1
|
Gundogdu G, Budrewicz J, Giordano J, Melidone R, Searcy C, Agarwal V, Estrada CR, Mauney JR. Evaluation of bi-layer silk fibroin grafts for onlay urethroplasty in a rabbit model of urethral stricture disease. Regen Med 2024; 19:473-481. [PMID: 39210852 PMCID: PMC11487943 DOI: 10.1080/17460751.2024.2389753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Autologous tissues such as buccal mucosa (BM) are widely used for reconstruction of urethral strictures; however, limitations such as donor site morbidity and scarce tissue supply require the development of alternative biomaterials for urethral repair. The goals of this study were to determine the safety and efficacy of bi-layer silk fibroin (BLSF) matrices for urethral stricture repair and compare histological and functional outcomes to the standard approach, BM urethroplasty under good laboratory practices.Material and methods: A total of 13 rabbits exhibiting urethral stricture formation following electrocoagulation injury were treated with onlay urethroplasty with either acellular BLSF (N = 7) or autologous BM (N = 6) grafts for 3 months. Uninjured control rabbits were maintained in parallel (N = 4).Results and conclusion: Animals receiving BLSF implants were demonstrated to be functionally equivalent to BM grafts in their ability to restored strictured calibers, support micturition and promote tissue regeneration with minimal inflammation.
Collapse
Affiliation(s)
- Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | | | - Jodie Giordano
- WeaveTech, Subsidiary of Greenfire Bio Corp., 6267 Bristol Place, Frisco, TX75034, USA
| | | | - Chris Searcy
- WeaveTech, Subsidiary of Greenfire Bio Corp., 6267 Bristol Place, Frisco, TX75034, USA
| | - Vikas Agarwal
- WeaveTech, Subsidiary of Greenfire Bio Corp., 6267 Bristol Place, Frisco, TX75034, USA
| | - Carlos R Estrada
- Department of Urology, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, Boston, MA02115, USA
| | - Joshua R Mauney
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Department of Biomedical Engineering, University of California, Irvine, CA92617, USA
| |
Collapse
|
2
|
Bartolf-Kopp M, Jungst T. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process? Adv Healthc Mater 2024; 13:e2400426. [PMID: 38607966 DOI: 10.1002/adhm.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Melt Electrowriting (MEW) is a continuously growing manufacturing platform. Its advantage is the consistent production of micro- to nanometer fibers, that stack intricately, forming complex geometrical shapes. MEW allows tuning of the mechanical properties of constructs via the geometry of deposited fibers. Due to this, MEW can create complex mechanics only seen in multi-material compounds and serve as guiding structures for cellular alignment. The advantage of MEW is also shown in combination with other biotechnological manufacturing methods to create multilayered constructs that increase mechanical approximation to native tissues, biocompatibility, and cellular response. These features make MEW constructs a perfect candidate for small-diameter vascular graft structures. Recently, studies have presented fascinating results in this regard, but is this truly the direction that tubular MEW will follow or are there also other options on the horizon? This perspective will explore the origins and developments of tubular MEW and present its growing importance in the field of artificial small-diameter vascular grafts with mechanical modulation and improved biomimicry and the impact of it in convergence with other manufacturing methods and how future technologies like AI may influence its progress.
Collapse
Affiliation(s)
- Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
- Department of Orthopedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Gundogdu G, Nguyen T, Hosseini Sharifi SH, Starek S, Costa K, Jones CE, Barham D, Gelman J, Clayman RV, Mauney JR. Evaluation of silk fibroin-based urinary conduits in a porcine model of urinary diversion. Front Bioeng Biotechnol 2023; 11:1100507. [PMID: 36726743 PMCID: PMC9885082 DOI: 10.3389/fbioe.2023.1100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Background: The primary strategy for urinary diversion in radical cystectomy patients involves incorporation of autologous gastrointestinal conduits into the urinary tract which leads to deleterious consequences including chronic infections and metabolic abnormalities. This report investigates the efficacy of an acellular, tubular bi-layer silk fibroin (BLSF) graft to function as an alternative urinary conduit in a porcine model of urinary diversion. Materials and methods: Unilateral urinary diversion with stented BLSF conduits was executed in five adult female, Yucatan mini-swine over a 3 month period. Longitudinal imaging analyses including ultrasonography, retrograde ureteropyelography and video-endoscopy were carried out monthly. Histological, immunohistochemical (IHC), and histomorphometric assessments were performed on neoconduits at harvest. Results: All animals survived until scheduled euthanasia and displayed moderate hydronephrosis (Grades 1-3) in reconstructed collecting systems over the course of the study period. Stented BLSF constructs supported formation of vascularized, retroperitoneal tubes capable of facilitating external urinary drainage. By 3 months post-operative, neoconduits contained α-smooth muscle actin+ and SM22α+ smooth muscle as well as uroplakin 3A+ and pan-cytokeratin + urothelium. However, the degree of tissue regeneration in neotissues was significantly lower in comparison to ureteral controls as determined by histomorphometry. In addition, neoconduit stenting was necessary to prevent stomal occlusion. Conclusion: BLSF biomaterials represent emerging platforms for urinary conduit construction and may offer a functional replacement for conventional urinary diversion techniques following further optimization of mechanical properties and regenerative responses.
Collapse
Affiliation(s)
- Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Travis Nguyen
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | | | - Stephanie Starek
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Kyle Costa
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Clara E. Jones
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - David Barham
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Joel Gelman
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Ralph V. Clayman
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Joshua R. Mauney
- Department of Urology, University of California, Irvine, Orange, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Casarin M, Todesco M, Sandrin D, Romanato F, Bagno A, Morlacco A, Dal Moro F. A Novel Hybrid Membrane for Urinary Conduit Substitutes Based on Small Intestinal Submucosa Coupled with Two Synthetic Polymers. J Funct Biomater 2022; 13:jfb13040222. [PMID: 36412863 PMCID: PMC9680483 DOI: 10.3390/jfb13040222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Among the urinary tract's malignancies, bladder cancer is the most frequent one: it is at the tenth position of most common cancers worldwide. Currently, the gold standard therapy consists of radical cystectomy, which results in the need to create a urinary diversion using a bowel segment from the patient. Nevertheless, due to several complications associated with bowel resection and anastomosis, which significantly affect patient quality of life, it is becoming extremely important to find an alternative solution. In our recent work, we proposed the decellularized porcine small intestinal submucosa (SIS) as a candidate material for urinary conduit substitution. In the present study, we create SIS-based hybrid membranes that are obtained by coupling decellularized SIS with two commercially available polycarbonate urethanes (Chronoflex AR and Chronoflex AR-LT) to improve SIS mechanical resistance and impermeability. We evaluated the hybrid membranes by means of immunofluorescence, two-photon microscopy, FTIR analysis, and mechanical and cytocompatibility tests. The realization of hybrid membranes did not deteriorate SIS composition, but the presence of polymers ameliorates the mechanical behavior of the hybrid constructs. Moreover, the cytocompatibility tests demonstrated a significant increase in cell growth compared to decellularized SIS alone. In light of the present results, the hybrid membrane-based urinary conduit can be a suitable candidate to realize a urinary diversion in place of an autologous intestinal segment. Further efforts will be performed in order to create a cylindrical-shaped hybrid membrane and to study its hydraulic behavior.
Collapse
Affiliation(s)
- Martina Casarin
- Department of Surgery, Oncology and Gastroenterology, Giustiniani 2, 35128 Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padua, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padua, Italy
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy
| | - Deborah Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padua, Italy
- Department of Physics and Astronomy ‘G. Galilei’, University of Padova, Via Marzolo 8, 35131 Padua, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padua, Italy
- Department of Physics and Astronomy ‘G. Galilei’, University of Padova, Via Marzolo 8, 35131 Padua, Italy
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padua, Italy
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy
- Correspondence:
| | - Alessandro Morlacco
- Department of Surgery, Oncology and Gastroenterology, Giustiniani 2, 35128 Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padua, Italy
| | - Fabrizio Dal Moro
- Department of Surgery, Oncology and Gastroenterology, Giustiniani 2, 35128 Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padua, Italy
| |
Collapse
|
5
|
Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med 2022; 16:56-82. [PMID: 34962624 PMCID: PMC8976706 DOI: 10.1007/s11684-021-0900-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
6
|
Adamowicz J, Kloskowski T, Stopel M, Gniadek M, Rasmus M, Balcerczyk D, Buhl M, Gagat M, Antosik P, Grzanka D, Sionkowska A, Drewa T, Pokrywczynska M. The development of marine biomaterial derived from decellularized squid mantle for potential application as tissue engineered urinary conduit. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111579. [PMID: 33321625 DOI: 10.1016/j.msec.2020.111579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022]
Abstract
Tissue engineering is focusing research effort on search for new biomaterials that might be applied to create artificial urinary conduit. Nevertheless, the demanding biomechanical characteristics necessary for proper conduit function is difficult to be replicated. In this study, we are introducing novel marine biomaterial obtained by decellularization of squid mantle derived from Loligo vulgaris. Squid mantles underwent decellularization according to developed dynamic flow two-staged procedure. Efficacy of the method was confirmed by computational dynamic flow analysis. Subsequently Decellularized Squid Mantle (DSM) underwent extensive histological analysis and mechanical evaluation. Based on gained biomechanical data the computational modelling using finite element method was utilized to simulate behavior of DSM used as a urinary conduit. Taking into account potential application in reconstructive urology, the DSM was then evaluated as a scaffold for urothelial and smooth muscle cells derived from porcine urinary bladder. Conducted analysis showed that DSM created favorable environment for cells growth. In addition, due to polarized structure and natural external polysaccharide layer, it protected seeded cells from urine.
Collapse
Affiliation(s)
- J Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; Reconstructive Urology Working Group, Young Academic Urologists, European Association of Urology, the Netherlands.
| | - T Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - M Stopel
- Department of Mechanics and Computer Methods, University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - M Gniadek
- Department of Fundamentals of Machine Design and Biomedical Engineering, University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - M Rasmus
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - D Balcerczyk
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - M Buhl
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - M Gagat
- Department of Histology and Embryology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - P Antosik
- Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - D Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - A Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, Gagarina 11, 87-100 Torun, Poland
| | - T Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - M Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|