1
|
Jensen CZ, Isaksen JL, Ahlberg G, Olesen MS, Nygaard B, Ellervik C, Kanters JK. Association of DIO2 and MCT10 Polymorphisms With Persistent Symptoms in LT4-Treated Patients in the UK Biobank. J Clin Endocrinol Metab 2024; 109:e613-e622. [PMID: 37740545 DOI: 10.1210/clinem/dgad556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
CONTEXT Some evidence suggests gene-treatment interactions might cause persistent symptoms in individuals receiving levothyroxine (LT4) treatment. OBJECTIVE We investigated, as previously hypothesized, if single-nucleotide variations (SNVs; formerly single-nucleotide polymorphisms) in rs225014 (Thr92Ala), rs225015, or rs12885300 (ORFa-Gly3Asp) in the deiodinase 2 gene (DIO2), or rs17606253 in the monocarboxylate transporter 10 gene (MCT10) were associated with outcomes indicative of local tissue hypothyroidism in LT4-treated patients and controls. METHODS We included 18 761 LT4-treated patients and 360 534 controls in a population-based cross-sectional study in the UK Biobank. LT4 treatment was defined as a diagnosis of hypothyroidism and self-reported use of LT4 without use of 3,5,3'-triiodothyronine. Outcomes were psychological well-being, cognitive function, and cardiovascular risk factors. Associations were evaluated by linear, logistic, or ordinal logistic multiple regression. Adjustments included sex, age, sex-age interaction, and genetic principal components 1 to 10. RESULTS Compared to controls, LT4 treatment was adversely associated with almost all outcomes, most noteworthy: Increased frequency of tiredness (P < .001), decreased well-being factor score (P < .001), increased reaction-time (P < .001), and increased body mass index (P < .001). Except for a significant association between the minor rs225015 A allele and financial dissatisfaction, there was no association of rs225014, rs225015, rs12885300, or rs17606253 with any outcomes in LT4-treated patients. For all outcomes, carrying the risk allele at these 4 SNVs did not amplify symptoms associated with LT4 treatment compared to controls. CONCLUSION rs225014, rs225015, rs12885300, and rs17606253 could not explain changed psychological well-being, cognitive function, or cardiovascular risk factors in LT4-treated patients. Our findings do not support a gene-treatment interaction between these SNVs and LT4 treatment.
Collapse
Affiliation(s)
- Christian Zinck Jensen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Center for Endocrinology and Metabolism, Copenhagen University Hospital-Herlev and Gentofte, Herlev DK-2730, Denmark
| | - Jonas Lynggaard Isaksen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Gustav Ahlberg
- Laboratory for Molecular Cardiology, The Heart Centre, Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Morten Salling Olesen
- Laboratory for Molecular Cardiology, The Heart Centre, Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Birte Nygaard
- Center for Endocrinology and Metabolism, Copenhagen University Hospital-Herlev and Gentofte, Herlev DK-2730, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jørgen Kim Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Center of Physiological Research, University of California San Francisco, San Francisco, CA 94131, USA
| |
Collapse
|
2
|
Gawandi S, Jothivel K, Kulkarni S. Determination of Frequency of Type 2 Deiodinase Thr92Ala Polymorphism (rs225014) in 131I-treated Differentiated Thyroid Cancer Patients Undertaking L-thyroxine (L-T4) Suppression Therapy. Indian J Nucl Med 2024; 39:24-28. [PMID: 38817730 PMCID: PMC11135370 DOI: 10.4103/ijnm.ijnm_120_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 06/01/2024] Open
Abstract
Introduction Type 2 deiodinase (DIO2) enzyme plays a vital role in peripheral T4 to T3 conversion and in the negative feedback regulation of pituitary thyroid-stimulating hormone (TSH) secretion. Thr92Ala polymorphism (rs225014) is a common single-nucleotide polymorphism (SNP) that lowers DIO2 activity and is associated with diverse physiological disorders. Differentiated thyroid cancer (DTC) patients are given L-T4 therapy after total thyroidectomy and 131I treatment to suppress TSH levels. Aim The aim of the study was to determine the frequency of rs225014 in DTC patients and to investigate its effect on the thyroid function tests (TFTs) and L-T4 dose required to suppress TSH levels. Materials and Methods The study included a DTC patient group and a control group. TFTs were estimated by RIA/IRMA kits. Genomic DNA of all the subjects was screened for rs225014 SNP by polymerase chain reaction. Results The frequency of Thr/Thr (wild type), Thr/Ala (heterozygous mutant), and Ala/Ala (homozygous mutant) genotypes in the DTC patients' group was 0.21, 0.52, and 0.27, respectively. T3 levels and T3/T4 ratio were significantly low in the Ala/Ala genotype in the DTC group indicating impaired DIO2 activity. L-T4 dose requirement to suppress TSH levels in the DTC patients harboring rs225014 SNP was not statistically different from the wild-type genotype. Conclusion The SNP rs225014 was observed to be associated with T3 and T3/T4 ratio but not with the L-T4 dose in DTC harboring SNP suggesting the presence of a compensatory pathway to overcome DIO2 impairment. However, it is essential to study the genetic makeup of DTC patients showing reduced response to TSH suppression to enable quicker decision-making in the implementation of personalized L-T4 dose to prevent any adverse effects.
Collapse
Affiliation(s)
- Smita Gawandi
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Kumarasamy Jothivel
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Rybicka M, Verrier ER, Baumert TF, Bielawski KP. Polymorphisms within DIO2 and GADD45A genes increase the risk of liver disease progression in chronic hepatitis b carriers. Sci Rep 2023; 13:6124. [PMID: 37059745 PMCID: PMC10104815 DOI: 10.1038/s41598-023-32753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/01/2023] [Indexed: 04/16/2023] Open
Abstract
The study enrolled 284 patients with chronic hepatitis B virus infection. Participants included people with mild fibrotic lesions (32.5%), moderate to severe fibrotic lesions (27.5%), cirrhotic lesions (22%), hepatocellular carcinoma (HCC) in 5%, and people with no fibrotic lesions in 13%. Eleven SNPs within DIO2, PPARG, ATF3, AKT, GADD45A, and TBX21 were genotyped by mass spectrometry. The rs225014 TT (DIO2) and rs10865710 CC (PPARG) genotypes were independently associated with susceptibility to advanced liver fibrosis. However, cirrhosis was more prevalent in individuals with the GADD45A rs532446 TT and ATF3 rs11119982 TT genotypes. In addition, the rs225014 CC variant of DIO2 was more frequently found in patients with a diagnosis of HCC. These findings suggest that the above SNPs may play a role in HBV-induced liver damage in a Caucasian population.
Collapse
Affiliation(s)
- Magda Rybicka
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Eloi R Verrier
- Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Université de Strasbourg, 67000, Strasbourg, France
| | - Thomas F Baumert
- Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Université de Strasbourg, 67000, Strasbourg, France
- Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67-000, Strasbourg, France
| | - Krzysztof Piotr Bielawski
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| |
Collapse
|
4
|
Deng Y, Han Y, Gao S, Dong W, Yu Y. The Physiological Functions and Polymorphisms of Type II Deiodinase. Endocrinol Metab (Seoul) 2023; 38:190-202. [PMID: 37150515 PMCID: PMC10164501 DOI: 10.3803/enm.2022.1599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023] Open
Abstract
Type II deiodinase (DIO2) is thought to provide triiodothyronine (T3) to the nucleus to meet intracellular needs by deiodinating the prohormone thyroxine. DIO2 is expressed widely in many tissues and plays an important role in a variety of physiological processes, such as controlling T3 content in developing tissues (e.g., bone, muscles, and skin) and the adult brain, and regulating adaptive thermogenesis in brown adipose tissue (BAT). However, the identification and cloning of DIO2 have been challenging. In recent years, several clinical investigations have focused on the Thr92Ala polymorphism, which is closely correlated with clinical syndromes such as type 2 diabetes, obesity, hypertension, and osteoarthritis. Thr92Ala-DIO2 was also found to be related to bone and neurodegenerative diseases and tumors. However, relatively few reviews have synthesized research on individual deiodinases, especially DIO2, in the past 5 years. This review summarizes current knowledge regarding the physiological functions of DIO2 in thyroid hormone signaling and adaptive thermogenesis in BAT and the brain, as well as the associations between Thr92Ala-DIO2 and bone and neurodegenerative diseases and tumors. This discussion is expected to provide insights into the physiological functions of DIO2 and the clinical syndromes associated with Thr92Ala-DIO2.
Collapse
Affiliation(s)
- Yan Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Yi Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Sheng Gao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
The impact of deiodinase type II gene on the therapeutic response to levothyroxine in a sample of Iraqi hypothyroidism patients. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
The Type 2 Deiodinase Thr92Ala Polymorphism Is Associated with Higher Body Mass Index and Fasting Glucose Levels: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9914009. [PMID: 34660805 PMCID: PMC8516525 DOI: 10.1155/2021/9914009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
Background Type 2 deiodinase (Dio2) is a selenoenzyme that is mainly expressed in the endoplasmic reticulum of the central nervous system, brown adipose tissue, and placenta and is responsible for outer ring deiodination of thyroxine (T4) to form biologically active triiodothyronine (T3). The Thr92Ala polymorphism of Dio2 has been found to be a potential risk factor for various diseases beyond the hypothalamus-pituitary-thyroid (HPT) axis. Methods We searched the relevant studies in the PubMed, Embase, and Cochrane Library databases and Google Scholar. A systematic review and meta-analysis of studies on the Thr92Ala polymorphism and metabolic parameters beyond the HPT axis (e.g., BMI, fasting glycemic traits, plasma lipid levels, and hypertension risk) were performed. Results Six eligible studies that analyzed the relationship between the Thr92Ala polymorphism and metabolic parameters beyond the thyroid were identified. All selected studies excluded patients with thyroid dysfunction, and diabetic patients were also excluded when fasting glucose and fasting insulin levels were meta-analyzed. The Thr92Ala polymorphism was found to be a significant risk factor for higher BMI (Std. mean difference 0.31 (0.01, 0.60), p = 0.04) and higher fasting glucose levels (Std. mean difference 1.18 (0.05, 2.31), p = 0.04). However, fasting insulin levels, plasma lipid levels, and hypertension risk showed a nonsignificant association with the Thr92Ala polymorphism. Conclusion Compared with euthyroid noncarriers (Thr/Thr), euthyroid Ala92-Dio2 carriers showed increased BMI levels, and Ala92-Dio2 carriers also had higher fasting plasma glucose levels than matched euthyroid nondiabetic noncarriers.
Collapse
|
7
|
Krysiak R, Basiak M, Okopień B. Insulin resistance attenuates the impact of levothyroxine on thyroid autoimmunity and hypothalamic-pituitary-thyroid axis activity in women with autoimmune subclinical hypothyroidism. Clin Exp Pharmacol Physiol 2021; 48:1215-1223. [PMID: 34062002 DOI: 10.1111/1440-1681.13532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Subjects with both subclinical hypothyroidism and autoimmune thyroiditis are frequently diagnosed with metabolic syndrome. The purpose of the current study was to investigate whether insulin sensitivity determines levothyroxine action on thyroid antibody titres and hypothalamic-pituitary-thyroid axis activity in young women with autoimmune subclinical hypothyroidism. The study population consisted of three age-, thyroid antibody- and thyrotropin-matched groups of women with autoimmune subclinical hypothyroidism: metformin-naive women with insulin resistance (group A, n=31), women receiving metformin treatment because of insulin resistance (group B, n=32), as well as metformin-naive women with normal insulin sensitivity (group C, n=35). Throughout the study, all subjects were treated with levothyroxine. Titres of thyroid peroxidase and thyroglobulin antibodies, as well as circulating levels of glucose, insulin, lipids, thyrotropin, free thyroid hormones, prolactin, high-sensitivity C-reactive protein (hsCRP) and 25-hydroxyvitamin D were determined at the beginning of the study and 6 months later. Except for two individuals, all patients completed the study. At baseline, group A differed from groups B and C in circulating levels of glucose, HDL-cholesterol, triglycerides, hsCRP, 25-hydroxyvitamin D and the homeostatic model assessment 1 of insulin resistance (HOMA1-IR). Although levothyroxine reduced thyroid antibody titres, decreased thyrotropin levels and increased free thyroid hormone levels in all studied groups, the effect on antibody titres and thyrotropin levels was more pronounced in groups B and C than in group A. The impact of levothyroxine on thyroid antibody titres correlated with baseline and treatment-induced changes in HOMA1-IR, thyrotropin, hsCRP and 25-hydroxyvitamin D. The results of the current study suggest that the impact of exogenous levothyroxine on thyroid autoimmunity and hypothalamic-pituitary-thyroid axis activity is determined by insulin sensitivity.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
8
|
Kuś A, Chaker L, Teumer A, Peeters RP, Medici M. The Genetic Basis of Thyroid Function: Novel Findings and New Approaches. J Clin Endocrinol Metab 2020; 105:5818501. [PMID: 32271924 DOI: 10.1210/clinem/dgz225] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
CONTEXT Genetic factors are major determinants of thyroid function. Over the last two decades, multiple genetic variants have been associated with variations in normal range thyroid function tests. Most recently, a large-scale genome-wide association study (GWAS) doubled the number of known variants associated with normal range thyrotropin (TSH) and free thyroxine (FT4) levels. EVIDENCE ACQUISITION This review summarizes the results of genetic association studies on normal range thyroid function and explores how these genetic variants can be used in future studies to improve our understanding of thyroid hormone regulation and disease. EVIDENCE SYNTHESIS Serum TSH and FT4 levels are determined by multiple genetic variants on virtually all levels of the hypothalamus-pituitary-thyroid (HPT) axis. Functional follow-up studies on top of GWAS hits has the potential to discover new key players in thyroid hormone regulation, as exemplified by the identification of the thyroid hormone transporter SLC17A4 and the metabolizing enzyme AADAT. Translational studies may use these genetic variants to investigate causal associations between thyroid function and various outcomes in Mendelian Randomization (MR) studies, to identify individuals with an increased risk of thyroid dysfunction, and to predict the individual HPT axis setpoint. CONCLUSIONS Recent genetic studies have greatly improved our understanding of the genetic basis of thyroid function, and have revealed novel pathways involved in its regulation. In addition, these findings have paved the way for various lines of research that can improve our understanding of thyroid hormone regulation and thyroid diseases, as well as the potential use of these markers in future clinical practice.
Collapse
Affiliation(s)
- Aleksander Kuś
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Layal Chaker
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Robin P Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Medici
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Kong SH, Kim JH, Park YJ, Lee JH, Hong AR, Shin CS, Cho NH. Low free T3 to free T4 ratio was associated with low muscle mass and impaired physical performance in community-dwelling aged population. Osteoporos Int 2020; 31:525-531. [PMID: 31784788 DOI: 10.1007/s00198-019-05137-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/16/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED In aged population, the association of thyroid hormones on physical performance, especially within their normal range, has yet to be elucidated. In this study, individuals with low serum free T3/free T4 were likely to have low muscle mass and impaired physical performance. PURPOSE We aimed to evaluate the associations of muscle mass, strength, and physical performance with thyroid hormone in an aged euthyroid population from a community-based cohort. METHODS We examined 918 men aged over 60 years and 1215 postmenopausal women from the Ansung cohort study. Appendicular skeletal muscle mass divided by square of height (ASM/ht2) was used as the muscle mass index. Hand grip strength was measured using a hydraulic dynamometer. Physical performance was assessed using the short physical performance battery (SPPB). RESULTS Participants with higher tertiles of free T3 and free T3/free T4 were younger and had higher ASM/ht2, stronger hand grip strength, and higher SPPB scores than those in the lower tertiles. In adjusted models, men within higher tertiles of free T3 had higher ASM/ht2 compared with those within lower tertiles (p = 0.033), whereas subjects with higher tertiles of free T4 had lower ASM/ht2 compared with those within lower tertiles (p = 0.043). Subjects within higher tertiles of free T3/free T4 had higher ASM/ht2 (p < 0.001) and better physical performance (p = 0.048) than those within lower tertiles after adjustments. However, free T3, free T4, or free T3/free T4 was not related to hand grip strength after adjustment for covariates. CONCLUSION Our results thus indicate that in an aged euthyroid population, low serum free T3/free T4 was a better index for low muscle mass and impaired physical performance than serum free T3 or free T4 alone.
Collapse
Affiliation(s)
- S H Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - J H Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Y J Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - J H Lee
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, South Korea
| | - A R Hong
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam, South Korea
| | - C S Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - N H Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea.
| |
Collapse
|
10
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Wang Y, Chen T, Sun Y, Zhao X, Zheng D, Jing L, Zhou X, Sun Z, Shi Z. A comparison of the thyroid disruption induced by decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:224-235. [PMID: 30844666 DOI: 10.1016/j.ecoenv.2019.02.080] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
In recent years, decabromodiphenyl ethane (DBDPE), a new alternative flame retardant to the decabrominated diphenyl ethers (BDE-209), is widely used in a variety of products. Previous studies have indicated that DBDPE, like BDE-209, could disrupt thyroid function. However, compared with BDE-209, the degrees of thyrotoxicosis induced by DBDPE were not clear. In addition, the mechanism of thyrotoxicosis induced by DBDPE or BDE-209 was still under further investigation. In this study, male rats as a model were orally exposed to DBDPE or BDE-209 by 5, 50, 500 mg/kg bw/day for 28 days. Then, we assessed the thyrotoxicosis of DBDPE versus BDE-209 and explored the mechanisms of DBDPE and BDE-209-induced thyrotoxicosis. Results showed that decreased free triiodothyronine (FT3) and increased thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) in serum were observed in both 500 mg/kg bw/day BDE-209 and DBDPE group. Decreased total thyroxine (TT4), total T3 (TT3), and free T4 (FT4) were only observed in BDE-209 group but not in DBDPE group. Histological examination and transmission electron microscope examination showed that high level exposure to BDE-209 and DBDPE both caused significant changes in histological structure and ultrastructure of the thyroid gland. Additionally, oxidative damages of thyroid gland (decreased SOD and GSH activities, and increased MDA content) were also observed in both BDE-209 and DBDPE groups. TG contents in the thyroid gland was reduced in BDE-209 group but not in DBDPE group. Both BDE-209 and DBDPE affected the expression of hypothalamic-pituitary-thyroid (HPT) axis related genes. These findings suggested that both BDE-209 and DBDPE exposure could disrupt thyroid function in the direction of hypothyroidism and the underlying mechanism was likely to be oxidative stress and perturbations of HPT axis. However, DBDPE was found to be less toxic than BDE-209.
Collapse
Affiliation(s)
- Yuwei Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanmin Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dan Zheng
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Jing
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Xianqing Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|