1
|
Menendez-Gonzalez M. Intrathecal Immunoselective Nanopheresis for Alzheimer's Disease: What and How? Why and When? Int J Mol Sci 2024; 25:10632. [PMID: 39408961 PMCID: PMC11476806 DOI: 10.3390/ijms251910632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Nanotechnology is transforming therapeutics for brain disorders, especially in developing drug delivery systems. Intrathecal immunoselective nanopheresis with soluble monoclonal antibodies represents an innovative approach in the realm of drug delivery systems for Central Nervous System conditions, especially for targeting soluble beta-amyloid in Alzheimer's disease. This review delves into the concept of intrathecal immunoselective nanopheresis. It provides an overall description of devices to perform this technique while discussing the nanotechnology behind its mechanism of action, its potential advantages, and clinical implications. By exploring current research and advancements, we aim to provide a comprehensive understanding of this novel method, addressing the critical questions of what it is, how it works, why it is needed, and when it should be applied. Special attention is given to patient selection and the optimal timing for therapy initiation in Alzheimer's, coinciding with the peak accumulation of amyloid oligomers in the early stages. Potential limitations and alternative targets beyond beta-amyloid and future perspectives for immunoselective nanopheresis are also described.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Oviedo, ES-33006 Oviedo, Spain;
- Hospital Universitario Central de Asturias, Servicio de Neurología, ES-33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), ES-33011 Oviedo, Spain
| |
Collapse
|
2
|
Strong N, Ostrosky-Zeichner L. Fusarium species central nervous system infection. Curr Opin Infect Dis 2024; 37:185-191. [PMID: 38518108 DOI: 10.1097/qco.0000000000001009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
PURPOSE OF REVIEW Fusarium species are an increasingly important cause of meningitis and invasive disease in immunocompromised patients as well as in otherwise healthy patients as observed in two recent healthcare-associated outbreaks. This review summarizes recently published information on treatment and diagnosis of this infection. RECENT FINDINGS Incidence of Fusarium species meningitis and invasive fusariosis are increasing. Molecular techniques are improving the speed of diagnosis. New antifungal agents in development show good in vitro activity against some Fusarium species. New technologies, including cerebrospinal fluid (CSF) filtration, may play a role in treatment of central nervous system (CNS) disease. Due to the continued prime importance of the host immune system in recovery, immunomodulatory treatments may play a role in treatment. SUMMARY The overall incidence of CNS fusariosis is increasing with a continued poor prognosis, but new diagnostic and treatment modalities are in development which may offer improvements.
Collapse
Affiliation(s)
- Nora Strong
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
3
|
Pérez-Martín E, Coto-Vilcapoma A, Castilla-Silgado J, Rodríguez-Cañón M, Prado C, Álvarez G, Álvarez-Vega MA, Fernández-García B, Menéndez-González M, Tomás-Zapico C. Refining Stereotaxic Neurosurgery Techniques and Welfare Assessment for Long-Term Intracerebroventricular Device Implantation in Rodents. Animals (Basel) 2023; 13:2627. [PMID: 37627418 PMCID: PMC10452028 DOI: 10.3390/ani13162627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Stereotaxic surgeries enable precise access to specific brain regions, being of particular interest for chronic intracerebroventricular drug delivery. However, the challenge of long-term studies at this level is to allow the implantation of drug storage devices and their correct intrathecal connection while guaranteeing animal welfare during the entire study period. In this study, we propose an optimized method for safe intrathecal device implantation, focusing on preoperative, intraoperative, and postoperative procedures, following the 3Rs principle and animal welfare regulations. Our optimized protocol introduces three main refinements. Firstly, we modify the dimensions of the implantable devices, notably diminishing the device-to-mouse weight ratio. Secondly, we use a combination of cyanoacrylate tissue adhesive and UV light-curing resin, which decreases surgery time, improves healing, and notably minimizes cannula detachment or adverse effects. Thirdly, we develop a customized welfare assessment scoresheet to accurately monitor animal well-being during long-term implantations. Taken together, these refinements positively impacted animal welfare by minimizing the negative effects on body weight, surgery-related complications, and anxiety-like behaviors. Overall, the proposed refinements have the potential to reduce animal use, enhance experimental data quality, and improve reproducibility. Additionally, these improvements can be extended to other neurosurgical techniques, thereby advancing neuroscience research, and benefiting the scientific community.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Catuxa Prado
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Gabriel Álvarez
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Marco Antonio Álvarez-Vega
- Departamento de Cirugía, Área de Cirugía, Universidad de Oviedo, 33006 Oviedo, Spain
- Servicio de Neurocirugía, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Benjamín Fernández-García
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Área de Anatomía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Manuel Menéndez-González
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|