1
|
Xin J, Zhang H, Li Y, Dai Y, Chen X, Zou J, Wang R, Liu Z, Wang B. Effect of cold atmospheric plasma on common oral pathogenic microorganisms: a narrative review. Ann Med 2025; 57:2457518. [PMID: 39865862 PMCID: PMC11774187 DOI: 10.1080/07853890.2025.2457518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The oral microbiota is a diverse and complex community that maintains a delicate balance. When this balance is disturbed, it can lead to acute and chronic infectious diseases such as dental caries and periodontitis, significantly affecting people's quality of life. Developing a new antimicrobial strategy to deal with the increasing microbial variability and resistance is important. Cold atmospheric plasma (CAP), as the fourth state of matter, has gradually become a hot topic in the field of biomedicine due to its good antibacterial, anti-inflammatory, and anti-tumor capabilities. It is expected to become a major asset in the regulation of oral microbiota. METHODS We conducted a search in PubMed, Medline, and Wiley databases, focusing on studies related to CAP and oral pathogenic microorganisms. We explored the biological effects of CAP and summarized the antimicrobial mechanisms behind it. RESULTS Numerous articles have shown that CAP has a potent antimicrobial effect against common oral pathogens, including bacteria, fungi, and viruses, primarily due to the synergy of various factors, especially reactive oxygen and nitrogen species. CONCLUSIONS CAP is effective against various oral pathogenic microorganisms, and it is anticipated to offer a new approach to treating oral infectious diseases. The future objective is to precisely adjust the parameters of CAP to ensure safety and efficacy, and subsequently develop a comprehensive CAP treatment protocol. Achieving this objective is crucial for the clinical application of CAP, and further research is necessary.
Collapse
Affiliation(s)
- Jiajun Xin
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Hao Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yushen Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yifei Dai
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Xiantao Chen
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Jiatong Zou
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Rui Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Bowei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Pan D, Hao Y, Tao Y, Li B, Cheng L. The influence of microorganisms on bone homeostasis in apical periodontitis. Arch Oral Biol 2025; 170:106153. [PMID: 39644768 DOI: 10.1016/j.archoralbio.2024.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE This review aims to provide an overview of the role of microorganisms in the onset and progression of periapical diseases, particularly regarding their effects on bone homeostasis. DESIGN The search for this narrative review was conducted in PubMed, Web of Science and Google Scholar using relevant keywords, including checking reference lists of journal articles by hand searching. RESULTS Microorganisms directly promote osteoclasts through pathways such as nuclear factor-κB (NF-κB) and extracellular regulated protein kinases (ERK), while inhibiting osteoblasts function by interfering with the wingless-related integration site (Wnt)/β-catenin pathway in the periapical area. Moreover, microorganisms indirectly regulate periapical bone homeostasis by inducing programmed cell death and modulating the immune microenvironment through the activation of innate immunity via pattern-recognition receptors (PRRs) and subsequent cascades of responses. Among these microorganisms, Enterococcus faecalis, Porphyromonas gingivalis and Fusobacterium nucleatum play significant roles. CONCLUSION Microorganisms regulate pathways such as NF-ĸB and Wnt/β-catenin, as well as programmed cell death and the immune microenvironment in the periapical area, thereby disrupting bone homeostasis.
Collapse
Affiliation(s)
- Dan Pan
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Hao
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yuyan Tao
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Bolei Li
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lei Cheng
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Zhang L, Lin C, Chen Z, Yue L, Yu Q, Hou B, Ling J, Liang J, Wei X, Chen W, Qiu L, Li J, Niu Y, Lin Z, Cheng L, He W, Wang X, Huang D, Huang Z, Niu W, Zhang Q, Zhang C, Yang D, Yu J, Zhao J, Pan Y, Ma J, Deng S, Xie X, Meng X, Yang J, Zhou X, Chen Z. Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis. Int J Oral Sci 2025; 17:4. [PMID: 39762213 PMCID: PMC11704326 DOI: 10.1038/s41368-024-00333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cariology and Endodontics, Wuhan University & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Yue
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qing Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xián, China
| | - Benxiang Hou
- Center for Microscope Enhanced Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jingping Liang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wenxia Chen
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yumei Niu
- School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zhengmei Lin
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxi He
- Department of Stomatology, Air Force Medical Center, The Air Force Medical University, Beijing, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Qi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chen Zhang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Deqin Yang
- Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Jinhua Yu
- Department of Endodontics, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jin Zhao
- Department of Endodontics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yihuai Pan
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Xie
- Department of Endodontology, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Xiuping Meng
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jian Yang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Zhi Chen
- Department of Cariology and Endodontics, Wuhan University & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Ramji N, Xie S, Bunger A, Trenner R, Ye H, Farmer T, Reichling T, Ashe J, Milleman K, Milleman J, Klukowska M. Effects of stannous fluoride dentifrice on gingival health and oxidative stress markers: a prospective clinical trial. BMC Oral Health 2024; 24:1019. [PMID: 39215289 PMCID: PMC11365164 DOI: 10.1186/s12903-024-04785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Periodontal disease results in oral dysbiosis, increasing plaque virulence and oxidative stress. Stannous fluoride (SnF2) binds lipopolysaccharides to reduce plaque virulence. This study prospectively assessed SnF2 effects on oxidative stress in adults with gingivitis. METHODS This was a 2-month, single-center, single-treatment clinical trial. Twenty "disease" (> 20 bleeding sites with ≥ 3 pockets 3 mm-4 mm deep) and 20 "healthy" (≤ 3 bleeding sites with pockets ≤ 2 mm deep) adults were enrolled. All participants were instructed to use SnF2 dentifrice twice daily for 2 months. An oral examination, Modified Gingival Index (MGI) examination and Gingival Bleeding Index (GBI) examination were conducted at baseline, 1 month and 2 months. Gingival crevicular fluid (GCF), saliva, oral lavage and supragingival plaque were collected at each visit to evaluate: Endotoxins, Protein Carbonyls, L-lactate dehydrogenase (LDH), Ferric reducing antioxidant power (FRAP), Oxidized low density lipoproteins (oxi-LDL), IL-6 and C-reactive protein (CRP). A subset-analysis examined participants considered at higher risk of cardiovascular disease. Change-from-baseline analyses within each group were of primary interest. RESULTS The disease group showed statistically significant reductions in GBI at Month 1 (67%) and Month 2 (85%) and in MGI at Month 1 (36%) and Month 2 (51%) versus baseline (p < 0.001). At baseline, the disease group showed greater LDH in GCF and oxi-LDL levels in saliva versus the healthy group (p ≤ 0.01). Total antioxidant capacity (FRAP) in saliva increased versus baseline for the disease group at Months 1 and 2 (p < 0.05), and levels for the disease group were greater than the healthy group at both timepoints (p < 0.05). SnF2 treatment reduced endotoxins (lavage) for both disease and healthy groups at Month 2 (p ≤ 0.021) versus baseline. There was a reduction in oxidative stress markers, namely protein carbonyl in saliva, at Months 1 and 2 (p < 0.001) for both groups and a reduction in cytokine IL-6 (lavage) in the disease group at Month 2 (p = 0.005). A subset analysis of participants at higher coronary disease risk showed reductions in endotoxins in lavage, oxi-LDL, and CRP in saliva at Month 2 (p ≤ 0.04). CONCLUSION SnF2 dentifrice use reversed gingival inflammation, suppressed endotoxins and reduced some harmful oxidant products in saliva and gingiva. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov NCT05326373, registered on 13/04/2022.
Collapse
Affiliation(s)
- Niranjan Ramji
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA.
| | - Sancai Xie
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Ashley Bunger
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Rachel Trenner
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Hao Ye
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Teresa Farmer
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Tim Reichling
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Julie Ashe
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Kimberly Milleman
- Salus Research Inc, 1220 Medical Park Drive, Building 4, Ft. Wayne, Fort Wayne, IN, 46825, USA
| | - Jeffery Milleman
- Salus Research Inc, 1220 Medical Park Drive, Building 4, Ft. Wayne, Fort Wayne, IN, 46825, USA
| | - Malgorzata Klukowska
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| |
Collapse
|
5
|
Wu Q, Zhang W, Lu Y, Li H, Yang Y, Geng F, Liu J, Lin L, Pan Y, Li C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int Immunopharmacol 2024; 128:111558. [PMID: 38266446 DOI: 10.1016/j.intimp.2024.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weijia Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Lu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hongxia Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yaru Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
6
|
Bowen J, Cross C. The Role of the Innate Immune Response in Oral Mucositis Pathogenesis. Int J Mol Sci 2023; 24:16314. [PMID: 38003503 PMCID: PMC10670995 DOI: 10.3390/ijms242216314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Oral mucositis (OM) is a significant complication of cancer therapy with limited management strategies. Whilst inflammation is a central feature of destructive and ultimately ulcerative pathology, to date, attempts to mitigate damage via this mechanism have proven limited. A relatively underexamined aspect of OM development is the contribution of elements of the innate immune system. In particular, the role played by barriers, pattern recognition systems, and microbial composition in early damage signaling requires further investigation. As such, this review highlights the innate immune response as a potential focus for research to better understand OM pathogenesis and development of interventions for patients treated with radiotherapy and chemotherapy. Future areas of evaluation include manipulation of microbial-mucosal interactions to alter cytotoxic sensitivity, use of germ-free models, and translation of innate immune-targeted agents interrogated for mucosal injury in other regions of the alimentary canal into OM-based clinical trials.
Collapse
Affiliation(s)
- Joanne Bowen
- School of Biomedicine, University of Adelaide, Adelaide 5005, Australia;
| | | |
Collapse
|
7
|
Pan Y, Lv H, Feng X, Zhou S, Hu H, Chen S, Cheng Y, Fan F, Gong S, Chen P, Chu Q. Epigallocatechin gallate (EGCG) alleviates the inflammatory response and recovers oral microbiota in acetic acid-induced oral inflammation mice. Food Funct 2023; 14:10069-10082. [PMID: 37867423 DOI: 10.1039/d3fo03107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The oral microbiota, the second largest microbiome in the human body, plays an integral role in maintaining both the local oral and systemic health of the host. Oral microecological imbalances have been identified as a potential risk factor for numerous oral and systemic diseases. As a representative component of tea, epigallocatechin gallate (EGCG) has demonstrated inhibitory effects on most pathogens in single-microbial models. In this study, the regulatory effect of EGCG on more complex oral microbial systems was further explored through a mouse model of acetic acid-induced oral inflammation. Acetic acid induces histological damage in the cheek pouch, tongue, and throat, such as broken mucosa, submucosal edema, and muscular disorders. These detrimental effects were ameliorated significantly following EGCG treatment. Additionally, EGCG reduced the levels of the inflammatory cytokines interleukin-6 and tumor necrosis factor-α to alleviate the inflammation of the tongue, cheek pouch, and throat. According to the 16S rDNA gene sequencing data, EGCG treatment contributed to increased diversity of the oral microbiota and the reversal of oral microecological disorder. This study demonstrates the regulatory effect of EGCG on dysregulated oral microbiota, providing a potential option for the prevention and treatment of oral-microbiota-associated diseases.
Collapse
Affiliation(s)
- Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Hao Hu
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Shuxi Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yan Cheng
- Hangzhou Real Taste Tea Culture Development Co., Ltd., Hangzhou 311100, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|