1
|
Rajesh V, Karthi S, Kumudhavalli MV. Protective Effect of myo-Inositol Against Decitabine-Induced Neural Tube Defects in Embryonic Zebrafish. Neurotox Res 2025; 43:14. [PMID: 40100479 DOI: 10.1007/s12640-025-00735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Neural tube defects (NTDs) are severe congenital anomalies affecting 1-2 infants per 1000 births, and are influenced by genetic and environmental factors, with DNA hypomethylation and methylation cycle suppression being key causes. In our earlier investigation, decitabine (DCT) caused multiple NTDs in embryonic zebrafish, supporting this hypothesis. Recent research has emphasized the importance of myo-inositol (MI) in embryonic development and its efficacy in reducing the risk of neural tube defects, even in cases resistant to folate. We aimed to examine the effect of MI on DCT-induced NTDs in an embryonic zebrafish model. The embryos were exposed to 1 mM DCT alone, 50 µM MI with 1 mM DCT, 100 µM MI with 1 mM DCT, and a control group for comparison. The development, hatching, mortality rates, neural tube malformations, and neural tube patterning of developing embryos were monitored and recorded. Exposure to MI significantly reduced the incidence of NTDs in developing embryos. At concentrations of 50 µM and 100 µM, MI provided 35% and 30% protection against DCT-induced neural tube malformation, respectively. Multiple NTDs were significantly reduced in the MI groups, with 1 mM DCT causing 95% defects, 50 µM MI with 1 mM DCT causing 50%, and 100 µM MI with 1 mM DCT causing 55% defects. The DCT-induced hatching delay was also reversed by MI treatment. Alizarin red staining and histopathological observations supported these observations. In the context of neural tube development, the protective effects of MI against DCT-induced NTDs could be attributed to its potential role in epigenetic regulation, which may influence genetic expression.
Collapse
Affiliation(s)
- Venugopalan Rajesh
- Department of Pharmacology, The Erode College of Pharmacy and Research Institute Affiliated with The Tamil Nadu Dr. M.G.R. Medical University, Veppampalayam, Vallipurathanpalayam (Po), Erode, Tamilnadu, 638112, India.
| | - Subramani Karthi
- Department of Pharmacology, The Erode College of Pharmacy and Research Institute Affiliated with The Tamil Nadu Dr. M.G.R. Medical University, Veppampalayam, Vallipurathanpalayam (Po), Erode, Tamilnadu, 638112, India
| | - Manni Venkatachari Kumudhavalli
- Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy Affiliated with Vinayaka Mission Research Foundation (Deemed University, Salem), Kondappanaickenpatti, Yercaud Main Road, Salem, Tamilnadu, 636008, India
| |
Collapse
|
2
|
Lapolla A, Dalfrà MG, Marelli G, Parrillo M, Sciacca L, Sculli MA, Succurro E, Torlone E, Vitacolonna E. Medical nutrition therapy in physiological pregnancy and in pregnancy complicated by obesity and/or diabetes: SID-AMD recommendations. Acta Diabetol 2025:10.1007/s00592-024-02442-7. [PMID: 39841216 DOI: 10.1007/s00592-024-02442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025]
Abstract
Proper nutrition is essential during pregnancy to ensure an adequate supply of nutrients to the foetus and adequate maternal weight gain. In pregnancy complicated by diabetes (both gestational and pre-gestational), diet in terms of both the intake and quality of carbohydrates is an essential factor in glycaemic control. Maternal BMI at conception defines the correct weight increase during gestation in order to reduce maternal-foetal complications related to hypo- or hyper-nutrition. The recommendations presented here, which are based on national and international guidelines and the most recently published data on nutrition in physiological pregnancy and pregnancy complicated by hyperglycaemia and/or obesity, are designed to help healthcare professionals prescribe suitable eating patterns to safeguard the health of the mother and the foetus.
Collapse
Affiliation(s)
| | | | - Giuseppe Marelli
- Ordine Ospedaliero San Giovanni di Dio Fatebenefratelli, Erba, CO, Italy
| | - Mario Parrillo
- UOSD Endocrinologia e Malattie del Ricambio, AO Sant'Anna e San Sebastiano, Caserta, Italy
| | - Laura Sciacca
- Dipartimento Medicina Clinica e Sperimentale, Università degli Studi di Catania, Catania, Italy
| | - Maria Angela Sculli
- UOC Diabetologia e Endocrinologia, GOM Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Elena Succurro
- DPT Scienze Mediche Chirurgiche, Università Magna Grecia, Catanzaro, Italy
| | - Elisabetta Torlone
- AOS Maria della Misericordia SC Endocrinologia e Metabolismo, Università di Perugia, Perugia, Italy
| | - Ester Vitacolonna
- Dipartimento di Medicina e Scienza dell'Invecchiamento, Università di Chieti, Chieti, Italy
| |
Collapse
|
3
|
Wang X, Yu J, Yue H, Li S, Yang A, Zhu Z, Guan Z, Wang J. Inpp5e Regulated the Cilium-Related Genes Contributing to the Neural Tube Defects Under 5-Fluorouracil Exposure. Mol Neurobiol 2024; 61:6189-6199. [PMID: 38285286 DOI: 10.1007/s12035-024-03946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Primary cilia are crucial for neurogenesis, and cilium-related genes are involved in the closure of neural tubes. Inositol polyphosphate-5-phosphatase (Inpp5e) was enriched in primary cilia and closely related to the occurrence of neural tube defects (NTDs). However, the role of Inpp5e in the development of NTDs is not well-known. To investigate whether Inpp5e gene is associated with the neural tube closure, we established a mouse model of NTDs by 5-fluorouracil (5-FU) exposure at gestational day 7.5 (GD7.5). The Inpp5e knockdown (Inpp5e-/-) mouse embryonic stem cells (mESCs) were produced by CRISPR/Cas9 system. The expressions of Inpp5e and other cilium-related genes including intraflagellar transport 80 (Ift80), McKusick-Kaufman syndrome (Mkks), and Kirsten rat sarcoma viral oncogene homolog (Kras) were determined, utilizing quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blot, PCR array, and immunofluorescence staining. The result showed that the incidence of NTDs was 37.10% (23 NTDs/62 total embryos) and significantly higher than that in the control group (P < 0.001). The neuroepithelial cells of neural tubes were obviously disarranged in NTD embryos. The mRNA and protein levels of Inpp5e, Ift80, Mkks, and Kras were significantly decreased in NTD embryonic brain tissues, compared to the control (P < 0.05). Knockdown of the Inpp5e (Inpp5e-/-) reduced the expressions of Ift80, Mkks, and Kras in mESCs. Furthermore, the levels of α-tubulin were significantly reduced in NTD embryonic neural tissue and Inpp5e-/- mESCs. These results suggested that maternal 5-FU exposure inhibited the expression of Inpp5e, which resulted in the downregulation of cilium-related genes (Ift80, Mkks, and Kras), leading to the impairment of primary cilium development, and ultimately disrupted the neural tube closure.
Collapse
Affiliation(s)
- Xiuwei Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jialu Yu
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huixuan Yue
- Department of Pediatrics, Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China
| | - Shen Li
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Aiyun Yang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiqiang Zhu
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhen Guan
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianhua Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
4
|
Moretti C, Bonomi M, Dionese P, Federici S, Fulghesu AM, Giannelli J, Giordano R, Guccione L, Maseroli E, Moghetti P, Mioni R, Pivonello R, Sabbadin C, Scaroni C, Tonacchera M, Verde N, Vignozzi L, Gambineri A. Inositols and female reproduction disorders: a consensus statement from the working group of the Club of the Italian Society of Endocrinology (SIE)-Women's Endocrinology. J Endocrinol Invest 2024; 47:2111-2141. [PMID: 39009925 DOI: 10.1007/s40618-024-02363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE To provide the latest scientific knowledge on the efficacy of inositols for improving reproductive disorders in women with and without polycystic ovary syndrome (PCOS) and to reach a consensus on their potential use through a Delphi-like process. METHODS A panel of 17 endocrinologists and 1 gynecologist discussed 4 key domains: menses irregularity and anovulation, fertility, pregnancy outcomes, and neonatal outcomes. RESULTS A total of eight consensus statements were drafted. Myo-inositol (Myo) supplementation can be used to improve menses irregularities and anovulation in PCOS. Myo supplementation can be used in subfertile women with or without PCOS to reduce the dose of r-FSH for ovarian stimulation during IVF, but it should not be used to increase the clinical pregnancy rate or live birth rate. Myo supplementation can be used in the primary prevention of gestational diabetes mellitus (GDM), but should not be used to improve pregnancy outcomes in women with GDM. Myo can be preconceptionally added to folic acid in women with a previous neural tube defects (NTD)-complicated pregnancy to reduce the risk of NTDs in newborns. Myo can be used during pregnancy to reduce the risk of macrosomia and neonatal hypoglycemia in mothers at risk of GDM. CONCLUSION This consensus statement provides recommendations aimed at guiding healthcare practitioners in the use of inositols for the treatment or prevention of female reproductive disorders. More evidence-based data are needed to definitively establish the usefulness of Myo, the appropriate dosage, and to support the use of D-chiro-inositol (DCI) or a definitive Myo/DCI ratio.
Collapse
Affiliation(s)
- Costanzo Moretti
- Department of Systems' Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Instituto Auxologico Italiano, Milan, Italy
| | - Paola Dionese
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Silvia Federici
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Instituto Auxologico Italiano, Milan, Italy
| | - Anna Maria Fulghesu
- Department of Surgical Science, Duilio Casula Hospital, University of Cagliari, Monserrato, Cagliari, Italy
| | - Jacopo Giannelli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberta Giordano
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy
| | - Laura Guccione
- Department of Systems' Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisa Maseroli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental and Clinical Biomedical Sciences, Mario Serio Careggi University Hospital, Florence, Italy
| | - Paolo Moghetti
- Unit of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Roberto Mioni
- Department of Medicine, Clinica Medica 3-Azienda Ospedaliera, University of Padua, Padua, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgica, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Chiara Sabbadin
- Endocrinology Unit, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy
| | - Massimo Tonacchera
- Department of Endocrinology, Pisa University Hospital of Cisanello, Azienda Ospedaliera Universitaria, Pisa, Italy
| | - Nunzia Verde
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Unità di Andrologia e Medicina della Riproduzione, Sessualità e Affermazione di Genere, Università Federico II di Napoli, Naples, Italy
| | - Linda Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental and Clinical Biomedical Sciences, Mario Serio Careggi University Hospital, Florence, Italy
| | - Alessandra Gambineri
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy.
| |
Collapse
|
5
|
Li C, Shi H. Inositol supplementation for the prevention and treatment of gestational diabetes mellitus: a meta-analysis of randomized controlled trials. Arch Gynecol Obstet 2024; 309:1959-1969. [PMID: 37308791 DOI: 10.1007/s00404-023-07100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Inositol is a potential new therapeutic agent for gestational diabetes mellitus (GDM), but its effectiveness is still controversial. The aim of the report was to evaluate the effectiveness of inositol to preventing or reducing the severity of GDM. METHODS We searched PubMed, EmBase, Web of science, Cochrane library databases, Clinicaltrials.gov, and International Clinical Trials Registry Platform for randomized controlled trials (RCTs) assessing the effectiveness of inositol supplementation to prevent and treat GDM. This meta-analysis was performed using the random-effects model. RESULTS A total of 7 RCTs (1319 pregnant women at high risk of GDM) were included in the meta-analysis. The meta-analysis found that inositol supplementation resulted in a significantly lower incidence of GDM in the inositol versus the control group (odds ratio [OR] 0.40; 95% confidence interval [CI] 0.24-0.67; P = 0.0005). The inositol group had improved fasting glucose oral glucose tolerance test (FG OGTT; mean difference [MD] = - 3.20; 95% CI - 4.45 to - 1.95; P < 0.00001), 1-h OGTT (MD = - 7.24; 95% CI - 12.23 to - 2.25; P = 0.004), and 2-h OGTT (MD = - 7.15; 95% CI - 12.86 to - 1.44; P = 0.01) results. Inositol also reduced the risk of pregnancy-induced hypertension (OR 0.37; 95% CI 0.18-0.75; P = 0.006) and preterm birth (OR 0.35; 95% CI 0.18-0.69; P = 0.003). A meta-analysis of 4 RCTs including 320 GDM patients showed that the patients' insulin resistance (P < 0.05) and neonatal hypoglycemia risk (OR 0.10, 95% CI 0.01-0.88; P = 0.04) were lower in the inositol than in the control group. CONCLUSIONS Inositol supplementation during pregnancy has the potential to prevent GDM, improve glycemic control, and reduce preterm birth rates.
Collapse
Affiliation(s)
- Chaolin Li
- Jinniu District Maternal and Child Health Hospital, Chengdu, 610000, China
| | - Hao Shi
- Department of Pediatrics, Jinniu District Maternal and Child Health Hospital, Chengdu, 610000, China.
| |
Collapse
|
6
|
Beresniak A, Russo M, Forte G, Laganà AS, Oliva MM, Aragona C, Chiantera V, Unfer V. A Markov-model simulation of IVF programs for PCOS patients indicates that coupling myo-Inositol with rFSH is cost-effective for the Italian Health System. Sci Rep 2023; 13:17789. [PMID: 37853019 PMCID: PMC10584971 DOI: 10.1038/s41598-023-44055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Accumulating evidence suggests that oral supplementation with myo-Inositol (myo-Ins) is able to reduce the amount of gonadotropins and days of controlled ovarian hyperstimulation (COS) necessary to achieve adequate oocyte maturation in assisted reproduction technology (ART) protocols, particularly in women affected by polycystic ovary syndrome (PCOS). We used computational calculations based on simulation modellings. We simulated in vitro fertilization (IVF) procedures-with or without intracytoplasmic sperm injection (ICSI)-with 100,000 virtual patients, accounting for all the stages of the entire IVF procedure. A Monte Carlo technique was used to account for data uncertainty and to generate the outcome distribution at each stage. We considered virtual patients with PCOS undergoing IVF cycles to achieve pregnancy. Computational data were retrieved from clinical experience and published data. We investigated three parameters related to ART protocols: cost of single procedure; efficacy to achieve ongoing pregnancy at 12 gestational weeks; overall cost per single pregnancy. The administration of oral myo-Ins during COH protocols, compared to the standard COH with recombinant Follicle Stimulating Hormone (rFSH) only, may be considered a potential strategy to reduce costs of ART for the Italian Health System.
Collapse
Affiliation(s)
| | | | | | - Antonio Simone Laganà
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161, Rome, Italy
- Unit of Obstetrics and Gynecology, "Paolo Giaccone" Hospital, 90127, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127, Palermo, Italy
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161, Rome, Italy
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193, Rome, Italy
| | - Cesare Aragona
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161, Rome, Italy
- Systems Biology Group, Rome, Italy
| | - Vito Chiantera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127, Palermo, Italy
- Unit of Gynecologic Oncology, National Cancer Institute-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161, Rome, Italy.
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy.
| |
Collapse
|
7
|
Bizzarri M, Monti N, Piombarolo A, Angeloni A, Verna R. Myo-Inositol and D-Chiro-Inositol as Modulators of Ovary Steroidogenesis: A Narrative Review. Nutrients 2023; 15:nu15081875. [PMID: 37111094 PMCID: PMC10145676 DOI: 10.3390/nu15081875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Myo-inositol is a natural polyol, the most abundant among the nine possible structural isomers available in living organisms. Inositol confers some distinctive traits that allow for a striking distinction between prokaryotes and eukaryotes, the basic clusters into which organisms are partitioned. Inositol cooperates in numerous biological functions where the polyol participates or by furnishing the fundamental backbone of several related derived metabolites, mostly obtained through the sequential addition of phosphate groups (inositol phosphates, phosphoinositides, and pyrophosphates). Overall myo-inositol and its phosphate metabolites display an entangled network, which is involved in the core of the biochemical processes governing critical transitions inside cells. Noticeably, experimental data have shown that myo-inositol and its most relevant epimer D-chiro-inositol are both necessary to permit a faithful transduction of insulin and of other molecular factors. This improves the complete breakdown of glucose through the citric acid cycle, especially in glucose-greedy tissues, such as the ovary. In particular, while D-chiro-inositol promotes androgen synthesis in the theca layer and down-regulates aromatase and estrogen expression in granulosa cells, myo-inositol strengthens aromatase and FSH receptor expression. Inositol effects on glucose metabolism and steroid hormone synthesis represent an intriguing area of investigation, as recent results have demonstrated that inositol-related metabolites dramatically modulate the expression of several genes. Conversely, treatments including myo-inositol and its isomers have proven to be effective in the management and symptomatic relief of a number of diseases associated with the endocrine function of the ovary, namely polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
- Systems Biology Group Lab, Sapienza University, 00160 Rome, Italy
| | - Noemi Monti
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Aurora Piombarolo
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Roberto Verna
- Systems Biology Group Lab, Sapienza University, 00160 Rome, Italy
| |
Collapse
|
8
|
Fedeli V, Catizone A, Querqui A, Unfer V, Bizzarri M. The Role of Inositols in the Hyperandrogenic Phenotypes of PCOS: A Re-Reading of Larner’s Results. Int J Mol Sci 2023; 24:ijms24076296. [PMID: 37047265 PMCID: PMC10093919 DOI: 10.3390/ijms24076296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrinological disorder in women, in which, besides chronic anovulation/oligomenorrhea and ovarian cysts, hyperandrogenism plays a critical role in a large fraction of subjects. Inositol isomers—myo-Inositol and D-Chiro-Inositol—have recently been pharmacologically effective in managing many PCOS symptoms while rescuing ovarian fertility. However, some disappointing clinical results prompted the reconsideration of their specific biological functions. Surprisingly, D-Chiro-Ins stimulates androgen synthesis and decreases the ovarian estrogen pathway; on the contrary, myo-Ins activates FSH response and aromatase activity, finally mitigating ovarian hyperandrogenism. However, when the two isomers are given in association—according to the physiological ratio of 40:1—patients could benefit from myo-Ins enhanced FSH and estrogen responsiveness, while taking advantage of the insulin-sensitizing effects displayed mostly by D-Chiro-Ins. We need not postulate insulin resistance to explain PCOS pathogenesis, given that insulin hypersensitivity is likely a shared feature of PCOS ovaries. Indeed, even in the presence of physiological insulin stimulation, the PCOS ovary synthesizes D-Chiro-Ins four times more than that measured in control theca cells. The increased D-Chiro-Ins within the ovary is detrimental in preserving steroidogenic control, and this failure can easily explain why treatment strategies based upon high D-Chiro-Ins have been recognized as poorly effective. Within this perspective, two factors emerge as major determinants in PCOS: hyperandrogenism and reduced aromatase expression. Therefore, PCOS could no longer be considered a disease only due to increased androgen synthesis without considering the contemporary downregulation of aromatase and FSH receptors. Furthermore, these findings suggest that inositols can be specifically effective only for those PCOS phenotypes featured by hyperandrogenism.
Collapse
|
9
|
BMP/Smad Pathway Is Involved in Lithium Carbonate-Induced Neural-Tube Defects in Mice and Neural Stem Cells. Int J Mol Sci 2022; 23:ijms232314831. [PMID: 36499158 PMCID: PMC9735442 DOI: 10.3390/ijms232314831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Neural-tube defects (NTDs) are one type of the most serious birth defects. Studies have shown that inositol deficiency is closely related to the occurrence of NTDs. Bone morphogenetic protein (BMP)-mediated Smad signaling pathways have been implicated in neurogenesis and neural-tube closure. However, the role of the BMP/Smad pathway in inositol-deficiency-induced NTDs remains unclear. Inositol-deficiency models in C57 mice and mouse neural stem cells (mNSCs) were induced with Li2CO3 treatment or inositol withdrawal. The role of the BMP/Smad pathway in the regulation of cell proliferation and the development of NTDs was determined utilizing qRT-PCR, HE staining, Western blot, immunostaining, MTT assay, EdU staining, and flow cytometry. The intraperitoneal injection of Li2CO3 at Embryonic Day 7.5 induced the occurrence of NTDs. The mRNA levels of Bmp2, Bmp4, Smad1, Smad5, Smad8 and Runx2, the phosphorylation of Smad1/5/8, and the nuclear translocation of Runx2 were significantly increased in NTD embryonic brain tissues and mNSCs exposed to Li2CO3 or an inositol-free medium, which were suppressed by BMP receptor selective inhibitor LDN-193189. The Li2CO3-induced phosphorylation of Smad1/5/8 was inhibited by inositol supplementation. Cell proliferation was significantly promoted by Li2CO3 exposure or the absence of inositol in mNSCs, which was reversed by LDN-193189. These results suggest that the activation of the BMP/Smad signaling pathway might play an important role in the development of NTDs induced by maternal Li2CO3 exposure via inositol deficiency.
Collapse
|
10
|
Li C, Gao B, Lin H, Li Y, Xiu B, Dai Y. Efficacy of microsurgery for congenital neural tube defects in newborns. Am J Transl Res 2022; 14:5574-5582. [PMID: 36105063 PMCID: PMC9452357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the clinical value of microsurgery in the treatment of congenital neural tube defect (CNTD) in newborns. METHODS Eighty-five CNTD newborns withlipomyelomeningocele admitted to our hospital from March 2016 to December 2018 were retrospectively selected as study subjects. They were divided into a study group (SG, 43 cases, that received meningocele repair combined with tethered cord release within 6 h to 30 d after birth) and the control group (CG, 42 cases, that received meningocele repair combined with tethered cord release past 30 d after birth) according to the treatment regimen. Newborns in both groups were evaluated for short-term and long-term outcome of the surgery and the degree of postoperative untethering, and both groups were followed up dynamically to record changes in gross motor function and quality of life and assess risk factors. RESULTS In terms of short-term outcomes, the total effective rate was 93.02% in SG and 85.71% in CG (P > 0.05); in terms of the long-term outcomes, the total effective rate was 88.37% in SG and 69.05% in CG (P < 0.05). The postoperative release of the newborns was evaluated according to the Kirollos grading system, which showed that SG had 40 (93.02%) cases of grade 1 untethering, 3 (6.98%) cases of grade 2 untethering, and 0 case of grade 3 untethering, and CG had 30 (71.43%) cases of grade 1 untethering, and 12 (28.57%) cases of grade 2 untethering. At 6 months postoperatively, there were no significant differences in gross motor function and quality of life scores between the two groups (P > 0.05), but at 1 year, 3 years and 4 years postoperatively, the gross motor function and quality of life scores of newborns in the SG were significantly higher than those in the CG (P < 0.05). Multivariate logistic regression analysis showed that age > 1 month was an independent risk factor for surgical outcome (P < 0.05). CONCLUSION Microsurgery has better short-term and long-term outcomes for newborns with CNTD, and the newborns showed an improvement in the long-term postoperative motor function and quality of life.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Neurosurgery, Chinese PLA General Hospital Beijing 100853, China
| | - Bingbing Gao
- Department of Neurosurgery, Chinese PLA General Hospital Beijing 100853, China
| | - Hepu Lin
- Department of Neurosurgery, Chinese PLA General Hospital Beijing 100853, China
| | - Yunjun Li
- Department of Neurosurgery, Chinese PLA General Hospital Beijing 100853, China
| | - Bo Xiu
- Department of Neurosurgery, Chinese PLA General Hospital Beijing 100853, China
| | - Yiwu Dai
- Department of Neurosurgery, Chinese PLA General Hospital Beijing 100853, China
| |
Collapse
|
11
|
Wei J, Yan J, Yang H. Inositol Nutritional Supplementation for the Prevention of Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:2831. [PMID: 35889788 PMCID: PMC9318937 DOI: 10.3390/nu14142831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
This study was aimed at assessing the efficacy and safety of inositol nutritional supplementation during pregnancy for the prevention of GDM. PubMed, Embase, MEDLINE, and Cochrane library were systematically searched for randomized controlled trails (RCTs) in this field until May 2022. Primary outcomes were the incidence for GDM and plasma glucose levels by oral glucose tolerance test (OGTT). Pooled results were expressed as relative risk (RR) or mean difference (MD) with a 95% confidence interval (95% CI). Seven RCTs with 1321 participants were included in this study. Compared with the control group, 4 g myo-inositol (MI) supplementation per day significantly decreased the incidence of GDM (RR = 0.30, 95% CI (0.18, 0.49), p < 0.00001). It significantly decreased the plasma glucose levels of OGTT regarding fasting-glucose OGTT (MD = −4.20, 95% CI (−5.87, −2.54), p < 0.00001), 1-h OGTT (MD = −8.75, 95% CI (−12.42, −5.08), p < 0.00001), and 2-h OGTT (MD = −8.59, 95% CI (−11.81, −5.83), p < 0.00001). It also decreased the need of insulin treatment, and reduced the incidence of preterm delivery and neonatal hypoglycemia. However, no difference was observed between 1.1 g MI per day plus 27.6 mg D-chiro-inositol (DCI) per day and the control group regarding all evaluated results. In conclusion, 4 g MI nutritional supplementation per day during early pregnancy may reduce GDM incidence and severity, therefore may be a practical and safe approach for the prevention of GDM.
Collapse
Affiliation(s)
| | | | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China; (J.W.); (J.Y.)
| |
Collapse
|
12
|
Li L, Fang J. Myo-inositol supplementation for the prevention of gestational diabetes: A meta-analysis of randomized controlled trials. Eur J Obstet Gynecol Reprod Biol 2022; 273:38-43. [PMID: 35460931 DOI: 10.1016/j.ejogrb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/18/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION It is elusive to use myo-inositol supplementation to prevent gestational diabetes, and this meta-analysis aims to study the efficacy of myo-inositol supplementation for the prevention of gestational diabetes. METHODS Several databases including PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systemically searched from inception to October 2021, and we included the randomized controlled trials (RCTs) assessing the effect of myo-inositol supplementation on the incidence of gestational diabetes. RESULTS Seven eligible RCTs were included in this meta-analysis. Compared with control group in pregnant women, myo-inositol supplementation could lead to remarkably reduced incidence of gestational diabetes (OR = 0.32; 95% CI = 0.15 to 0.72; P = 0.005), reduced 2-h glucose OGTT (MD = -5.29; 95% CI = -10.24 to -0.34; P = 0.04), increased gestational age at birth (MD = 0.96; 95% CI = -1.67 to 3.87; P = 0.005) and decreased incidence of preterm delivery (OR = 0.35; 95% CI = 0.17 to 0.70; P = 0.003), but exhibited no obvious influence on birth weight (MD = -22.82; 95% CI = -121.95 to 76.32; P = 0.65). CONCLUSIONS Myo-inositol supplementation is recommended to prevent gestational diabetes with caution due to some heterogeneity.
Collapse
Affiliation(s)
- Liang Li
- Department of Obstetrics and Gynecology, Chongqing Bishan District People's Hospital, China
| | - JunDan Fang
- Department of Obstetrics and Gynecology, Chongqing Bishan District People's Hospital, China.
| |
Collapse
|
13
|
Liu Q, Liu Z. The efficacy of myo-inositol supplementation to reduce the incidence of gestational diabetes: a meta-analysis. Gynecol Endocrinol 2022; 38:450-454. [PMID: 35575290 DOI: 10.1080/09513590.2022.2071865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Myo-inositol supplementation is used to reduce the incidence of gestational diabetes, but its efficacy is not well established. This meta-analysis aims to explore the influence of myo-inositol supplementation on the prevention of gestational diabetes. METHODS This meta-analysis has been conducted up to March 2022 to identify randomized clinical trials comparing the efficacy of myo-inositol supplementation to prevent gestational diabetes. Several databases including PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systemically. RESULTS We have included eight RCTs in this meta-analysis. Compared with control group in pregnant women, myo-inositol supplementation was found to significantly decrease the incidence of gestational diabetes (OR = 0.40; 95% CI = 0.19 to 0.84; p = .01), 2-h glucose OGTT (SMD = -0.22; 95% CI = -0.41 to -0.02; p = .03), HOMA-IR (SMD = -0.25; 95% CI = -0.42 to -0.08; p = .004) and preterm delivery (OR = 0.41; 95% CI = 0.23 to 0.73; p = .003), but demonstrated no obvious impact on gestational age at birth (SMD = 0.12; 95% CI = -0.05 to 0.29; p = .18) or birth weight (SMD = -0.04; 95% CI = -0.20 to 0.13; p = .68). CONCLUSIONS Myo-inositol supplementation is effective to reduce the incidence of gestational diabetes, 2-h glucose OGTT, HOMA-IR and preterm delivery, which suggested that myo-inositol supplementation should be recommended to prevent gestational diabetes.
Collapse
Affiliation(s)
- Qinxin Liu
- Department of Obstetrics and Gynecology, Banan Hospital of Chongqing Medical University, Chongqing, China
| | - Zucui Liu
- Department of Obstetrics and Gynecology, Banan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Vitacolonna E, Masulli M, Palmisano L, Stuppia L, Franzago M. Inositols, Probiotics, and Gestational Diabetes: Clinical and Epigenetic Aspects. Nutrients 2022; 14:1543. [PMID: 35458105 PMCID: PMC9028601 DOI: 10.3390/nu14081543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing interest in the potential role of different stereoisomers of inositol or their combination as well as probiotics supplementation in healthy glucose metabolism during pregnancy and in promoting offspring health. The aim of this review is to clarify the effects of several inositol and probiotics-based supplements in the prevention and treatment of gestational diabetes (GDM). Moreover, we will discuss the epigenetic aspects and their short- and long-term effects in response to probiotic intervention as well as the possible implications of these findings in guiding appropriate supplementation regimens in pregnancy.
Collapse
Affiliation(s)
- Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| | - Maria Masulli
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (M.M.); (L.P.)
| | - Luisa Palmisano
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (M.M.); (L.P.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy
| | - Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
15
|
Condorelli RA, Cannarella R, Crafa A, Barbagallo F, Gusmano C, Avola O, Mongioì LM, Basile L, Calogero AE, La Vignera S. Advances in non-hormonal pharmacotherapy for the treatment of male infertility: the role of inositols. Expert Opin Pharmacother 2022; 23:1081-1090. [PMID: 35348407 DOI: 10.1080/14656566.2022.2060076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several antioxidants are available for the treatment of male infertility. Although the benefit of myo-inositol (MYO) and D-chiro-inositol (DCI) for female infertility is recognized, their role in male infertility is a matter of debate. AREAS COVERED The authors review the impact that treatment with MYO and/or DCI may have on conventional and bio-functional sperm parameters [mitochondrial membrane potential (MMP), sperm chromatin compactness, and sperm DNA fragmentation (SDF)], seminal oxidative stress (OS) and pregnancy, miscarriage, and live birth rates, and the possible mechanisms involved. Furthermore, the authors gather evidence on the effects of MYO and/or DCI on sperm function in vitro. EXPERT OPINION MYO can improve sperm count, motility, capacitation, acrosome reaction, and MMP. No data are currently available on the effects of DCI in vivo. Both MYO and DCI ameliorate sperm motility and MMP in vitro. Therefore, the use of inositols should be preferred in patients with idiopathic asthenozoospermia, especially in case of impaired sperm mitochondrial function. Due to their insulin-sensitizing action, a role for these molecules may be envisaged for the treatment of infertility caused by carbohydrate metabolism derangement.
Collapse
Affiliation(s)
- Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmelo Gusmano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ottavia Avola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Basile
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
16
|
Preda A, Stefan AG, Vladu IM, Fortofoiu MC, Clenciu D, Fortofoiu M, Gheorghe IO, Comanescu AC, Mota M. Analysis of Risk Factors for the Development of Gestational Diabetes Mellitus in a Group of Romanian Patients. J Diabetes Res 2022; 2022:2367213. [PMID: 35694616 PMCID: PMC9184202 DOI: 10.1155/2022/2367213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is caused by numerous risk factors, the most common being old age, obesity, family history of diabetes mellitus, GDM, history of fetal macrosomia, history of polycystic ovary syndrome or treatment with particular drugs, multiple births, and certain races. The study proposed to analyze the risk factors causing GDM. METHOD In the study, we included 97 pregnant women to whom there was an OGTT performed between weeks 24th and 28th of pregnancy, divided into two groups, with GDM and without GDM. The statistical analysis was performed with SPSS 26.0, the tests being statistically significant if p value < 0.05. RESULTS The favoring risk factors for the onset of GDM were analyzed, with statistically significant differences between the GDM group and the group without GDM related to the delivery age (32.39 ± 4.66 years old vs. 28.61 ± 4.71 years old), history of fetal macrosomia (13.7% vs. 0%), presence of GDM during previous pregnancies (7.8% vs. 0%), HBP before pregnancy (9.8% vs. 0%), gestational HBP (17.6% vs. 0%), glycemia value at first medical visit (79.37 ± 9.34 mg/dl vs. 71.39 ± 9.16 mg/dl), and weight gain during pregnancy (14.61 ± 4.47 kg vs. 12.48 ± 5.87 kg). CONCLUSIONS Identifying the risk factors for the GDM onset has a special importance, implying an early implementation of interventional measures in order to avoid the onset of GDM and associated maternal and fetal complications.
Collapse
Affiliation(s)
- Agnesa Preda
- University of Medicine and Pharmacy of Craiova, Romania
- Clinical County Emergency Hospital of Craiova, Romania
| | - Adela Gabriela Stefan
- Department of Diabetes Nutrition and Metabolic Diseases, Calafat Municipal Hospital, Calafat, Romania
| | - Ionela Mihaela Vladu
- University of Medicine and Pharmacy of Craiova, Romania
- Clinical Municipal Hospital “Philanthropy” of Craiova, Craiova, Romania
| | - Mircea-Catalin Fortofoiu
- University of Medicine and Pharmacy of Craiova, Romania
- Clinical Municipal Hospital “Philanthropy” of Craiova, Craiova, Romania
| | - Diana Clenciu
- University of Medicine and Pharmacy of Craiova, Romania
- Clinical Municipal Hospital “Philanthropy” of Craiova, Craiova, Romania
| | - Maria Fortofoiu
- University of Medicine and Pharmacy of Craiova, Romania
- Clinical Municipal Hospital “Philanthropy” of Craiova, Craiova, Romania
| | - Ioan Ovidiu Gheorghe
- University of Medicine and Pharmacy of Craiova, Romania
- Public Health Department Gorj, Romania
| | | | - Maria Mota
- University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
17
|
Zhu H, Wang L, Ren A. [Research progress on the etiology and pathogenesis of spina bifida]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1368-1373. [PMID: 34779160 DOI: 10.7507/1002-1892.202106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress on etiology and pathogenesis of spina bifida. Methods By consulting relevant domestic and foreign research literature on spina bifida, the classification, epidemic trend, pathogenesis, etiology, prevention and treatment of it were analyzed and summarized. Results Spina bifida, a common phenotype of neural tube defects, is classified based on the degree and pattern of malformation associated with neuroectodermal involvement and is due to the disturbance of neural tube closure 28 days before embryonic development. The prevalence of spina bifida varies greatly among different ethnic groups and regions, and its etiology is complex. Currently, some spina bifida patients can be prevented by folic acid supplements, and with the improvement of treatment technology, the short-term and long-term survival rate of children with spina bifida has improved. Conclusion The research on the pathogenesis of spina bifida will be based on the refined individual information on exposure, genetics, and complex phenotype, and will provide a theoretical basis for improving prevention and treatment strategies through multidisciplinary cooperation.
Collapse
Affiliation(s)
- Haiyan Zhu
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| | - Linlin Wang
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| | - Aiguo Ren
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| |
Collapse
|
18
|
Dinicola S, Unfer V, Facchinetti F, Soulage CO, Greene ND, Bizzarri M, Laganà AS, Chan SY, Bevilacqua A, Pkhaladze L, Benvenga S, Stringaro A, Barbaro D, Appetecchia M, Aragona C, Bezerra Espinola MS, Cantelmi T, Cavalli P, Chiu TT, Copp AJ, D’Anna R, Dewailly D, Di Lorenzo C, Diamanti-Kandarakis E, Hernández Marín I, Hod M, Kamenov Z, Kandaraki E, Monastra G, Montanino Oliva M, Nestler JE, Nordio M, Ozay AC, Papalou O, Porcaro G, Prapas N, Roseff S, Vazquez-Levin M, Vucenik I, Wdowiak A. Inositols: From Established Knowledge to Novel Approaches. Int J Mol Sci 2021; 22:10575. [PMID: 34638926 PMCID: PMC8508595 DOI: 10.3390/ijms221910575] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.
Collapse
Affiliation(s)
- Simona Dinicola
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Vittorio Unfer
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Fabio Facchinetti
- Obstetrics and Gynecology Unit, Mother-Infant and Adult Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christophe O. Soulage
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France;
| | - Nicholas D. Greene
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Mariano Bizzarri
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, Hospital “Filippo Del Ponte”, University of Insubria, 21100 Varese, Italy;
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Arturo Bevilacqua
- Department of Dynamic, Clinical Psychology and Health Studies, Sapienza University, 00161 Rome, Italy;
| | - Lali Pkhaladze
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi 0112, Georgia;
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy;
| | - Daniele Barbaro
- U.O. Endocrinology in Livorno Hospital, USL Nordovest Toscana, 57100 Livorno, Italy;
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, 00161 Rome, Italy;
| | - Cesare Aragona
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - Tonino Cantelmi
- Institute for Interpersonal Cognitive Therapy, 00100 Rome, Italy;
| | - Pietro Cavalli
- Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | | | - Andrew J. Copp
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Rosario D’Anna
- Department of Human Pathology, University of Messina, 98122 Messina, Italy;
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, 59000 Lille, France;
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, 04100 Latina, Italy;
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, Universidad Nacional Autónoma de México (UNAM), Mexico City 07760, Mexico;
| | - Moshe Hod
- Department of Obstetrics and Gynecology Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Eleni Kandaraki
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Giovanni Monastra
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - John E. Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | | | - Ali C. Ozay
- Department of Obstetrics and Gynecology, Near East University Hospital, Nicosia 99138, Cyprus;
| | - Olga Papalou
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | | | - Nikos Prapas
- IAKENTRO, Infertility Treatment Center, 54250 Thessaloniki, Greece;
| | - Scott Roseff
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Boca Raton, FL 33458, USA;
| | - Monica Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME, CONICET-FIBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires 2490, Argentina;
| | - Ivana Vucenik
- Department of Medical & Research Technology and Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
19
|
Melatonin and Myo-Inositol: Supporting Reproduction from the Oocyte to Birth. Int J Mol Sci 2021; 22:ijms22168433. [PMID: 34445135 PMCID: PMC8395120 DOI: 10.3390/ijms22168433] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
Human pregnancy is a sequence of events finely tuned by several molecular interactions that come with a new birth. The precise interlocking of these events affecting the reproductive system guarantees safe embryo formation and fetal development. In this scenario, melatonin and myo-inositol seem to be pivotal not only in the physiology of the reproduction process, but also in the promotion of positive gestational outcomes. Evidence demonstrates that melatonin, beyond the role of circadian rhythm management, is a key controller of human reproductive functions. Similarly, as the most representative member of the inositol’s family, myo-inositol is essential in ensuring correct advancing of reproductive cellular events. The molecular crosstalk mediated by these two species is directly regulated by their availability in the human body. To date, biological implications of unbalanced amounts of melatonin and myo-inositol in each pregnancy step are growing the idea that these molecules actively contribute to reduce negative outcomes and improve the fertilization rate. Clinical data suggest that melatonin and myo-inositol may constitute an optimal dietary supplementation to sustain safe human gestation and a new potential way to prevent pregnancy-associated pathologies.
Collapse
|
20
|
Ge Y, Liu X, Huang H. Advances in the role of silence information regulator family in pathological pregnancy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:335-344. [PMID: 34402258 PMCID: PMC8710262 DOI: 10.3724/zdxbyxb-2021-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
Aberrant maternal inflammation and oxidative stress are the two main mechanisms of pathological pregnancy. The silence information regulator (sirtuin) family is a highly conserved family of nicotinamide adenine dinucleotide (NAD)-dependent deacylases. By regulating the post-translational modification of proteins, sirtuin is involved in various biological processes including oxidative stress and inflammation. Nowadays, emerging evidence indicates that sirtuin may be closely related to the occurrence and development of pathological pregnancy. The down-regulation of sirtuin can cause spontaneous preterm delivery by promoting uterine contraction and rupture of fetal membranes, cause gestational diabetes mellitus through promoting oxidative stress and affecting the activity of key enzymes in glucose metabolism, cause preeclampsia by reducing the proliferation and invasion ability of trophoblasts, cause intrahepatic cholestasis of pregnancy by promoting the production of bile acids and T helper 1 cell (Th1) cytokines, and cause intrauterine growth restriction through inducing mitochondrial dysfunction. Moreover, the expression and activation of sirtuin can be modulated through dietary interventions, thus sirtuin is expected to become a new target for the prevention and treatment of pregnancy complications. This article reviews the role of the sirtuin family in the occurrence and development of pathological pregnancy and its influence on the development of the offspring.
Collapse
|
21
|
Gambioli R, Forte G, Buzzaccarini G, Unfer V, Laganà AS. Myo-Inositol as a Key Supporter of Fertility and Physiological Gestation. Pharmaceuticals (Basel) 2021; 14:504. [PMID: 34070701 PMCID: PMC8227031 DOI: 10.3390/ph14060504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Pregnancy is a complex process, featuring several necessary changes in women's physiology. Most women undergo healthy pregnancies; even so, several women experience reduced fertility or pathologies related to the pregnancy. In the last years, researchers investigated several molecules as promoters of fertility. Among all, myo-inositol (myo-ins) represents a safe compound that proved useful in issues related to fertility and pregnancy. In fact, myo-ins participates in several signaling processes, including the pathways of insulin and gonadotropins, and, therefore, it is likely to positively affect fertility. In particular, several clinical trials demonstrate that its administration can have therapeutic effects in infertile women, and that it can also be useful as a preventive treatment during pregnancy. Particularly, myo-ins could prevent the onset of neural tube defects and the occurrence of gestational diabetes mellitus, promoting a trouble-free gestation. Due to the safety and efficiency of myo-ins, such a treatment may also substitute several pharmaceuticals, which are contraindicated in pregnancy.
Collapse
Affiliation(s)
| | - Gianpiero Forte
- R&D Department, Lo.Li. Pharma, 00156 Rome, Italy; (R.G.); (G.F.)
| | - Giovanni Buzzaccarini
- Unit of Gynecology and Obstetrics, Department of Women and Children’s Health, University of Padua, 35128 Padua, Italy;
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy;
- System Biology Group Lab, 00161 Rome, Italy
| | - Antonio Simone Laganà
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy;
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
22
|
He J, Zhang YL, Wang LP, Liu XC. Impact of different stereoisomers of inositol on insulin sensitivity of gestational diabetes mellitus patients. World J Clin Cases 2021; 9:565-572. [PMID: 33553394 PMCID: PMC7829732 DOI: 10.12998/wjcc.v9.i3.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inositol is a hexa-carbon polyol, a naturally soluble vitamin, often found in various foods.
AIM To discuss the impact of different stereoisomers of inositol on insulin sensitivity of gestational diabetes mellitus (GDM) patients.
METHODS Eighty GDM pregnant women were divided into four groups according to their treatment received: A group (placebo folic acid 400 μg/d), B group [myo-inositol (MI) 1500 mg, twice a day], C group [D-chiro-inositol (DCI) 250 mg, twice a day], and D group (inositol MI and inositol DCI 1500 mg/250 mg, twice a day). Each patient routinely used dietary guidance adjustments and did some safe and effective aerobic exercise in addition to receiving placebo or inositol from GDM diagnosis to delivery. Triglyceride, total cholesterol, fasting plasma glucose, oral glucose tolerance test postprandial glucose (2 h postprandial blood glucose), fasting insulin, fasting plasma glucose, and glycosylated hemoglobin levels and Homeostasis Model Assessment-insulin resistance (HOMA-IR) and Homeostasis Model Assessment-insulin sensitivity index (HOMA-ISI) scores were determined before treatment and 8 wk after treatment onset. Adverse maternal and infant outcomes, including hypoglycemia, excessive amniotic fluid, premature infants, macrosomia, fetal distress etc., were also recorded.
RESULTS There was no statistical difference in the baseline data of each group. The levels of 2 h blood glucose, glycosylated hemoglobin, fasting insulin, total cholesterol, and triglyceride in the B, C, and D groups were significantly lower than those in the control group (A group) after treatment (P < 0.05). Moreover, compared with the B group, the level of the above indexes in the C and D groups decreased more significantly, and the differences were statistically significant (P < 0.05). The HOMA-IR of B, C, and D groups decreased significantly, and the HOMA-ISI increased significantly compared with the A group, and the differences were statistically significant (P < 0.05), among which the decrease of HOMA-IR and the increase of HOMA-ISI were more significant in the C and D group compared with the B group (P < 0.05). The occurrence rate of adverse maternal and infant outcomes in the C and D group was significantly lower than that in the control group (A group), and the differences were statistically significant (P < 0.05).
CONCLUSION Treatment with different inositol stereoisomers (inositol MI and inositol DCI) can improve insulin sensitivity and reduce insulin resistance in diabetic patients, and inositol DCI has a better curative effect than inositol MI.
Collapse
Affiliation(s)
- Jing He
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Yan-Li Zhang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Li-Ping Wang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Xiao-Chun Liu
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| |
Collapse
|