parameters. Another neonatal model (model 2) was developed based not only on scaled age-dependent parameters but also on quantitative information on pathophysiological changes obtained via a comprehensive literature search. The predictive performances of models 1 and 2 were evaluated using a retrospectively collected dataset from neonates under intensive care (chictr.org.cn, ChiCTR1900027919), comprising 65 neonates and 92 vancomycin serum concentrations. Integrating literature-based parameter changes related to hypoalbuminemia, small-for-gestational-age, and co-medication, model 2 offered more optimized precision than model 1, as shown by a decrease in the overall mean absolute percentage error (50.6% for model 1; 37.8% for model 2). In conclusion, incorporating literature-based pathophysiological changes effectively improved PBPK modeling for critically ill neonates. Furthermore, this model allows for dosing optimization before serum concentration measurements can be obtained in clinical practice.
Collapse
Affiliation(s)
- Weiwei Shuai
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Jing Cao
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Miao Qian
- Department of Neonatology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| | - Zhe Tang
- Department of Pharmacy, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
3
|
Cao A, Li Q, Han M, Liu Q, Liang H, Tan L, Guan Y. Physiologically Based Pharmacokinetic Modeling of Vancomycin and its Comparison with Population Pharmacokinetic Model in Neonates. J Clin Pharmacol 2024. [PMID: 39223982 DOI: 10.1002/jcph.6126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Vancomycin has a narrow therapeutic window and a high inter-individual pharmacokinetic variability, especially in neonates with fast maturational and pathophysiological changes, that needs individualized dosing. Physiologically based pharmacokinetic (PBPK) model and population pharmacokinetic (PopPK) model are both useful tools in model-informed precision dosing, while the former is under research in application of vancomycin in neonates. This study aimed to develop a PBPK model of vancomycin in adult and pediatric population, and compared it with published PopPK model (priori or Bayesian method) in predicting vancomycin concentration in 230 neonatal patients (postmenstrual age, PMA, 25-45 weeks). The developed PBPK model showed a good fit between predictions and observations. PBPK model and PopPK model are complementary in different clinical scenarios of vancomycin application. The physiological-change description of PBPK model showed a superior advantage in initial dosing optimization. As for subsequent dose optimization, PopPK Bayesian forecasting performed better than the PBPK estimation in neonates. However, initial precision dosing tools for early neonates (with PMA < 36 weeks) still need further exploitation.
Collapse
Affiliation(s)
- Ailing Cao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiaoxi Li
- Department of Pharmacy, The First People's Hospital of Foshan, Foshan, China
| | - Minzhen Han
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Qian Liu
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Heng Liang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lu Tan
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanping Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Meesters K, Balbas-Martinez V, Allegaert K, Downes KJ, Michelet R. Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians. Paediatr Drugs 2024; 26:365-379. [PMID: 38755515 DOI: 10.1007/s40272-024-00633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
The widespread use of drugs for unapproved purposes remains common in children, primarily attributable to practical, ethical, and financial constraints associated with pediatric drug research. Pharmacometrics, the scientific discipline that involves the application of mathematical models to understand and quantify drug effects, holds promise in advancing pediatric pharmacotherapy by expediting drug development, extending applications, and personalizing dosing. In this review, we delineate the principles of pharmacometrics, and explore its clinical applications and prospects. The fundamental aspect of any pharmacometric analysis lies in the selection of appropriate methods for quantifying pharmacokinetics and pharmacodynamics. Population pharmacokinetic modeling is a data-driven method ('top-down' approach) to approximate population-level pharmacokinetic parameters, while identifying factors contributing to inter-individual variability. Model-informed precision dosing is increasingly used to leverage population pharmacokinetic models and patient data, to formulate individualized dosing recommendations. Physiologically based pharmacokinetic models integrate physicochemical drug properties with biological parameters ('bottom-up approach'), and is particularly valuable in situations with limited clinical data, such as early drug development, assessing drug-drug interactions, or adapting dosing for patients with specific comorbidities. The effective implementation of these complex models hinges on strong collaboration between clinicians and pharmacometricians, given the pivotal role of data availability. Promising advancements aimed at improving data availability encompass innovative techniques such as opportunistic sampling, minimally invasive sampling approaches, microdialysis, and in vitro investigations. Additionally, ongoing research efforts to enhance measurement instruments for evaluating pharmacodynamics responses, including biomarkers and clinical scoring systems, are expected to significantly bolster our capacity to understand drug effects in children.
Collapse
Affiliation(s)
- Kevin Meesters
- Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada.
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Kevin J Downes
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
- qPharmetra LLC, Berlin, Germany
| |
Collapse
|
5
|
Bower WA, Yu Y, Person MK, Parker CM, Kennedy JL, Sue D, Hesse EM, Cook R, Bradley J, Bulitta JB, Karchmer AW, Ward RM, Cato SG, Stephens KC, Hendricks KA. CDC Guidelines for the Prevention and Treatment of Anthrax, 2023. MMWR Recomm Rep 2023; 72:1-47. [PMID: 37963097 PMCID: PMC10651316 DOI: 10.15585/mmwr.rr7206a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
This report updates previous CDC guidelines and recommendations on preferred prevention and treatment regimens regarding naturally occurring anthrax. Also provided are a wide range of alternative regimens to first-line antimicrobial drugs for use if patients have contraindications or intolerances or after a wide-area aerosol release of Bacillus anthracis spores if resources become limited or a multidrug-resistant B. anthracis strain is used (Hendricks KA, Wright ME, Shadomy SV, et al.; Workgroup on Anthrax Clinical Guidelines. Centers for Disease Control and Prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg Infect Dis 2014;20:e130687; Meaney-Delman D, Rasmussen SA, Beigi RH, et al. Prophylaxis and treatment of anthrax in pregnant women. Obstet Gynecol 2013;122:885-900; Bradley JS, Peacock G, Krug SE, et al. Pediatric anthrax clinical management. Pediatrics 2014;133:e1411-36). Specifically, this report updates antimicrobial drug and antitoxin use for both postexposure prophylaxis (PEP) and treatment from these previous guidelines best practices and is based on systematic reviews of the literature regarding 1) in vitro antimicrobial drug activity against B. anthracis; 2) in vivo antimicrobial drug efficacy for PEP and treatment; 3) in vivo and human antitoxin efficacy for PEP, treatment, or both; and 4) human survival after antimicrobial drug PEP and treatment of localized anthrax, systemic anthrax, and anthrax meningitis. Changes from previous CDC guidelines and recommendations include an expanded list of alternative antimicrobial drugs to use when first-line antimicrobial drugs are contraindicated or not tolerated or after a bioterrorism event when first-line antimicrobial drugs are depleted or ineffective against a genetically engineered resistant B. anthracis strain. In addition, these updated guidelines include new recommendations regarding special considerations for the diagnosis and treatment of anthrax meningitis, including comorbid, social, and clinical predictors of anthrax meningitis. The previously published CDC guidelines and recommendations described potentially beneficial critical care measures and clinical assessment tools and procedures for persons with anthrax, which have not changed and are not addressed in this update. In addition, no changes were made to the Advisory Committee on Immunization Practices recommendations for use of anthrax vaccine (Bower WA, Schiffer J, Atmar RL, et al. Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm Rep 2019;68[No. RR-4]:1-14). The updated guidelines in this report can be used by health care providers to prevent and treat anthrax and guide emergency preparedness officials and planners as they develop and update plans for a wide-area aerosol release of B. anthracis.
Collapse
|
6
|
Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, Thomson AH, Yu Z, Gao F, Zheng Y, Zhou Y, Capparelli EV, Biran V, Simon N, Meibohm B, Lo YL, Marques R, Peris JE, Lutsar I, Saito J, Jacqz-Aigrain E, van den Anker J, Wu YE, Zhao W. Use of Machine Learning for Dosage Individualization of Vancomycin in Neonates. Clin Pharmacokinet 2023; 62:1105-1116. [PMID: 37300630 DOI: 10.1007/s40262-023-01265-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE High variability in vancomycin exposure in neonates requires advanced individualized dosing regimens. Achieving steady-state trough concentration (C0) and steady-state area-under-curve (AUC0-24) targets is important to optimize treatment. The objective was to evaluate whether machine learning (ML) can be used to predict these treatment targets to calculate optimal individual dosing regimens under intermittent administration conditions. METHODS C0 were retrieved from a large neonatal vancomycin dataset. Individual estimates of AUC0-24 were obtained from Bayesian post hoc estimation. Various ML algorithms were used for model building to C0 and AUC0-24. An external dataset was used for predictive performance evaluation. RESULTS Before starting treatment, C0 can be predicted a priori using the Catboost-based C0-ML model combined with dosing regimen and nine covariates. External validation results showed a 42.5% improvement in prediction accuracy by using the ML model compared with the population pharmacokinetic model. The virtual trial showed that using the ML optimized dose; 80.3% of the virtual neonates achieved the pharmacodynamic target (C0 in the range of 10-20 mg/L), much higher than the international standard dose (37.7-61.5%). Once therapeutic drug monitoring (TDM) measurements (C0) in patients have been obtained, AUC0-24 can be further predicted using the Catboost-based AUC-ML model combined with C0 and nine covariates. External validation results showed that the AUC-ML model can achieve an prediction accuracy of 80.3%. CONCLUSION C0-based and AUC0-24-based ML models were developed accurately and precisely. These can be used for individual dose recommendations of vancomycin in neonates before treatment and dose revision after the first TDM result is obtained, respectively.
Collapse
Affiliation(s)
- Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Alison H Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ze Yu
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| | - Fei Gao
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Edmund V Capparelli
- Pediatric Pharmacology and Drug Discovery, University of California, San Diego, CA, USA
| | - Valerie Biran
- Neonatal Intensive Care Unit, Hospital Robert Debre, Paris, France
| | - Nicolas Simon
- Service de Pharmacologie Clinique, CAP-TV, Aix Marseille Univ, APHM, INSERM, IRD, SESSTIM, Hop Sainte Marguerite, Marseille, France
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoke-Lin Lo
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Remedios Marques
- Department of Pharmacy Services, La Fe Hospital, Valencia, Spain
| | - Jose-Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Irja Lutsar
- Institute of Medical Microbiology, University of Tartu, Tartu, Estonia
| | - Jumpei Saito
- Department of Pharmacy, National Children's Hospital National Center for Child Health and Development, Tokyo, Japan
| | - Evelyne Jacqz-Aigrain
- Department of Pediatric Pharmacology and Pharmacogenetics, Hospital Robert Debre, APHP, Paris, France
- Clinical Investigation Center CIC1426, Hôpital Robert Debré, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China.
| |
Collapse
|
7
|
Choi S, Hong Y, Jung SH, Kang G, Ghim JR, Han S. Pharmacokinetic Model Based on Stochastic Simulation and Estimation for Therapeutic Drug Monitoring of Tacrolimus in Korean Adult Transplant Recipients. Ther Drug Monit 2022; 44:729-737. [PMID: 35830880 PMCID: PMC9648981 DOI: 10.1097/ftd.0000000000001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Tacrolimus shows high variability in inter- and intraindividual pharmacokinetics (PK); therefore, it is important to develop an appropriate model for accurate therapeutic drug monitoring (TDM) procedures. This study aimed to develop a pharmacokinetic model for tacrolimus that can be used for TDM procedures in Korean adult transplant recipients by integrating published models with acquired real-world TDM data and evaluating clinically meaningful covariates. METHODS Clinical data of 1829 trough blood samples from 269 subjects were merged with simulated data sets from published models and analyzed using a nonlinear mixed-effect model. The stochastic simulation and estimation (SSE) method was used to obtain the final parameter estimates. RESULTS The final estimated values for apparent clearance, the volume of distribution, and absorption rate were 21.2 L/h, 510 L, and 3.1/h, respectively. The number of postoperative days, age, body weight, and type of transplant organs were the major clinical factors affecting tacrolimus PK. CONCLUSIONS A tacrolimus PK model that can incorporate published PK models and newly collected data from the Korean population was developed using the SSE method. Despite the limitations in model development owing to the nature of TDM data, the SSE method was useful in retrieving complete information from the TDM data by integrating published PK models while maintaining the variability of the model.
Collapse
Affiliation(s)
- Suein Choi
- Pharmacometrics Institute for Practical Education and Training (PIPET), College of Medicine, The Catholic University of Korea
- Department of Pharmacology, College of Medicine, The Catholic University of Korea
| | - Yunjeong Hong
- Pharmacometrics Institute for Practical Education and Training (PIPET), College of Medicine, The Catholic University of Korea
- Department of Pharmacology, College of Medicine, The Catholic University of Korea
| | - Sook-Hyun Jung
- Catholic Clinical Research Coordinating Center, Seoul, Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju; and
| | - Jong-Ryul Ghim
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Seunghoon Han
- Pharmacometrics Institute for Practical Education and Training (PIPET), College of Medicine, The Catholic University of Korea
- Department of Pharmacology, College of Medicine, The Catholic University of Korea
| |
Collapse
|
8
|
Alrahahleh D, Xu S, Zhu Z, Toufaili H, Luig M, Kim HY, Alffenaar JW. An Audit to Evaluate Vancomycin Therapeutic Drug Monitoring in a Neonatal Intensive Care Unit. Ther Drug Monit 2022; 44:651-658. [PMID: 35383737 DOI: 10.1097/ftd.0000000000000986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) is routinely used for optimization of vancomycin therapy, because of exposure-related efficacy and toxicity, in addition to significant variability in pharmacokinetics, which leads to unpredictable drug exposure. OBJECTIVE The aim of this study was to evaluate target attainment and TDM of vancomycin in neonates. METHODS The authors conducted a retrospective study and collected data from medical records of all neonates who received vancomycin therapy in the neonatal intensive care unit between January 2019 and December 2019. The primary outcome was the proportion of vancomycin courses that reached target trough concentrations of 10-20 mg/L based on appropriate TDM samples collection. Secondary outcomes included proportion of courses with appropriate dose and dose frequency, and proportion of patients who achieved target concentrations after the first dose adjustment. RESULTS In total, 69 patients were included, with 129 vancomycin courses. The median initial vancomycin trough concentration was 12 (range: 4-36) mg/L. The target trough concentration was achieved in 75% of courses after the initial dose with appropriate TDM, and 84% of courses after TDM-guided dose adjustments. Patients were dosed appropriately in 121/129 courses and TDM was performed correctly according to protocol in 51/93 courses. A dose adjustment was performed in 18/29 courses, to increase target attainment. CONCLUSIONS This study showed that there is a need for an increase in dose to improve target attainment. There is also a need to explore more effective TDM strategies to increase the proportion of neonatal patients attaining vancomycin target trough concentrations.
Collapse
Affiliation(s)
- Dua'a Alrahahleh
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Sophia Xu
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
| | - Zhaowen Zhu
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hassan Toufaili
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Melissa Luig
- Department of Neonatology, Westmead Hospital, Westmead, NSW, Australia ; and
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Camperdown, NSW, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
9
|
Chen Q, Wan J, Shen W, Lin W, Lin X, Huang Z, Lin M, Chen Y. Optimal exposure targets for vancomycin in the treatment of neonatal coagulase-negative Staphylococcus infection: A retrospective study based on electronic medical records. Pediatr Neonatol 2022; 63:247-254. [PMID: 35190273 DOI: 10.1016/j.pedneo.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The currently advocated ratio of area under the curve (AUC) over 24 h to minimum inhibitory concentration (AUC/MIC) > 400 and AUC < 600 mg h/L as the therapeutic drug monitoring (TDM) target of vancomycin is based on data from multiple observational studies in adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection. It may not be applicable to newborns with coagulase-negative Staphylococcus (CoNS) infection. We conducted a retrospective study to identify the optimal exposure targets for vancomycin in the treatment of neonatal CoNS infection. METHODS Based on the inclusion and exclusion criteria, serum vancomycin concentration, demographics, clinical data, and related laboratory data of newborns who received vancomycin intravenous infusion from June 1, 2016 to February 1, 2021 were collected retrospectively. The AUC was calculated using the maximum a posteriori Bayesian (MAPB) method. The vancomycin exposure threshold of AUC/MIC for efficacy and AUC for toxicity (acute kidney injury, AKI) were determined based on receiver operating characteristic (ROC) curve analysis. The correlation between vancomycin exposure and both clinical effect and nephrotoxicity was analyzed using logistic multivariate regression. RESULTS In total, 153 patients and 245 vancomycin concentrations (160 trough and 85 peak concentrations) were included. The ROC curve analysis showed that the exposure thresholds of AUC/MIC for clinical efficacy and AUC for nephrotoxicity were 281 and 602 mg h/L, respectively. The multivariate regression analysis showed that AUC/MIC > 280 was a predictor of efficacy (OR: 13.960, 95% CI: 1.891-103.078, P < 0.05) and AUC > 600 mg h/L was associated with AKI (OR: 9.008, 95% CI: 2.706-29.983, P < 0.05). The vancomycin AUC/MIC threshold for treating neonatal CoNS infection with vancomycin is lower than the currently advocated AUC/MIC >400. CONCLUSION The optimal exposure targets for vancomycin in neonatal CoNS infection were AUC/MIC > 280 and AUC < 600 mg h/L.
Collapse
Affiliation(s)
- Quanyao Chen
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jun Wan
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei Shen
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanlong Lin
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiuxian Lin
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhiyi Huang
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Min Lin
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yao Chen
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Knowledge gaps in late-onset neonatal sepsis in preterm neonates: a roadmap for future research. Pediatr Res 2022; 91:368-379. [PMID: 34497356 DOI: 10.1038/s41390-021-01721-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Late-onset neonatal sepsis (LONS) remains an important threat to the health of preterm neonates in the neonatal intensive care unit. Strategies to optimize care for preterm neonates with LONS are likely to improve survival and long-term neurocognitive outcomes. However, many important questions on how to improve the prevention, early detection, and therapy for LONS in preterm neonates remain unanswered. This review identifies important knowledge gaps in the management of LONS and describe possible methods and technologies that can be used to resolve these knowledge gaps. The availability of computational medicine and hypothesis-free-omics approaches give way to building bedside feedback tools to guide clinicians in personalized management of LONS. Despite advances in technology, implementation in clinical practice is largely lacking although such tools would help clinicians to optimize many aspects of the management of LONS. We outline which steps are needed to get possible research findings implemented on the neonatal intensive care unit and provide a roadmap for future research initiatives. IMPACT: This review identifies knowledge gaps in prevention, early detection, antibiotic, and additional therapy of late-onset neonatal sepsis in preterm neonates and provides a roadmap for future research efforts. Research opportunities are addressed, which could provide the means to fill knowledge gaps and the steps that need to be made before possible clinical use. Methods to personalize medicine and technologies feasible for bedside clinical use are described.
Collapse
|
11
|
Mejías-Trueba M, Alonso-Moreno M, Herrera-Hidalgo L, Gil-Navarro MV. Target Attainment and Clinical Efficacy for Vancomycin in Neonates: Systematic Review. Antibiotics (Basel) 2021; 10:347. [PMID: 33805874 PMCID: PMC8064372 DOI: 10.3390/antibiotics10040347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 01/22/2023] Open
Abstract
Vancomycin is commonly used as a treatment for neonatal infections. However, there is a lack of consensus establishing the optimal vancomycin therapeutic regimen and defining the most appropriate PK/PD parameter correlated with the efficacy. A recent guideline recommends AUC-guided therapeutic dosing in treating serious infections in neonates. However, in clinical practice, trough serum concentrations are commonly used as a surrogate PKPD index for AUC24. Despite this, target serum concentrations in a neonatal population remain poorly defined. The objective is to describe the relationship between therapeutic regimens and the achievement of clinical or pharmacokinetic outcomes in the neonatal population. The review was carried out following PRISMA guidelines. A bibliographic search was manually performed for studies published on PubMed and EMBASE. Clinical efficacy and/or target attainment and the safety of vancomycin treatment were evaluated through obtaining serum concentrations. A total of 476 articles were identified, of which 20 met the inclusion criteria. All of them evaluated the target attainment, but only two assessed the clinical efficacy. The enormous variability concerning target serum concentrations is noteworthy, which translates into a difficulty in determining which therapeutic regimen achieves the best results. Moreover, there are few studies that analyze clinical efficacy results obtained after reaching predefined trough serum concentrations, this information being essential for clinical practice.
Collapse
Affiliation(s)
- Marta Mejías-Trueba
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain; (M.M.-T.); (M.A.-M.)
| | - Marta Alonso-Moreno
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain; (M.M.-T.); (M.A.-M.)
| | - Laura Herrera-Hidalgo
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain;
| | - Maria Victoria Gil-Navarro
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain;
| |
Collapse
|
12
|
Lee SM, Yang S, Kang S, Chang MJ. Population pharmacokinetics and dose optimization of vancomycin in neonates. Sci Rep 2021; 11:6168. [PMID: 33731764 PMCID: PMC7969932 DOI: 10.1038/s41598-021-85529-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/26/2021] [Indexed: 01/12/2023] Open
Abstract
The pharmacokinetics of vancomycin vary among neonates, and we aimed to conduct population pharmacokinetic analysis to determine the optimal dosage of vancomycin in Korean neonates. From a retrospective chart review, neonates treated with vancomycin from 2008 to 2017 in a neonatal intensive care unit (NICU) were included. Vancomycin concentrations were collected based on therapeutic drug monitoring, and other patient characteristics were gathered through electronic medical records. We applied nonlinear mixed-effect modeling to build the population pharmacokinetic model. One- and two-compartment models with first-order elimination were evaluated as potential structural pharmacokinetic models. Allometric and isometric scaling was applied to standardize pharmacokinetic parameters for clearance and volume of distribution, respectively, using fixed powers (0.75 and 1, respectively, for clearance and volume). The predictive performance of the final model was developed, and dosing strategies were explored using Monte Carlo simulations with AUC0–24 targets 400–600. The patient cohort included 207 neonates, and 900 vancomycin concentrations were analyzed. Only 37.4% of the analyzed concentrations were within trough concentrations 5–15 µg/mL. A one-compartment model with first-order elimination best described the vancomycin pharmacokinetics in neonates. Postmenstrual age (PMA) and creatinine clearance (CLcr) affected the clearance of vancomycin, and model evaluation confirmed the robustness of the final model. Population pharmacokinetic modeling and dose optimization of vancomycin in Korean neonates showed that vancomycin clearance was related to PMA and CLcr, as well as body weight. A higher dosage regimen than the typical recommendation is suggested.
Collapse
Affiliation(s)
- Soon Min Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Seungwon Yang
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Soyoung Kang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Veritas Hall D #214, Yonsei University International Campus, Songdogwahak-ro 85, Yeonsu-gu, Incheon, Korea
| | - Min Jung Chang
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea. .,Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Veritas Hall D #214, Yonsei University International Campus, Songdogwahak-ro 85, Yeonsu-gu, Incheon, Korea.
| |
Collapse
|
13
|
Kim SM, Lee HS, Hwang NY, Kim K, Park HD, Lee SY. Individualized Vancomycin Dosing with Therapeutic Drug Monitoring and Pharmacokinetic Consultation Service: A Large-Scale Retrospective Observational Study. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:423-440. [PMID: 33692613 PMCID: PMC7939511 DOI: 10.2147/dddt.s285488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Background To date, outcome data with a large sample size and data regarding the clinical outcomes of pharmacokinetic-guided (PK) dosing of vancomycin are limited. Aim We evaluated the pharmacokinetic and clinical outcomes of a PK-guided dosing advisory program, pharmacokinetic consultation service (PKCS), in vancomycin treatment. Methods We investigated vancomycin therapeutic drug monitoring (TDM) and PKCS use through a retrospective review of patients who had serum vancomycin trough concentration data from October 2017 to November 2018. Among these patients, we selected non-critically ill adult patients satisfying our selection criteria to evaluate the effect of PKCS. Target trough attainment rate, time to target attainment, vancomycin-induced nephrotoxicity (VIN), vancomycin treatment failure rate, and duration of vancomycin therapy were compared between patients whose dosing was adjusted according to PKCS (PKCS group), and those whose dose was adjusted at the discretion of the attending physician (non-PKCS group). Results A total of 280 patients met the selection criteria for the VIN analysis (PKCS, n=134; non-PKCS, n=146). The incidence of VIN was similar between the two groups (PKCS, n=5; non-PKCS, n=5); however, the target attainment rate was higher in the PKCS group (75% vs 60%, P = 0.012). The time to target attainment was similar between the two groups. Further exclusions yielded 112 patients for the clinical outcome evaluation (PKCS, n=51; non-PKCS, n=61). The treatment failure rate was similar, and the duration of vancomycin therapy was longer in the PKCS group (12 vs 8 days, P = 0.008). Conclusion In non-critically ill patients, an increase in target trough achieved by PKCS did not lead to decreased vancomycin treatment failures, shorter vancomycin treatment, or decreased nephrotoxicity in vancomycin treatment. Considering the excessive amount of effort currently put into vancomycin dosing and monitoring, more selective criteria for individualized pharmacokinetic-guided dosing needs to be applied.
Collapse
Affiliation(s)
- Sang-Mi Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun-Seung Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Na-Young Hwang
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Kyunga Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Science and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
14
|
Willems J, Hermans E, Schelstraete P, Depuydt P, De Cock P. Optimizing the Use of Antibiotic Agents in the Pediatric Intensive Care Unit: A Narrative Review. Paediatr Drugs 2021; 23:39-53. [PMID: 33174101 PMCID: PMC7654352 DOI: 10.1007/s40272-020-00426-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
Antibiotics are one of the most prescribed drug classes in the pediatric intensive care unit, yet the incidence of inappropriate antibiotic prescribing remains high in critically ill children. Optimizing the use of antibiotics in this population is imperative to guarantee adequate treatment, avoid toxicity and the occurrence of antibiotic resistance, both on a patient level and on a population level. Antibiotic stewardship encompasses all initiatives to promote responsible antibiotic usage and the PICU represents a major target environment for antibiotic stewardship programs. This narrative review provides a summary of the available knowledge on the optimal selection, duration, dosage, and route of administration of antibiotic treatment in critically ill children. Overall, more scientific evidence on how to optimize antibiotic treatment is warranted in this population. We also give our personal expert opinion on research priorities.
Collapse
Affiliation(s)
- Jef Willems
- Department of Pediatric Intensive Care, Ghent University Hospital, Gent, Belgium
| | - Eline Hermans
- Department of Pediatrics, Ghent University Hospital, Gent, Belgium
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium
| | - Petra Schelstraete
- Department of Pediatric Pulmonology, Ghent University Hospital, Gent, Belgium
| | - Pieter Depuydt
- Department of Intensive Care Medicine, Ghent University Hospital, Gent, Belgium
| | - Pieter De Cock
- Department of Pediatric Intensive Care, Ghent University Hospital, Gent, Belgium.
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium.
- Department of Pharmacy, Ghent University Hospital, Gent, Belgium.
| |
Collapse
|
15
|
van Groen BD, Pilla Reddy V, Badée J, Olivares‐Morales A, Johnson TN, Nicolaï J, Annaert P, Smits A, de Wildt SN, Knibbe CAJ, de Zwart L. Pediatric Pharmacokinetics and Dose Predictions: A Report of a Satellite Meeting to the 10th Juvenile Toxicity Symposium. Clin Transl Sci 2021; 14:29-35. [PMID: 32702198 PMCID: PMC7877839 DOI: 10.1111/cts.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
On April 24, 2019, a symposium on Pediatric Pharmacokinetics and Dose Predictions was held as a satellite meeting to the 10th Juvenile Toxicity Symposium. This symposium brought together scientists from academia, industry, and clinical research organizations with the aim to update each other on the current knowledge on pediatric drug development. Through more knowledge on specific ontogeny profiles of drug metabolism and transporter proteins, integrated into physiologically-based pharmacokinetic (PBPK) models, we have gained a more integrated understanding of age-related differences in pharmacokinetics (PKs), Relevant examples were presented during the meeting. PBPK may be considered the gold standard for pediatric PK prediction, but still it is important to know that simpler methods, such as allometry, allometry combined with maturation function, functions based on the elimination pathway, or linear models, also perform well, depending on the age range or the mechanisms involved. Knowledge from different methods and information sources should be combined (e.g., microdosing can reveal early read-out of age-related differences in exposure), and such results can be a value to verify models. To further establish best practices for dose setting in pediatrics, more in vitro and in vivo research is needed on aspects such as age-related changes in the exposure-response relationship and the impact of disease on PK. New information coupled with the refining of model-based drug development approaches will allow faster targeting of intended age groups and allow more efficient design of pediatric clinical trials.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children’s HospitalRotterdamThe Netherlands
- Roche Pharma and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | | | - Justine Badée
- Center for Pharmacometrics & Systems PharmacologyDepartment of PharmaceuticsUniversity of Florida at Lake NonaOrlandoFloridaUSA
- Modelling & SimulationNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | | | | | - Johan Nicolaï
- Development ScienceUCB BioPharma SRLBraine‐l’AlleudBelgium
| | - Pieter Annaert
- Drug Delivery and DispositionKU Leuven Department of Pharmaceutical and Pharmacological SciencesLeuvenBelgium
| | - Anne Smits
- Neonatal Intensive Care UnitUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children’s HospitalRotterdamThe Netherlands
- Department of Pharmacology and ToxicologyRadboud Institute for Health SciencesRadboud UniversityNijmegenThe Netherlands
| | - Catherijne A. J. Knibbe
- Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
- Department of Clinical PharmacySt. Antonius HospitalNieuwegeinThe Netherlands
| | - Loeckie de Zwart
- Drug Metabolism and PharmacokineticsJanssen R&D, a Division of Janssen Pharmaceutica NVBeerseBelgium
| |
Collapse
|
16
|
De Rose DU, Cairoli S, Dionisi M, Santisi A, Massenzi L, Goffredo BM, Dionisi-Vici C, Dotta A, Auriti C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. Int J Mol Sci 2020; 21:E5898. [PMID: 32824472 PMCID: PMC7460644 DOI: 10.3390/ijms21165898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Therapeutic drug monitoring (TDM) should be adopted in all neonatal intensive care units (NICUs), where the most preterm and fragile babies are hospitalized and treated with many drugs, considering that organs and metabolic pathways undergo deep and progressive maturation processes after birth. Different developmental changes are involved in interindividual variability in response to drugs. A crucial point of TDM is the choice of the bioanalytical method and of the sample to use. TDM in neonates is primarily used for antibiotics, antifungals, and antiepileptic drugs in clinical practice. TDM appears to be particularly promising in specific populations: neonates who undergo therapeutic hypothermia or extracorporeal life support, preterm infants, infants who need a tailored dose of anticancer drugs. This review provides an overview of the latest advances in this field, showing options for a personalized therapy in newborns and infants.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Marco Dionisi
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Luca Massenzi
- Neonatal Intensive Care Unit and Neonatal Pathology, Fatebenefratelli Hospital, 00186 Rome, Italy;
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Carlo Dionisi-Vici
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| |
Collapse
|
17
|
Viceconti M, Pappalardo F, Rodriguez B, Horner M, Bischoff J, Musuamba Tshinanu F. In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 2020; 185:120-127. [PMID: 31991193 PMCID: PMC7883933 DOI: 10.1016/j.ymeth.2020.01.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/10/2019] [Accepted: 01/14/2020] [Indexed: 02/03/2023] Open
Abstract
Regulators now consider also evidences produced in silico. We need accepted methods to evaluate the credibility of models. In this paper we describe the use of the ASME V&V-40 technical standard. We also discuss its application to various types of modelling methods.
Historically, the evidences of safety and efficacy that companies provide to regulatory agencies as support to the request for marketing authorization of a new medical product have been produced experimentally, either in vitro or in vivo. More recently, regulatory agencies started receiving and accepting evidences obtained in silico, i.e. through modelling and simulation. However, before any method (experimental or computational) can be acceptable for regulatory submission, the method itself must be considered “qualified” by the regulatory agency. This involves the assessment of the overall “credibility” that such a method has in providing specific evidence for a given regulatory procedure. In this paper, we describe a methodological framework for the credibility assessment of computational models built using mechanistic knowledge of physical and chemical phenomena, in addition to available biological and physiological knowledge; these are sometimes referred to as “biophysical” models. Using guiding examples, we explore the definition of the context of use, the risk analysis for the definition of the acceptability thresholds, and the various steps of a comprehensive verification, validation and uncertainty quantification process, to conclude with considerations on the credibility of a prediction for a specific context of use. While this paper does not provide a guideline for the formal qualification process, which only the regulatory agencies can provide, we expect it to help researchers to better appreciate the extent of scrutiny required, which should be considered early on in the development/use of any (new) in silico evidence.
Collapse
Affiliation(s)
- Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy; Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, UK
| | | | - Jeff Bischoff
- Corporate Research Department, Zimmer Biomet, Warsaw, IN, USA
| | | |
Collapse
|
18
|
Hartman SJF, Orriëns LB, Zwaag SM, Poel T, de Hoop M, de Wildt SN. External Validation of Model-Based Dosing Guidelines for Vancomycin, Gentamicin, and Tobramycin in Critically Ill Neonates and Children: A Pragmatic Two-Center Study. Paediatr Drugs 2020; 22:433-444. [PMID: 32507958 PMCID: PMC7383037 DOI: 10.1007/s40272-020-00400-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The Dutch Pediatric Formulary (DPF) increasingly bases its guidelines on model-based dosing simulations from pharmacokinetic studies. This resulted in nationwide dose changes for vancomycin, gentamicin, and tobramycin in 2015. OBJECTIVE We aimed to evaluate target attainment of these altered, model-based doses in critically ill neonates and children. METHODS This was a retrospective cohort study in neonatal intensive care unit (NICU) and pediatric ICU (PICU) patients receiving vancomycin, gentamicin, or tobramycin between January 2015 and March 2017 in two university hospitals. The first therapeutic drug monitoring concentration for each patient was collected, as was clinical and dosing information. Vancomycin and tobramycin target trough concentrations were 10-15 and ≤ 1 mg/L, respectively. Target gentamicin trough and peak concentrations were < 1 and 8-12 mg/L, respectively. RESULTS In total, 482 patients were included (vancomycin [PICU] n = 62, [NICU] n = 102; gentamicin [NICU] n = 97; tobramycin [NICU] n = 221). Overall, median trough concentrations were within the target range for all cohorts but showed large interindividual variability, causing nontarget attainment. Trough concentrations were outside the target range in 66.1%, 60.8%, 14.7%, and 23.1% of patients in these four cohorts, respectively. Gentamicin peak concentrations were outside the range in 69% of NICU patients (term neonates 87.1%, preterm infants 57.1%). Higher creatinine concentrations were associated with higher vancomycin and tobramycin trough concentrations. CONCLUSION This study illustrates the need to validate model-based dosing advice in the real-world setting as both sub- and supratherapeutic concentrations of vancomycin, gentamicin, and tobramycin were very prevalent. Our data underline the necessity for further individualization by addressing the high interindividual variability to improve target attainment.
Collapse
Affiliation(s)
- Stan J. F. Hartman
- grid.10417.330000 0004 0444 9382Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud Institute of Health Sciences, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Lynn B. Orriëns
- grid.10417.330000 0004 0444 9382Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud Institute of Health Sciences, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Samanta M. Zwaag
- grid.10417.330000 0004 0444 9382Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud Institute of Health Sciences, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Tim Poel
- grid.10417.330000 0004 0444 9382Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud Institute of Health Sciences, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Marika de Hoop
- grid.489189.50000 0001 0708 7338Royal Dutch Pharmacists Association (KNMP), Den Haag, The Netherlands ,Dutch Knowledge Center Pharmacotherapy for Children, The Hague, The Netherlands
| | - Saskia N. de Wildt
- grid.10417.330000 0004 0444 9382Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud Institute of Health Sciences, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands ,grid.5645.2000000040459992XIntensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands ,Dutch Knowledge Center Pharmacotherapy for Children, The Hague, The Netherlands
| |
Collapse
|
19
|
Affiliation(s)
- Robert B Flint
- Department of Pediatrics, Division Neonatology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karel Allegaert
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Development and Regeneration, p/a Neonatal Intensive Care Unit, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|