1
|
Huang W, Zong J, Li M, Li TF, Pan S, Xiao Z. Challenges and Opportunities: Nanomaterials in Epilepsy Diagnosis. ACS NANO 2025. [PMID: 40266286 DOI: 10.1021/acsnano.5c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Epilepsy is a common neurological disorder characterized by a significant rate of disability. Accurate early diagnosis and precise localization of the epileptogenic zone are essential for timely intervention, seizure prevention, and personalized treatment. However, over 30% of patients with epilepsy exhibit negative results on electroencephalography and magnetic resonance imaging (MRI), which can lead to misdiagnosis and subsequent delays in treatment. Consequently, enhancing diagnostic methodologies is imperative for effective epilepsy management. The integration of nanomaterials with biomedicine has led to the development of diagnostic tools for epilepsy. Key advancements include nanomaterial-enhanced neural electrodes, contrast agents, and biochemical sensors. Nanomaterials improve the quality of electrophysiological signals and broaden the detection range of electrodes. In imaging, functionalized magnetic nanoparticles enhance MRI sensitivity, facilitating localization of the epileptogenic zone. NIR-II nanoprobes enable tracking of seizure-related biomarkers with deep tissue penetration. Furthermore, nanomaterials enhance the sensitivity of biochemical sensors for detecting epilepsy biomarkers, which is crucial for early detection. These advancements significantly increase diagnostic sensitivity and specificity. However, challenges remain, particularly regarding biosafety, quality control, and the scalability of fabrication processes. Overcoming these obstacles is essential for successful clinical translation. Artificial-intelligence-based big data analytics can facilitate the development of diagnostic tools by screening nanomaterials with specific properties. This approach may help to address current limitations and improve both effectiveness and safety. This review explores the application of nanomaterials in the diagnosis and detection of epilepsy, with the objective of inspiring innovative ideas and strategies to enhance diagnostic effectiveness.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
2
|
Stolarczyk EU, Strzempek W, Muszyńska M, Kubiszewski M, Witkowska AB, Trzcińska K, Wojdasiewicz P, Stolarczyk K. Preparation of Diosgenin-Functionalized Gold Nanoparticles: From Synthesis to Antitumor Activities. Int J Mol Sci 2025; 26:1088. [PMID: 39940856 PMCID: PMC11817374 DOI: 10.3390/ijms26031088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer ranks among the top causes of illness and death globally. Nanotechnology holds considerable promise for enhancing the effectiveness of therapeutic and diagnostic approaches in cancer treatment. Our study presents a promising strategy for applying thiocompound nanomedicine in cancer therapy. Our first study aimed to investigate the biological properties of a new compound thiodiosgenin (TDG)-a new derivative of diosgenin-a natural compound with known antioxidant and anticancer properties. Our current second study aimed to compare the therapeutic efficacy of a new diosgenin-functionalized gold nanoparticles-with its precursor on prostate cancer (DU-145) cell lines. Moreover, the safety of the new thio-derivative and new conjugates was tested against the human epithelial line PNT-2. New advanced analytical techniques were developed for the characterization of nanomaterials using methods such as SP-ICP-MS, UV-Vis, TEM, NMR, FT-IR ELS, and TGA. Our synthetic approach was based, on the one hand, on the ligand exchange of citrates to thiodiosgenin (TDG) on gold nanoparticles, and on the other hand, on the attachment of DG through an ester bond to the linker, which was 3-mercaptopropionic acid (MPA) on gold nanoparticles. Initial in vitro studies indicate that TDG shows greater cytotoxic effects on cancer cells but poses risks to normal prostate epithelial cells (PNT-2). It was demonstrated that all the conjugates produced exhibited significant cytotoxic effects against cancer cells while being less harmful to normal prostate epithelial cells (PNT-2) compared to TDG itself. All the obtained conjugates showed antitumor properties; however, for targeted transport, the system referred to as AuNPs-MPAm1-DG is promising, due to the size of the nanoparticles of 53 nm, zeta potential of -30 mV, and loading content of 27.6%. New methods for synthesizing conjugates with diosgenin were developed and optimized for medical applications. Advanced new analytical methodologies were developed to characterize new conjugates, particularly the use of SP-ICP-MS, to solve existing differences in the shape and morphology of the surface of new conjugates.
Collapse
Affiliation(s)
- Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicine Institute, 30/34 Chełmska Street, 00-725 Warsaw, Poland; (E.U.S.); (A.B.W.)
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland;
| | - Magdalena Muszyńska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland;
| | - Marek Kubiszewski
- Analytical Research Section, Pharmaceutical Analysis Laboratory Łukasiewicz Research Network, Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland; (M.K.); (K.T.)
| | - Anna B. Witkowska
- Spectrometric Methods Department, National Medicine Institute, 30/34 Chełmska Street, 00-725 Warsaw, Poland; (E.U.S.); (A.B.W.)
| | - Kinga Trzcińska
- Analytical Research Section, Pharmaceutical Analysis Laboratory Łukasiewicz Research Network, Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland; (M.K.); (K.T.)
| | - Piotr Wojdasiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland;
| | - Krzysztof Stolarczyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland;
| |
Collapse
|
3
|
Azizah RN, Verheyen GR, Shkedy Z, Van Miert S. Overview of in vitro-in vivo extrapolation approaches for the risk assessment of nanomaterial toxicity. NANOIMPACT 2024; 35:100524. [PMID: 39059748 DOI: 10.1016/j.impact.2024.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/23/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Nanomaterials are increasingly used in many applications due to their enhanced properties. To ensure their safety for humans and the environment, nanomaterials need to be evaluated for their potential risk. The risk assessment analysis on the nanomaterials based on animal or in vivo studies is accompanied by several concerns, including animal welfare, time and cost needed for the studies. Therefore, incorporating in vitro studies in the risk assessment process is increasingly considered. To be able to analyze the potential risk of nanomaterial to human health, there are factors to take into account. Utilizing in vitro data in the risk assessment analysis requires methods that can be used to translate in vitro data to predict in vivo phenomena (in vitro-in vivo extrapolation (IVIVE) methods) to be incorporated, to obtain a more accurate result. Apart from the experiments and species conversion (for example, translation between the cell culture, animal and human), the challenge also includes the unique properties of nanomaterials that might cause them to behave differently compared to the same materials in a bulk form. This overview presents the IVIVE techniques that are developed to extrapolate pharmacokinetics data or doses. A brief example of the IVIVE methods for chemicals is provided, followed by a more detailed summary of available IVIVE methods applied to nanomaterials. The IVIVE techniques discussed include the comparison between in vitro and in vivo studies, methods to rene the dose metric or the in vitro models, allometric approach, mechanistic modeling, Multiple-Path Particle Dosimetry (MPPD), methods using organ burden data and also approaches that are currently being developed.
Collapse
Affiliation(s)
- Rahmasari Nur Azizah
- Thomas More University of Applied Sciences, Geel, Belgium; Data Science Institute, CenStat, I-BioStat, Hasselt University, Diepenbeek, Belgium.
| | | | - Ziv Shkedy
- Data Science Institute, CenStat, I-BioStat, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|
4
|
Mahdavi B, Ebrahimi S, Farzi GA, Maleki B, Mohammadhosseini M. Ephedra intermedia Schrenk & C. A. Mey Methanol Extract: Nanoencapsulation by Mini-Emulsion Polymerization and its Release Trend under Simulated Conditions of the Human Body. Chem Biodivers 2024; 21:e202400033. [PMID: 38488267 DOI: 10.1002/cbdv.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
In this research, the extract of Ephedra intermedia Schrenk & C.A.Mey. was encapsulated using the mini-emulsion polymerization method based on methyl methacrylate polymers with a nanometer size. The encapsulated extract was characterized using different analytical techniques. Furthermore, the loading efficiency and release of the plant extract were examined. FT-IR spectroscopy confirmed the formation of an expectational product. The TEM and SEM imaging showed a spherical morphology for the prepared encapsulated extract. The average size of poly-methyl-methacrylate nanoparticles containing Ephedra extract was found to be approximately 47 nm. The extract loading efficiency and encapsulation efficiency test demonstrated a dose-depending behavior on E. intermedia extract for both analyses, which is highly advantageous for traversing biological barriers. The release assay shows a controlled release for the extract at phosphate buffer solution (PBS). A 38 % release was calculated after 36 hours. The results obtained from the present study reveal that encapsulating the plant extract is a suitable alternative to control and increase their medicinal properties.
Collapse
Affiliation(s)
- Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Sanaz Ebrahimi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Gholam Ali Farzi
- Department of Polymer Science, Faculty of Chemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Majid Mohammadhosseini
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
5
|
Windell DL, Mourabit S, Moger J, Owen SF, Winter MJ, Tyler CR. The influence of size and surface chemistry on the bioavailability, tissue distribution and toxicity of gold nanoparticles in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115019. [PMID: 37269610 DOI: 10.1016/j.ecoenv.2023.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 06/05/2023]
Abstract
Gold nanoparticles (AuNPs) are widely used in biomedicine and their specific properties including, size, geometrics, and surface coating, will affect their fate and behaviour in biological systems. These properties are well studied for their intended biological targets, but there is a lack of understanding on the mechanisms by which AuNPs interact in non-target organisms when they enter the environment. We investigated the effects of size and surface chemistry of AuNPs on their bioavailability, tissue distribution and potential toxicity using zebrafish (Danio rerio) as an experimental model. Larval zebrafish were exposed to fluorescently tagged AuNPs of different sizes (10-100 nm) and surface modifications (TNFα, NHS/PAMAM and PEG), and uptake, tissue distribution and depuration rates were measured using selective-plane illumination microscopy (SPIM). The gut and pronephric tubules were found to contain detectable levels of AuNPs, and the concentration-dependent accumulation was related to the particle size. Surface addition of PEG and TNFα appeared to enhance particle accumulation in the pronephric tubules compared to uncoated particles. Depuration studies showed a gradual removal of particles from the gut and pronephric tubules, although fluorescence indicating the presence of the AuNPs remained in the pronephros 96 h after exposure. Toxicity assessment using two transgenic zebrafish reporter lines, however, revealed no AuNP-related renal injury or cellular oxidative stress. Collectively, our data show that AuNPs used in medical applications across the size range 40-80 nm, are bioavailable to larval zebrafish and some may persist in renal tissue, although their presence did not result in measurable toxicity with respect to pronephric organ function or cellular oxidative stress for short term exposures.
Collapse
Affiliation(s)
- Dylan L Windell
- Biosciences, Faculty of Health and Life Sciences, Exeter, Devon EX4 4QD, United Kingdom
| | - Sulayman Mourabit
- Biosciences, Faculty of Health and Life Sciences, Exeter, Devon EX4 4QD, United Kingdom
| | - Julian Moger
- Physics and Medical Imaging, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon EX4 4QL, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Global Compliance, Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- Biosciences, Faculty of Health and Life Sciences, Exeter, Devon EX4 4QD, United Kingdom.
| |
Collapse
|
6
|
Nguyen NHA, Falagan-Lotsch P. Mechanistic Insights into the Biological Effects of Engineered Nanomaterials: A Focus on Gold Nanoparticles. Int J Mol Sci 2023; 24:4109. [PMID: 36835521 PMCID: PMC9963226 DOI: 10.3390/ijms24044109] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Nanotechnology has great potential to significantly advance the biomedical field for the benefit of human health. However, the limited understanding of nano-bio interactions leading to unknowns about the potential adverse health effects of engineered nanomaterials and to the poor efficacy of nanomedicines has hindered their use and commercialization. This is well evidenced considering gold nanoparticles, one of the most promising nanomaterials for biomedical applications. Thus, a fundamental understanding of nano-bio interactions is of interest to nanotoxicology and nanomedicine, enabling the development of safe-by-design nanomaterials and improving the efficacy of nanomedicines. In this review, we introduce the advanced approaches currently applied in nano-bio interaction studies-omics and systems toxicology-to provide insights into the biological effects of nanomaterials at the molecular level. We highlight the use of omics and systems toxicology studies focusing on the assessment of the mechanisms underlying the in vitro biological responses to gold nanoparticles. First, the great potential of gold-based nanoplatforms to improve healthcare along with the main challenges for their clinical translation are presented. We then discuss the current limitations in the translation of omics data to support risk assessment of engineered nanomaterials.
Collapse
Affiliation(s)
- Nhung H. A. Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentsk. 2, 46117 Liberec, Czech Republic
| | - Priscila Falagan-Lotsch
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Suthar JK, Vaidya A, Ravindran S. Toxic implications of silver nanoparticles on the central nervous system: A systematic literature review. J Appl Toxicol 2023; 43:4-21. [PMID: 35285037 DOI: 10.1002/jat.4317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Silver nanoparticles have many medical and commercial applications, but their effects on human health are poorly understood. They are used extensively in products of daily use, but little is known about their potential neurotoxic effects. A xenobiotic metal, silver, has no known physiological significance in the human body as a trace metal. Biokinetics of silver nanoparticles indicates its elimination from the body via urine and feces route. However, a substantial amount of evidence from both in vitro and in vivo experimental research unequivocally establish the fact of easier penetration of smaller nanoparticles across the blood-brain barrier to enter in brain and thereby interaction with cellular components to induce neurotoxic effects. Toxicological effects of silver nanoparticles rely on the degree of exposure, particle size, surface coating, and agglomeration state as well as the type of cell or organism used to evaluate its toxicity. This review covers pertinent facts and the present state of knowledge about the neurotoxicity of silver nanoparticles reviewing the impacts on oxidative stress, neuroinflammation, mitochondrial function, neurodegeneration, apoptosis, and necrosis. The effect of silver nanoparticles on the central nervous system is a topic of growing interest and concern that requires immediate consideration.
Collapse
Affiliation(s)
- Jitendra Kumar Suthar
- Symbiosis School of Biological Sciences, Faculty of Health Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Faculty of Health Sciences, Symbiosis International (Deemed) University, Pune, India.,Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed) University, Pune, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Health Sciences, Symbiosis International (Deemed) University, Pune, India
| |
Collapse
|
8
|
The Stability and Anti-Angiogenic Properties of Titanium Dioxide Nanoparticles (TiO2NPs) Using Caco-2 Cells. Biomolecules 2022; 12:biom12101334. [PMID: 36291543 PMCID: PMC9599851 DOI: 10.3390/biom12101334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are found in a wide range of products such as sunscreen, paints, toothpaste and cosmetics due to their white pigment and high refractive index. These wide-ranging applications could result in direct or indirect exposure of these NPs to humans and the environment. Accordingly, conflicting levels of toxicity has been associated with these NPs. Therefore, the risk associated with these reports and for TiO2NPs produced using varying methodologies should be measured. This study aimed to investigate the effects of various media on TiO2NP properties (hydrodynamic size and zeta potential) and the effects of TiO2NP exposure on human colorectal adenocarcinoma (Caco-2) epithelial cell viability, inflammatory and cell stress biomarkers and angiogenesis proteome profiles. The NPs increased in size over time in the various media, while zeta potentials were stable. TiO2NPs also induced cell stress biomarkers, which could be attributed to the NPs not being cytotoxic. Consequently, TiO2NP exposure had no effects on the level of inflammatory biomarkers produced by Caco-2. TiO2NPs expressed some anti-angiogenic properties when exposed to the no-observed-adverse-effect level and requires further in-depth investigation.
Collapse
|
9
|
Zaitseva NV, Zemlyanova MA, Stepankov MS, Ignatova AM, Pustovalova OV, Nikolaeva AE. Peculiarities of bioaccumulation and toxic effects produced by nanoparticles of molybdenum (VI) oxide under multiple oral exposure of rats: examination and comparative assessment. Pharm Nanotechnol 2022; 10:PNT-EPUB-126123. [PMID: 36056843 DOI: 10.2174/2211738510666220902143057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Molybdenum (VI) oxide nanoparticles (MoO3 NPs) are widely used in various economic activities. This creates elevated risks of exposure to this nanomaterial for workers and population in general and, consequently, there can be an increased number of developing pathological changes caused by exposure to MoO3 NPs. OBJECTIVE To examine and comparatively assess peculiarities of bioaccumulation and toxic effects produced by MoO NPs under multiple oral introductions. METHODS We evaluated sizes of analyzed particles by scanning electronic microscopy; specific surface area was calculated by the method of Brunauer, Emmett and Taylor; the total pore volume, by Barrett, Joyner and Halenda. Rats were exposed as per the scheme introduced by Lim with colleagues. We examined biochemical and hematological blood indicators, molybdenum concentrations and pathomorphological changes in tissues of various organs 24 hours after the last exposure. The study involved comparison with effects produced by MoO3 microparticles. RESULTS The tested MoO3 sample was established to be a nanomaterial as per the whole set of its physical properties. 50% of animals in the exposed group died on the 16th day in the experiment after the total exposure dose of MoO3 NPs reached 6500 mg/kg of body weight. Having analyzed blood plasma, we determined the following. There was a growth in quantity of leukocytes and a share of segmented neutrophils and monocytes, which were by 1.76-3.50 times higher than in the control group. Activity of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transpeptidase, alpha-amylase, and lactate dehydrogenase, and concentrations of urea, crude and direct bilirubin were higher by 1.61-22.86 times. Decrease in the number of platelets, plateletcrit, the relative number of lymphocytes, the number and proportion of large platelets by 1.31-2.71 times. We detected elevated molybdenum concentrations in the lungs, heart, liver, kidneys, brain and blood under exposure to MoO3 NPs in an amount exceeding the control values by 12.10-361.75 times. Rats exposed to MoO3 NPs had liver parenchymal steatosis, inflammatory changes, hemorrhagic infarctions and hyperplasia in the lungs. CONCLUSION MoO3 NPs have a more apparent ability to bioaccumulate and produce toxic effects in comparison with their microdispersed analogue under multiple oral introductions into the body.
Collapse
Affiliation(s)
| | - Marina Aleksandrovna Zemlyanova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia
- Perm State National Research University, Perm, Russia
- Perm National Research Polytechnic University, Perm, Russia
| | | | - Anna Mikhailovna Ignatova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia
- Institute of Continuous Media Mechanics, Perm, Russia
| | | | | |
Collapse
|
10
|
Zakaria ZZ, Mahmoud NN, Benslimane FM, Yalcin HC, Al Moustafa AE, Al-Asmakh M. Developmental Toxicity of Surface-Modified Gold Nanorods in the Zebrafish Model. ACS OMEGA 2022; 7:29598-29611. [PMID: 36061724 PMCID: PMC9434790 DOI: 10.1021/acsomega.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND nanotechnology is one of the fastest-growing areas, and it is expected to have a substantial economic and social impact in the upcoming years. Gold particles (AuNPs) offer an opportunity for wide-ranging applications in diverse fields such as biomedicine, catalysis, and electronics, making them the focus of great attention and in parallel necessitating a thorough evaluation of their risk for humans and ecosystems. Accordingly, this study aims to evaluate the acute and developmental toxicity of surface-modified gold nanorods (AuNRs), on zebrafish (Danio rerio) early life stages. METHODS in this study, zebrafish embryos were exposed to surface-modified AuNRs at concentrations ranging from 1 to 20 μg/mL. Lethality and developmental endpoints such as hatching, tail flicking, and developmental delays were assessed until 96 h post-fertilization (hpf). RESULTS we found that AuNR treatment decreases the survival rate in embryos in a dose-dependent manner. Our data showed that AuNRs caused mortality with a calculated LC50 of EC50,24hpf of AuNRs being 9.1 μg/mL, while a higher concentration of AuNRs was revealed to elicit developmental abnormalities. Moreover, exposure to high concentrations of the nanorods significantly decreased locomotion compared to untreated embryos and caused a decrease in all tested parameters for cardiac output and blood flow analyses, leading to significantly elevated expression levels of cardiac failure markers ANP/NPPA and BNP/NPPB. CONCLUSIONS our results revealed that AuNR treatment at the EC50 induces apoptosis significantly through the P53, BAX/BCL-2, and CASPASE pathways as a suggested mechanism of action and toxicity modality.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Nouf N. Mahmoud
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | | | - Huseyin C. Yalcin
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Ala-Eddin Al Moustafa
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
- College
of Medicine, QU Health, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Maha Al-Asmakh
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| |
Collapse
|
11
|
Silva JRV, Barroso PAA, Nascimento DR, Figueira CS, Azevedo VAN, Silva BR, Santos RPD. Benefits and challenges of nanomaterials in assisted reproductive technologies. Mol Reprod Dev 2021; 88:707-717. [PMID: 34553442 DOI: 10.1002/mrd.23536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
Assisted reproductive technology (ART) have contributed to preserve fertility in humans and to increase multiplication of genetically superior animals. Despite being highly practiced worldwide, ART presents some challenges, especially because gametes and embryos are kept in vitro for a variable period of time, and the oxidative stress in vitro can have negative impact on oocyte competence and embryo development. Nanotechnology needs to be considered to help overcome some of those impairments, since it can provide strategies to deliver antioxidants and hormones to gametes and embryos in vitro. The application of nanotechnology to ART can allow the development of new protocols using nanomaterials to improve in vitro oocyte competence and embryo production. This review discusses the applicability of nanomaterials to improve sperm selection, to deliver antioxidants and hormones to preantral follicles, oocytes, and embryos in vitro, as well as the concerns about using nanotechnology in ART.
Collapse
Affiliation(s)
- José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| | | | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ricardo Pires Dos Santos
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| |
Collapse
|
12
|
Almurshidi BH, Van Court R, Vega Gutierrez SM, Harper S, Harper B, Robinson SC. Preliminary Examination of the Toxicity of Spalting Fungal Pigments: A Comparison between Extraction Methods. J Fungi (Basel) 2021; 7:155. [PMID: 33671668 PMCID: PMC7926312 DOI: 10.3390/jof7020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Spalting fungal pigments have shown potential in technologies ranging from green energy generation to natural colorants. However, their unknown toxicity has been a barrier to industrial adoption. In order to gain an understanding of the safety of the pigments, zebrafish embryos were exposed to multiple forms of liquid media and solvent-extracted pigments with concentrations of purified pigment ranging from 0 to 50 mM from Chlorociboria aeruginosa, Chlorociboria aeruginascens, and Scytalidium cuboideum. Purified xylindein from Chlorociboria sp. did not show toxicity at any tested concentration, while the red pigment dramada from S. cuboideum was only associated with significant toxicity above 23.2 uM. However, liquid cultures and pigment extracted into dichloromethane (DCM) showed toxicity, suggesting the co-production of bioactive secondary metabolites. Future research on purification and the bioavailability of the red dramada pigment will be important to identify appropriate use; however, purified forms of the blue-green pigment xylindein are likely safe for use across industries. This opens the door to the adoption of green technologies based on these pigments, with potential to replace synthetic colorants and less stable natural pigments.
Collapse
Affiliation(s)
- Badria H. Almurshidi
- Department of Wood Science, Oregon State University, Corvallis, OR 97333, USA; (B.H.A.); (R.C.V.C.); (S.M.V.G.)
| | - R.C. Van Court
- Department of Wood Science, Oregon State University, Corvallis, OR 97333, USA; (B.H.A.); (R.C.V.C.); (S.M.V.G.)
| | - Sarath M. Vega Gutierrez
- Department of Wood Science, Oregon State University, Corvallis, OR 97333, USA; (B.H.A.); (R.C.V.C.); (S.M.V.G.)
| | - Stacey Harper
- Department of Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (B.H.)
| | - Bryan Harper
- Department of Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (B.H.)
| | - Seri C. Robinson
- Department of Wood Science, Oregon State University, Corvallis, OR 97333, USA; (B.H.A.); (R.C.V.C.); (S.M.V.G.)
| |
Collapse
|
13
|
Nogueira PFM, Marangoni VS, Zucolotto V. The aspect ratio of gold nanorods as a cytotoxicity factor on Raphidocelis subcaptata. ENVIRONMENTAL RESEARCH 2020; 191:110133. [PMID: 32871150 DOI: 10.1016/j.envres.2020.110133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Gold nanorods (AuNRs) are promising nanoscale materials for several technological and biomedical applications. The physicochemical properties of AuNRs, including size, shape and surface features, are crucial factors affecting their cytotoxicity. In this study, we investigated the effects of different aspect ratios of AuNRs (1.90, 2.35, 3.25 and 3.50) at concentrations of 2 and 10 μg mL-1 on their cytotoxicity and cellular uptake in green algae Raphidocelis subcaptata. The experiment was performed in oligotrophic freshwater medium in a growth chamber with constant agitation of 80 rpm under controlled conditions (120 μEm-2s-1 illumination; 12:12h light dark cycle and constant temperature of 22 ± 2 °C). The algal growth was monitored daily for 96 h via electronic absorbance scanning at 600-750 nm. Oxidative stress, cell viability and autofluorescence were evaluated using a flow cytometer. Oxidative stress quantified by loading cultures with the fluorescent dye 2', 7'-dichlorofluorescein diacetate. To assess algal cell viability, propidium iodide was selected as the fluorescent probe. Our results indicated that the aspect ratio of AuNRs mediates their biological effects in green algae R. subcaptata. A positive correlation between oxidative stress and increase of aspect ratio was found at concentration of 10 μg mL-1. Higher cytotoxicity and mortality were observed for algae incubated with higher aspect ratios AuNRs (3.50). These findings may be useful to understand the impact of the AuNRs in aquatic environments, contributing to ecosystem management and nanomaterials regulation.
Collapse
Affiliation(s)
- Patricia Franklin Mayrink Nogueira
- Nanomedicine and Nanotoxicology Group, Institute of Physics of São Carlos, University of São Paulo, P.O. Box 369, Av. Trabalhador São-Carlense, 400, 13566-590, São Carlos, S.P., Brazil
| | - Valeria Spolon Marangoni
- Nanomedicine and Nanotoxicology Group, Institute of Physics of São Carlos, University of São Paulo, P.O. Box 369, Av. Trabalhador São-Carlense, 400, 13566-590, São Carlos, S.P., Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Institute of Physics of São Carlos, University of São Paulo, P.O. Box 369, Av. Trabalhador São-Carlense, 400, 13566-590, São Carlos, S.P., Brazil.
| |
Collapse
|
14
|
Spurgeon DJ, Lahive E, Schultz CL. Nanomaterial Transformations in the Environment: Effects of Changing Exposure Forms on Bioaccumulation and Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000618. [PMID: 32402152 DOI: 10.1002/smll.202000618] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
In the environment, nanomaterials (NMs) are subject to chemical transformations, such as redox reactions, dissolution, coating degradation, and organic matter, protein, and macromolecule binding, and physical transformations including homo or heteroagglomeration. The combination of these reactions can result in NMs with differing characteristics progressing through a functional fate pathway that leads to the formation of transformed NM functional fate groups with shared properties. To establish the nature of such effects of transformation on NMs, four main types of studies are conducted: 1) chemical aging for transformation of pristine NMs; 2) manipulation of test media to change NM surface properties; 3) aging of pristine NMs water, sediment, or soil; 4) NM aging in waste streams and natural environments. From these studies a paradigm of aging effects on NM uptake and toxicity can be developed. Transformation, especially speciation changes, largely results in reduced potency. Further reactions at the surface resulting in processes, such as ecocorona formation and heteroagglomeration may additionally reduce NM potency. When NMs of differing potency transform and enter environments, common transformation reaction occurring in receiving system may act to reduce the variation in hazard between different initial NMs leading to similar actual hazard under realistic exposure conditions.
Collapse
Affiliation(s)
- David J Spurgeon
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Elma Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Carolin L Schultz
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
15
|
Sidoryk K, Michalak O, Kubiszewski M, Leś A, Cybulski M, Stolarczyk EU, Doubsky J. Synthesis of Thiol Derivatives of Biological Active Compounds for Nanotechnology Application. Molecules 2020; 25:molecules25153470. [PMID: 32751592 PMCID: PMC7435828 DOI: 10.3390/molecules25153470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
An efficient method of thiol group introduction to the structure of common natural products and synthetic active compounds with recognized biological efficacy such genistein (1), 5,11-dimethyl-5H-indolo[2,3-b]quinolin (2), capecitabine (3), diosgenin (4), tigogenin (5), flumethasone (6), fluticasone propionate (7), ursolic acid methyl ester (8), and β-sitosterol (9) was developed. In most cases, the desired compounds were obtained easily via two-step processes involving esterification reaction employing S-trityl protected thioacetic acid and the corresponding hydoxy-derivative, followed by removal of the trityl-protecting group to obtain the final compounds. The results of our preliminary experiments forced us to change the strategy in the case of genistein (1), and the derivatization of diosgenin (4), tigogenin (5), and capecitabine (3) resulted in obtaining different compounds from those designed. Nevertheless, in all above cases we were able to obtain thiol-containing derivatives of selected biological active compounds. Moreover, a modelling study for the two-step thiolation of genistein and some of its derivatives was accomplished using the density functional theory (B3LP). A hypothesis on a possible reason for the unsuccessful deprotection of the thiolated genistein is also presented based on the semiempirical (PM7) calculations. The developed methodology gives access to new sulphur derivatives, which might find a potential therapeutic benefit.
Collapse
Affiliation(s)
- Katarzyna Sidoryk
- Department of Biomedical Technology, Cosmetic Chemicals and Electrochemistry, Team of Chemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (O.M.); (M.C.)
- Correspondence:
| | - Olga Michalak
- Department of Biomedical Technology, Cosmetic Chemicals and Electrochemistry, Team of Chemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (O.M.); (M.C.)
| | - Marek Kubiszewski
- Analytical Department, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (M.K.); (E.U.S.)
| | - Andrzej Leś
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland;
| | - Marcin Cybulski
- Department of Biomedical Technology, Cosmetic Chemicals and Electrochemistry, Team of Chemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (O.M.); (M.C.)
| | - Elżbieta U. Stolarczyk
- Analytical Department, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (M.K.); (E.U.S.)
| | - Jan Doubsky
- Zentiva k.s., U Kabelovny 130, 102 37 Prague 10, Czech Republic;
| |
Collapse
|
16
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
17
|
To KT, Truong L, Edwards S, Tanguay RL, Reif DM. Multivariate modeling of engineered nanomaterial features associated with developmental toxicity. NANOIMPACT 2019; 16:10.1016/j.impact.2019.100185. [PMID: 32133425 PMCID: PMC7055685 DOI: 10.1016/j.impact.2019.100185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the increasing prevalence of engineered nanomaterials (ENMs) in consumer products, their toxicity profiles remain to be elucidated. ENM physicochemical characteristics (PCC) are known to influence ENM behavior, however the mechanisms of these effects have not been quantified. Further confounding the question of how the PCC influence behavior is the inclusion of structural and molecular descriptors in modeling schema that minimize the effects of PCC on the toxicological endpoints. In this work, we analyze ENM physico-chemical measurements that have not previously been studied within a developmental toxicity framework using an embryonic zebrafish model. In testing a panel of diverse ENMs to build a consensus model, we found nonlinear relationships between any singular PCC and bioactivity. By using a machine learning (ML) method to characterize the information content of combinatorial PCC sets, we found that concentration, surface area, shape, and polydispersity can accurately capture the developmental toxicity profile of ENMs with consideration to whole-organism effects.
Collapse
Affiliation(s)
- Kimberly T To
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Sabrina Edwards
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, USA
| | - Robert L Tanguay
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - David M Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|