1
|
Yang X, Zhi X, Song Z, Wang G, Zhao X, Chi S, Tan B. Flesh quality of hybrid grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) fed with hydrolyzed porcine mucosa-supplemented low fishmeal diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:114-124. [PMID: 34977381 PMCID: PMC8669251 DOI: 10.1016/j.aninu.2021.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/14/2023]
Abstract
Iso-nitrogenous and iso-lipidic diets containing 0%, 3%, 6%, 9%, and 12% hydrolyzed porcine mucosa (namely, HPM0, HPM3, HPM6, HPM9, and HPM12) were prepared to evaluate their effects on the growth performance, muscle nutrition composition, texture property, and gene expression related to muscle growth of hybrid groupers (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Groupers were fed to apparent satiation at 08:00 and 16:00 every day for a total of 56 days. It was found that the weight gain percentage in the HPM0, HPM3, and HPM6 groups did not differ (P > 0.05). The cooking loss and drip loss of the dorsal muscle in the HPM3 group were lower than those in the HPM6 and HPM9 groups (P < 0.05). The hardness and chewiness of the dorsal muscle in the HPM3 group were higher than those in the HPM0, HPM9, and HPM12 groups (P < 0.05). The gumminess in the HPM3 group was higher than that in the HPM9 and HPM12 groups (P < 0.05). The total essential amino acid content of the dorsal muscle in the HPM12 group was higher than that in the HPM0 group (P < 0.05). The contents of total n-3 polyunsaturated fatty acid and total n-3 highly unsaturated fatty acid, as well as the ratio of n-3/n-6 polyunsaturated fatty acid in the dorsal muscle was higher in the HPM0 group than in all other groups (P < 0.05). The relative expressions of gene myogenic factor 5, myocyte enhancer factor 2c, myocyte enhancer factor 2a, myosin heavy chain, transforming growth factor-beta 1 (TGF-β1), and follistatin (FST) were the highest in the dorsal muscle of the HPM3 group. The results indicated that the growth performance of hybrid grouper fed a diet with 6% HPM and 27% fish meal was as good as that of the HPM0 group. When fish ingested a diet containing 3% HPM, the expression of genes TGF-β1 and FST involved in muscle growth were upregulated, and then the muscle quality related to hardness and chewiness were improved. An appropriate amount of HPM could be better used in grouper feed.
Collapse
Affiliation(s)
- Xuanyi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| | - Xinyan Zhi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziling Song
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guanghui Wang
- Yichang Huatai Biological Technology Co., Ltd., Yichang 443500, China
| | - Xumin Zhao
- Yichang Huatai Biological Technology Co., Ltd., Yichang 443500, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
2
|
Nagy K, Fébel H, Halas V, Tóth T. The effect of inclusion of fibre-rich by-products on the performance of growing and finishing pigs (pilot study). ACTA AGR SCAND A-AN 2020. [DOI: 10.1080/09064702.2020.1829697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K. Nagy
- Department of Animal Nutrition, Szent István University Kaposvár Campus, Kaposvár, Hungary
| | - H. Fébel
- National Agricultural Research and Innovation Centre, Research Institute for Animal Breeding, Nutrition and Meat Science, Herceghalom, Hungary
| | - V. Halas
- Department of Animal Nutrition, Szent István University Kaposvár Campus, Kaposvár, Hungary
| | - T. Tóth
- Department of Animal Nutrition, Szent István University Kaposvár Campus, Kaposvár, Hungary
| |
Collapse
|
3
|
Quemeneur K, Montagne L, Le Gall M, Lechevestrier Y, Labussiere E. Relation between feeding behaviour and energy metabolism in pigs fed diets enriched in dietary fibre and wheat aleurone. Animal 2020; 14:508-519. [PMID: 31609193 DOI: 10.1017/s1751731119002246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Feed intake and its daily pattern are regulated both at a short and a long term by several control pathways, including energy balance regulation. This trial aimed to determine the effect of dietary fibre (DB) (mix of wheat, soy and sugar beet pulp fibres) and aleurone supplementation and their interaction on energy and nitrogen balances in growing pigs with ad libitum access to feed. Forty pigs (BW: 35 kg) were fed diets differing by fibre concentration (NDF concentration: 10% or 14% DM) and aleurone supplementation (0, 2 or 4 g/kg) during 3 weeks. Pigs were housed individually in a respiration chamber during the last week to record feeding behaviour and measure energy and nitrogen balances (n = 36). Glucose oxidation was studied on the 6th day with an injection of [U-13C] glucose and measurement of 13CO2 production. There was no significant interaction between DB inclusion and aleurone supplementation on any variables characterizing feeding behaviour. Pigs had less but longer meals with high level of DB, with an increased interval between two meals without effect on daily feed intake. The meal frequency significantly decreased when aleurone supplementation increased. Total tract apparent digestibility coefficient of DM, organic matter, ash, nitrogen and gross energy decreased when pigs received high DB level. Dietary fibre level increased significantly faecal excreted nitrogen. Aleurone supplementation decreased nitrogen retention. Free access to the feed induced a great individual variability not only in feed intake level (from 784 to 2290 g/day) but also in feeding behaviour (from 5.5 to 21.5 meals per day). This variability can be linked with the importance of underlying feed intake regulation pathways and difference in energy balance and metabolism efficiency. Several profiles of metabolism efficiency can be discriminate, thanks to a clustering based on feeding behaviour and pre-prandial concentrations of metabolites and hormones. In conclusion, DB inclusion decreased meal frequency, increased average meal size, decreased total tract apparent faecal digestibility coefficient of nitrogen and gross energy. Supplementation of aleurone decreased average daily feed intake with a reduction of the meal number per day, without modification of average meal size. Aleurone supplementation decreased nitrogen retention and nutrient deposition. Independently of experimental diets, the high individual variability permitted discriminating different profiles with different metabolic strategies. Efficient pigs with a high energy retention as protein and lipid seem to be able to adapt their metabolism according to energy sources.
Collapse
Affiliation(s)
- K Quemeneur
- PEGASE, INRA, Agrocampus Ouest, 35590, Saint-Gilles, France
- Provimi France, Cargill, 35320, Crevin, France
| | - L Montagne
- PEGASE, INRA, Agrocampus Ouest, 35590, Saint-Gilles, France
| | - M Le Gall
- Provimi France, Cargill, 35320, Crevin, France
| | | | - E Labussiere
- PEGASE, INRA, Agrocampus Ouest, 35590, Saint-Gilles, France
| |
Collapse
|
4
|
Marçal DA, Kiefer C, Tokach MD, Dritz SS, Woodworth JC, Goodband RD, Cemin HS, Derouchey JM. Diet formulation method influences the response to increasing net energy in finishing pigs. Transl Anim Sci 2019; 3:1349-1358. [PMID: 32704897 DOI: 10.1093/tas/txz147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/06/2019] [Indexed: 11/12/2022] Open
Abstract
An experiment was conducted to compare the effects of increasing dietary net energy (NE) in finishing pig diets while either maintaining a standardized ileal digestible lysine:NE ratio (SID Lys:NE) or maintaining SID Lys as a constant percentage of the diet across increasing energy densities. A total of 150 pigs (Line 600 × 241; DNA, Columbus, NE; initially 35.7 kg) were used in a 91-d study. Pigs were blocked by sex and weight and randomly assigned to 1 of 5 treatments with 2 pigs per pen and 15 pens per treatment. Treatments included a low-energy control diet that was corn-soybean meal-based with added soybean hulls, and a 2 × 2 factorial arrangement of treatments with main effects of increasing dietary NE (medium or high by adding choice white grease) and formulation method (with a SID Lys:NE ratio or maintaining the same percentage SID Lys). Linear and quadratic contrasts were made using the control diet and the medium- and high-energy diets within each formulation method. Pigs and feeders were weighed approximately every 30 d to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F). At the end of the experiment, pigs were sent to a commercial processing facility for carcass data collection. From days 0 to 34 and 34 to 61, ADG and SID Lys intake increased as NE increased (linear, P < 0.05) in pigs fed diets with a Lys:NE ratio, but not for those fed the same percentage Lys. As NE increased, NE intake and G:F increased (P < 0.01) in pigs fed diets with either formulation method. From days 61 to 91, increasing NE had no effect (P > 0.10) on ADG. There was no change in G:F in pigs fed diets with the same percentage Lys (P > 0.10), but G:F decreased then increased (quadratic, P < 0.01) in response to increasing NE in pigs fed diets with a SID Lys:NE ratio. Overall, increasing dietary NE increased (linear, P < 0.001) daily NE intake and G:F (linear, P < 0.018) with either formulation method. However, SID Lys intake, ADG, and hot carcass weight only increased (linear, P < 0.01) when a SID Lys:NE ratio was maintained. Increasing NE without maintaining a constant SID Lys:NE ratio increased backfat depth (quadratic, P = 0.01), whereas it did not in pigs fed diets with a SID Lys:NE ratio. In conclusion, increasing dietary energy density increased NE intake and G:F regardless of formulation method. However, a SID Lys:NE ratio must be maintained to achieve increased ADG and minimize fat deposition.
Collapse
Affiliation(s)
- Danilo A Marçal
- Animal Science Graduate Program, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Charles Kiefer
- Animal Science Graduate Program, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Henrique S Cemin
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Joel M Derouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| |
Collapse
|
5
|
Li Z, Liu H, Li Y, Lv Z, Liu L, Lai C, Wang J, Wang F, Li D, Zhang S. Methodologies on estimating the energy requirements for maintenance and determining the net energy contents of feed ingredients in swine: a review of recent work. J Anim Sci Biotechnol 2018; 9:39. [PMID: 29785263 PMCID: PMC5954459 DOI: 10.1186/s40104-018-0254-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/13/2018] [Indexed: 11/10/2022] Open
Abstract
In the past two decades, a considerable amount of research has focused on the determination of the digestible (DE) and metabolizable energy (ME) contents of feed ingredients fed to swine. Compared with the DE and ME systems, the net energy (NE) system is assumed to be the most accurate estimate of the energy actually available to the animal. However, published data pertaining to the measured NE content of ingredients fed to growing pigs are limited. Therefore, the Feed Data Group at the Ministry of Agricultural Feed Industry Centre (MAFIC) located at China Agricultural University has evaluated the NE content of many ingredients using indirect calorimetry. The present review summarizes the NE research works conducted at MAFIC and compares these results with those from other research groups on methodological aspect. These research projects mainly focus on estimating the energy requirements for maintenance and its impact on the determination, prediction, and validation of the NE content of several ingredients fed to swine. The estimation of maintenance energy is affected by methodology, growth stage, and previous feeding level. The fasting heat production method and the curvilinear regression method were used in MAFIC to estimate the NE requirement for maintenance. The NE contents of different feedstuffs were determined using indirect calorimetry through standard experimental procedure in MAFIC. Previously generated NE equations can also be used to predict NE in situations where calorimeters are not available. Although popular, the caloric efficiency is not a generally accepted method to validate the energy content of individual feedstuffs. In the future, more accurate and dynamic NE prediction equations aiming at specific ingredients should be established, and more practical validation approaches need to be developed.
Collapse
Affiliation(s)
- Zhongchao Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Hu Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Yakui Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Zhiqian Lv
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Changhua Lai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| | - Shuai Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
6
|
Kil DY, Kim BG, Stein HH. Feed energy evaluation for growing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1205-17. [PMID: 25049902 PMCID: PMC4093404 DOI: 10.5713/ajas.2013.r.02] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pigs require energy for maintenance and productive purposes, and an accurate amount of available energy in feeds should be provided according to their energy requirement. Available energy in feeds for pigs has been characterized as DE, ME, or NE by considering sequential energy losses during digestion and metabolism from GE in feeds. Among these energy values, the NE system has been recognized as providing energy values of ingredients and diets that most closely describes the available energy to animals because it takes the heat increment from digestive utilization and metabolism of feeds into account. However, NE values for diets and individual ingredients are moving targets, and therefore, none of the NE systems are able to accurately predict truly available energy in feeds. The DE or ME values for feeds are important for predicting NE values, but depend on the growth stage of pigs (i.e., BW) due to the different abilities of nutrient digestion, especially for dietary fiber. The NE values are also influenced by both environment that affects NE requirement for maintenance (NEm) and the growth stage of pigs that differs in nutrient utilization (i.e., protein vs. lipid synthesis) in the body. Therefore, the interaction among animals, environment, and feed characteristics should be taken into consideration for advancing feed energy evaluation. A more mechanistic approach has been adopted in Denmark as potential physiological energy (PPE) for feeds, which is based on the theoretical biochemical utilization of energy in feeds for pigs. The PPE values are, therefore, believed to be independent of animals and environment. This review provides an overview over current knowledge on energy utilization and energy evaluation systems in feeds for growing pigs.
Collapse
Affiliation(s)
- D Y Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 456-756, Korea
| | - B G Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 456-756, Korea
| | - H H Stein
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 456-756, Korea
| |
Collapse
|
7
|
Stewart LL, Kil DY, Ji F, Hinson RB, Beaulieu AD, Allee GL, Patience JF, Pettigrew JE, Stein HH. Effects of dietary soybean hulls and wheat middlings on body composition, nutrient and energy retention, and the net energy of diets and ingredients fed to growing and finishing pigs. J Anim Sci 2013; 91:2756-65. [PMID: 23508029 DOI: 10.2527/jas.2012-5147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives of this experiment were 1) to determine the effect of dietary soybean hulls (SBH) and wheat middlings (WM) on body composition, nutrient and energy retention, and the NE of diets and ingredients fed to growing or finishing pigs and 2) to determine if finishing pigs use the energy in SBH and WM more efficiently than growing pigs. Forty growing barrows (initial BW: 25.4 ± 0.7 kg) and 40 finishing barrows (initial BW: 84.8 ± 0.9 kg) were randomly allotted to 5 groups within each stage of growth. Two groups at each stage of growth served as the initial slaughter group. The remaining pigs were randomly assigned to 3 dietary treatments and harvested at the conclusion of the experiment. The basal diet was based on corn and soybean meal and was formulated to be adequate in all nutrients. Two additional diets were formulated by mixing 70% of the basal diet and 30% SBH or 30% WM. In the growing phase, ADG, G:F, and retention of lipids were greater (P < 0.05) for pigs fed the basal diet than for pigs fed the diets containing SBH or WM. Retention of energy was also greater (P < 0.05) for pigs fed the basal diet than for pigs fed the SBH. In the finishing phase, pigs fed the SBH diet tended (P = 0.10) to have a greater ADG than pigs fed the WM diet, and energy retention was greater (P < 0.05) for pigs fed the basal diet than for pigs fed the WM diet. The NE of the basal diet fed to growing pigs was greater (P < 0.01) than the NE of the diets containing SBH or WM, and there was a tendency for a greater (P = 0.05) NE of the basal diet than of the other diets when fed to finishing pigs. The NE of SBH did not differ from the NE of WM in either growing or finishing pigs, and there was no interaction between ingredients and stage of growth on the NE of diets or ingredients. The NE of diets for growing pigs (1,668 kcal/kg) was not different from the NE of diets for finishing pigs (1,823 kcal/kg), and the NE of the diets containing SBH (1,688 kcal/kg) was not different from the NE of the diets containing WM (1,803 kcal/kg). Likewise, the NE of SBH (603 kcal/kg) did not differ from the NE of WM (987 kcal/kg). In conclusion, inclusion of 30% SBH or WM decreases the performance and nutrient retention in growing pigs but has little impact on finishing pigs. The NE of the diets decreases with the inclusion of SBH and WM, but the NE of diets and ingredients is not affected by the BW of pigs. The NE of SBH is not different from the NE of WM.
Collapse
Affiliation(s)
- L L Stewart
- Department of Animal Sciences, University of Illinois at Urbana-Champagne, Urbana 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Quiniou N, Noblet J. Effect of the dietary net energy concentration on feed intake and performance of growing-finishing pigs housed individually1. J Anim Sci 2012; 90:4362-72. [DOI: 10.2527/jas.2011-4004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Halas V, Babinszky L. Efficiency of fat deposition from different energy sources in pigs using multivariate regression analysis. ACTA AGR SCAND A-AN 2010. [DOI: 10.1080/09064700903567807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Apple JK, Maxwell CV, Galloway DL, Hutchison S, Hamilton CR. Interactive effects of dietary fat source and slaughter weight in growing-finishing swine: I. Growth performance and longissimus muscle fatty acid composition. J Anim Sci 2008; 87:1407-22. [PMID: 19066246 DOI: 10.2527/jas.2008-1453] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Crossbred pigs (n=288) were used to test the interactive effects of dietary fat source and slaughter weight on live performance, carcass traits, and fatty acid composition of the LM. Pigs were blocked by initial BW, and, within each of 9 blocks, pens (8 pigs/pen) were randomly assigned to either control corn-soybean meal grower and finisher diets devoid of added fat (Ctrl) or diets formulated with 5% beef tallow (BT), poultry fat (PF), or soybean oil (SBO). Immediately after treatment allotment, as well as at mean block BW of 45.5, 68.1, 90.9, and 113.6 kg, 1 pig was randomly selected from each pen, slaughtered, and allowed to chill for 48 h at 1 degrees C. Backfat was measured on the right sides, and a sample of the LM was removed for fatty acid composition analysis. Regardless of source, inclusion of fat in swine diets did not (P >or= 0.349) affect ADG, ADFI, or G:F. Furthermore, carcasses from pigs fed diets formulated with 5% fat had greater (P=0.013) average backfat depths than those from pigs fed the Ctrl diet. Body weight, carcass weight, and backfat depths increased (P<0.001) as slaughter weight increased from 28.1 to 113.6 kg. The proportion of SFA in the LM increased (P<0.001) with increasing slaughter weight from 28.1 to 68.1 kg, but SFA percentages were similar between 68.1 and 113.6 kg, and pigs fed the Ctrl diet had greater (P=0.032) proportions of SFA than pigs fed the SBO and PF diets. Moreover, the proportion of all MUFA increased (P<0.001) by 9.4 percentage units from 28.1 to 113.6 kg; however, only pigs fed the SBO diet had reduced (P=0.004) MUFA percentages than those fed the Ctrl, BT, and PF diets. Even though the proportion of PUFA in the LM decreased with increasing slaughter weight, pigs fed SBO had greater PUFA percentages, a greater PUFA-to-SFA ratio, and greater iodine values than pigs fed all other dietary treatments when slaughtered at BW of 45.5 kg or greater (fat source x slaughter weight, P < 0.001). Results of this study indicate that fat source had little to no impact on live pig performance, but feeding a polyunsaturated fat source altered the fatty acid profile of the LM within the first 17.4 kg of BW gain; more specifically, including 5% SBO in swine diets could lead to economical ramifications associated with soft pork or fat.
Collapse
Affiliation(s)
- J K Apple
- Department of Animal Science, University of Arkansas, Fayetteville, 72701, USA.
| | | | | | | | | |
Collapse
|