1
|
Xie R, Sher KHJ, Tang SYC, Yam IYL, Lee CH, Wu Q, Yap DYH. Dysregulation of neutrophil extracellular traps (NETs)-related genes in the pathogenesis of diabetic kidney disease - Results from bioinformatics analysis and translational studies. Clin Immunol 2024; 268:110379. [PMID: 39396625 DOI: 10.1016/j.clim.2024.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The role of Neutrophil extracellular traps (NETs) in the immunopathogenesis of Diabetic Kidney Disease (DKD) remains elusive. We used a machine learning approach to identify differentially expressed genes (DEGs) associated with NETs in human DKD kidney biopsy datasets and validated the results using single-nucleus RNA sequencing datasets. The expressions of these candidate genes and related cytokines were verified in blood obtained from DKD patients. Three NETs-associated genes (ITGAM, ITGB2 and TLR7) were identified, which all showed significant upregulation in both glomerular and tubulointerstitial compartments in human DKD kidneys. DKD patients showed significantly higher number of activated neutrophils with increased ITGAM and ITGB2 expression, higher serum IL-6 but lower IL-10, compared to healthy controls (p all <0.01). This study suggests that dysregulation of NETs-associated genes ITGAM and ITGB2 are related to the pathogenesis of DKD, and may serve as novel diagnostic markers and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ruiyan Xie
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Ka Ho Jason Sher
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Sin Yu Cindy Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Irene Ya Lin Yam
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - C H Lee
- Division of Endocrinology & Metabolism, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen 518028, HKSAR, China
| | - Qiongli Wu
- Shenzhen Experimental Education School, Shenzhen, China
| | - Desmond Yat Hin Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China.
| |
Collapse
|
2
|
Khamees Thabet H, Ragab A, Imran M, Helal MH, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Rakan Alshammari M, S Abusaif M, A Ammar Y. Discovery of new anti-diabetic potential agents based on paracetamol incorporating sulfa-drugs: Design, synthesis, α-amylase, and α-glucosidase inhibitors with molecular docking simulation. Eur J Med Chem 2024; 275:116589. [PMID: 38878516 DOI: 10.1016/j.ejmech.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Uncontrolled diabetes can lead to hyperglycemia, which causes neuropathy, heart attacks, retinopathy, and nervous system damage over time, therefore, controlling hyperglycemia using potential drug target inhibitors is a promising strategy. This work focused on synthesizing new derivatives via the diazo group, using a hybridization strategy involving two approved drugs, paracetamol and several sulfonamides. The newly designed diazo-paracetamols 5-12 were fully characterized and then screened for in vitro α-amylase and α-glucosidase activities and exhibited inhibitory percentages (IP) = 92.5-96.5 % and 91.0-95.7 % compared to Acarbose IP = 96.5 and 95.8 %, respectively at 100 μg/mL. The IC50 values of the synthesized derivatives were evaluated against α-amylase and α-glucosidase enzymes, and the results demonstrated moderate to potent activity. Among the tested diazo-paracetamols, compound 11 was found to have the highest potency activity against α-amylase with IC50 value of 0.98 ± 0.015 μM compared to Acarbose IC50 = 0.43 ± 0.009 μM, followed by compound 10 (IC50 = 1.55 ± 0.022 μM) and compound 9 (IC50 = 1.59 ± 0.023 μM). On the other hand, for α-glucosidase, compound 10 with pyrimidine moiety demonstrated the highest inhibitory activity with IC50 = 1.39 ± 0.021 μM relative to Acarbose IC50 = 1.24 ± 0.029 μM and the order of the most active derivatives was 10 > 9 (IC50 = 2.95 ± 0.046 μM) > 11 (IC50 = 5.13 ± 0.082 μM). SAR analysis confirmed that the presence of 4,5-dimethyl-isoxazole or pyrimidine nucleus attached to the sulfonyl group is important for activity. Finally, the docking simulation was achieved to determine the mode of binding interactions for the most active derivatives in the enzyme's active site.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam, 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Malek Rakan Alshammari
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
3
|
Yan S, Wang H, Feng B, Ye L, Chen A. Causal relationship between gut microbiota and diabetic nephropathy: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1332757. [PMID: 38533501 PMCID: PMC10964483 DOI: 10.3389/fimmu.2024.1332757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Emerging evidence has provided compelling evidence linking gut microbiota (GM) and diabetic nephropathy (DN) via the "gut-kidney" axis. But the causal relationship between them hasn't been clarified yet. We perform a Two-Sample Mendelian randomization (MR) analysis to reveal the causal connection with GM and the development of DN, type 1 diabetes nephropathy (T1DN), type 2 diabetes nephropathy (T2DN), type 1 diabetes mellitus (T1DM), and type 2 diabetes mellitus (T2DM). Methods We used summary data from MiBioGen on 211 GM taxa in 18340 participants. Generalized MR analysis methods were conducted to estimate their causality on risk of DN, T1DN, T2DN, T1DM and T2DM from FinnGen. To ensure the reliability of the findings, a comprehensive set of sensitivity analyses were conducted to confirm the resilience and consistency of the results. Results It was showed that Class Verrucomicrobiae [odds ratio (OR) =1.5651, 95%CI:1.1810-2.0742,PFDR=0.0018], Order Verrucomicrobiales (OR=1.5651, 95%CI: 1.1810-2.0742, PFDR=0.0018) and Family Verrucomicrobiaceae (OR=1.3956, 95%CI:1.0336-1.8844, PFDR=0.0296) had significant risk of DN. Our analysis found significant associations between GM and T2DN, including Class Verrucomimicrobiae (OR=1.8227, 95% CI: 1.2414-2.6763, PFDR=0.0139), Order Verrucomimicrobiae (OR=1.5651, 95% CI: 1.8227-2.6764, PFDR=0.0024), Rhodospirillales (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0026), and Family Verrucomicroniaceae (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0083). The Eubacteriumprotogenes (OR=0.4076, 95% CI: 0.2415-0.6882, PFDR=0.0021) exhibited a protection against T1DN. Sensitivity analyses confirmed that there was no significant heterogeneity and pleiotropy. Conclusions At the gene prediction level, we identified the specific GM that is causally linked to DN in both T1DM and T2DM patients. Moreover, we identified distinct microbial changes in T1DN that differed from those seen in T2DN, offering valuable insights into GM signatures associated with subtype of nephropathy.
Collapse
Affiliation(s)
- Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baiyu Feng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Lin Ye
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
4
|
Zhang M, Gong C, Ge F, Yu DJ. FCMSTrans: Accurate Prediction of Disease-Associated nsSNPs by Utilizing Multiscale Convolution and Deep Feature Combination within a Transformer Framework. J Chem Inf Model 2024; 64:1394-1406. [PMID: 38349747 DOI: 10.1021/acs.jcim.3c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nonsynonymous single-nucleotide polymorphisms (nsSNPs), implicated in over 6000 diseases, necessitate accurate prediction for expedited drug discovery and improved disease diagnosis. In this study, we propose FCMSTrans, a novel nsSNP predictor that innovatively combines the transformer framework and multiscale modules for comprehensive feature extraction. The distinctive attribute of FCMSTrans resides in a deep feature combination strategy. This strategy amalgamates evolutionary-scale modeling (ESM) and ProtTrans (PT) features, providing an understanding of protein biochemical properties, and position-specific scoring matrix, secondary structure, predicted relative solvent accessibility, and predicted disorder (PSPP) features, which are derived from four protein sequences and structure-oriented characteristics. This feature combination offers a comprehensive view of the molecular dynamics involving nsSNPs. Our model employs the transformer's self-attention mechanisms across multiple layers, extracting higher-level and abstract representations. Simultaneously, varied-level features are captured by multiscale convolutions, enriching feature abstraction at multiple echelons. Our comparative analyses with existing methodologies highlight significant improvements made possible by the integrated feature fusion approach adopted in FCMSTrans. This is further substantiated by performance assessments based on diverse data sets, such as PredictSNP, MMP, and PMD, with areas under the curve (AUCs) of 0.869, 0.819, and 0.693, respectively. Furthermore, FCMSTrans shows robustness and superiority by outperforming the current best predictor, PROVEAN, in a blind test conducted on a third-party data set, achieving an impressive AUC score of 0.7838. The Python code of FCMSTrans is available at https://github.com/gc212/FCMSTrans for academic usage.
Collapse
Affiliation(s)
- Ming Zhang
- School of Computer, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, China
| | - Chao Gong
- School of Computer, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, China
| | - Fang Ge
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| |
Collapse
|
5
|
Vu Nguyen D, Muanprasat C, Kaewin S, Hengphasatporn K, Shigeta Y, Rungrotmongkol T, Chavasiri W. Synthesis and biological evaluation of 2'-hydroxychalcone derivatives as AMPK activators. Bioorg Chem 2024; 143:107048. [PMID: 38141328 DOI: 10.1016/j.bioorg.2023.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
A series of 2'-hydroxychalcone derivatives with various substituents on B-ring were synthesized and evaluated for AMP-activated protein kinase (AMPK) activation activity in podocyte cells. The results displayed that hydroxy, methoxy and methylenedioxy groups on B-ring could enhance the activitiy better than O-saturated alkyl, O-unsaturated alkyl or other alkoxy groups. Compounds 27 and 29 possess the highest fold change of 2.48 and 2.73, respectively, which were higher than those of reference compound (8) (1.28) and metformin (1.88). Compounds 27 and 29 were then subjected to a concentration-response study to obtain the EC50 values of 2.0 and 4.8 µM, respectively and MTT assays also showed that cell viability was not influenced by the exposure of podocytes to compounds 27 and 29 at concentrations up to 50 μM. In addition, compound 27 was proved to activate AMPK via calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-dependent pathway without affecting intracellular calcium levels. The computational study showed that the potent compounds exhibited stronger ligand-binding strength to CaMKKβ, particularly compounds 27 (-8.4 kcal/mol) and 29 (-8.0 kcal/mol), compared to compound 8 (-7.5 kcal/mol). Fragment molecular orbital (FMO) calculation demonstrated that compound 27 was superior to compound 29 due to the presence of methyl group, which amplified the binding by hydrophobic interactions. Therefore, compound 27 would represent a promising AMPK activator for further investigation of the treatment of diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Duy Vu Nguyen
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Suchada Kaewin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Bioinformatics and Computational Biology Program, Graduated School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Kaewin S, Poolsri W, Korkut GG, Patrakka J, Aiebchun T, Rungrotmongkol T, Sungkaworn T, Sukanadi IB, Chavasiri W, Muanprasat C. A sulfonamide chalcone AMPK activator ameliorates hyperglycemia and diabetic nephropathy in db/db mice. Biomed Pharmacother 2023; 165:115158. [PMID: 37473685 DOI: 10.1016/j.biopha.2023.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which currently lacks effective treatments. AMP-activated protein kinase (AMPK) stimulation by chalcones, a class of polyphenols abundantly found in plants, is proposed as a promising therapeutic approach for DM. This study aimed to identify novel chalcone derivatives with improved AMPK-stimulating activity in human podocytes and evaluate their mechanisms of action as well as in vivo efficacy in a mouse model of DN. Among 133 chalcone derivatives tested, the sulfonamide chalcone derivative IP-004 was identified as the most potent AMPK activator in human podocytes. Western blot analyses, intracellular calcium measurements and molecular docking simulation indicated that IP-004 activated AMPK by mechanisms involving direct binding at allosteric site of calcium-dependent protein kinase kinase β (CaMKKβ) without affecting intracellular calcium levels. Interestingly, eight weeks of intraperitoneal administration of IP-004 (20 mg/kg/day) significantly decreased fasting blood glucose level, activated AMPK in the livers, muscles and glomeruli, and ameliorated albuminuria in db/db type II diabetic mice. Collectively, this study identifies a novel chalcone derivative capable of activating AMPK in vitro and in vivo and exhibiting efficacy against hyperglycemia and DN in mice. Further development of AMPK activators based on chalcone derivatives may provide an effective treatment of DN.
Collapse
Affiliation(s)
- Suchada Kaewin
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Wanangkan Poolsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Gül Gizem Korkut
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jaakko Patrakka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thitinan Aiebchun
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Titiwat Sungkaworn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - I Butu Sukanadi
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand.
| |
Collapse
|
7
|
Fungus-Derived 3-Hydroxyterphenyllin and Candidusin A Ameliorate Palmitic Acid-Induced Human Podocyte Injury via Anti-Oxidative and Anti-Apoptotic Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072109. [PMID: 35408508 PMCID: PMC9000303 DOI: 10.3390/molecules27072109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. An elevated fatty acid plasma concentration leads to podocyte injury and DN progression. This study aimed to identify and characterize cellular mechanisms of natural compounds that inhibit palmitic acid (PA)-induced human podocyte injury. By screening 355 natural compounds using a cell viability assay, 3-hydroxyterphenyllin (3-HT) and candidusin A (CDA), isolated from the marine-derived fungus Aspergillus candidus PSU-AMF169, were found to protect against PA-induced podocyte injury, with half-maximal inhibitory concentrations (IC50) of ~16 and ~18 µM, respectively. Flow cytometry revealed that 3-HT and CDA suppressed PA-induced podocyte apoptosis. Importantly, CDA significantly prevented PA-induced podocyte barrier impairment as determined by 70 kDa dextran flux. Reactive oxygen species (ROS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) direct scavenging assays indicated that both compounds exerted an anti-oxidative effect via direct free radical-scavenging activity. Moreover, 3-HT and CDA upregulated the anti-apoptotic Bcl2 protein. In conclusion, 3-HT and CDA represent fungus-derived bioactive compounds that have a novel protective effect on PA-induced human podocyte apoptosis via mechanisms involving free radical scavenging and Bcl2 upregulation.
Collapse
|
8
|
Sur S, Nguyen M, Boada P, Sigdel TK, Sollinger H, Sarwal MM. FcER1: A Novel Molecule Implicated in the Progression of Human Diabetic Kidney Disease. Front Immunol 2021; 12:769972. [PMID: 34925339 PMCID: PMC8672419 DOI: 10.3389/fimmu.2021.769972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Diabetic kidney disease (DKD) is a key microvascular complication of diabetes, with few therapies for targeting renal disease pathogenesis and progression. We performed transcriptional and protein studies on 103 unique blood and kidney tissue samples from patients with and without diabetes to understand the pathophysiology of DKD injury and its progression. The study was based on the use of 3 unique patient cohorts: peripheral blood mononuclear cell (PBMC) transcriptional studies were conducted on 30 patients with DKD with advancing kidney injury; Gene Expression Omnibus (GEO) data was downloaded, containing transcriptional measures from 51 microdissected glomerulous from patients with DKD. Additionally, 12 independent kidney tissue sections from patients with or without DKD were used for validation of target genes in diabetic kidney injury by kidney tissue immunohistochemistry and immunofluorescence. PBMC DKD transcriptional analysis, identified 853 genes (p < 0.05) with increasing expression with progression of albuminuria and kidney injury in patients with diabetes. GEO data was downloaded, normalized, and analyzed for significantly changed genes. Of the 325 significantly up regulated genes in DKD glomerulous (p < 0.05), 28 overlapped in PBMC and diabetic kidney, with perturbed FcER1 signaling as a significantly enriched canonical pathway. FcER1 was validated to be significantly increased in advanced DKD, where it was also seen to be specifically co-expressed in the kidney biopsy with tissue mast cells. In conclusion, we demonstrate how leveraging public and private human transcriptional datasets can discover and validate innate immunity and inflammation as key mechanistic pathways in DKD progression, and uncover FcER1 as a putative new DKD target for rational drug design.
Collapse
Affiliation(s)
- Swastika Sur
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mark Nguyen
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Patrick Boada
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Tara K Sigdel
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Hans Sollinger
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Minnie M Sarwal
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Ge F, Muhammad A, Yu DJ. DeepnsSNPs: Accurate prediction of non-synonymous single-nucleotide polymorphisms by combining multi-scale convolutional neural network and residue environment information. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2021; 215:104326. [DOI: 10.1016/j.chemolab.2021.104326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
|
10
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
11
|
Fereshteh B, Ali-Reza A, Nastaran M, Mohsen T, Mehdi MS. Evaluating the effects of vanadyl sulfate on biomarkers of oxidative stress and inflammation in renal tissue of rats with diabetes type 2. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
12
|
Jihua C, Cai C, Xubin B, Yue Y. Effects of Dexmedetomidine on the RhoA /ROCK/ Nox4 Signaling Pathway in Renal Fibrosis of Diabetic Rats. Open Med (Wars) 2019; 14:890-898. [PMID: 31844679 PMCID: PMC6884926 DOI: 10.1515/med-2019-0105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate the effects and mechanisms of dexmedetomidine (Dex) on model rats of diabetic nephropathy (DN). Methods Rats were divided into NC, model, Dex-L (1μg/ kg), Dex-M (5μg/kg) and Dex-H (10μg/kg) groups. Rats in all groups except in the NC group were injected with streptozotocin (STZ) combined with right nephrectomy. Rats in Dex (1, 5 and 10μg/kg) groups received gavage with Dex (1, 5 and 10μg/kg). After 4 weeks, rats were sacrificed and kidneys were collected. HE staining was performed for a renal injury. Masson staining was applied to detect the fibrotic accumulation in rat kidney. Radioimmunoassay was used to test the renal function. Immunohistochemical method was used to detect protein expressions of RhoA, p-MYPT and Nox4 in rat kidney. Results Compared with the NC group, the levels of urine microalbumin in protein, α1-MG and β2-MG, renal fibrotic accumulation, RhoA, p-MYPT, Nox4 and α-SMA in model group increased significantly (P<0.001, respectively). Compared with the model group, Dex low, medium and high groups improved the deposition of renal fiber in rats, inhibited the expression levels of microalbumin, α1-MG and β2-MG in urine and decreased expression of RhoA, p-MYPT, Nox4 and α-SMA proteins (P<0.05, P<0.01). Conclusion Dex is possible to inhibit the expression of α-SMA and renal fibrous substance deposition in rat kidney via RhoA/ROCK/Nox4 signaling pathway, thereby reducing early kidney damage in model rats.
Collapse
Affiliation(s)
- Chen Jihua
- Department of anesthesiology, Fenghua District People's Hospital, Ningbo City, Zhejiang Province, Philippines
| | - Chen Cai
- Department of anesthesiology, Fenghua District People's Hospital, Ningbo City, Zhejiang Province, Philippines
| | - Bao Xubin
- Department of anesthesiology, Fenghua District People's Hospital, Ningbo City, Zhejiang Province, Philippines
| | - Yu Yue
- Department of anesthesiology, Fenghua District People's Hospital, Ningbo City, Zhejiang Province, Philippines
| |
Collapse
|
13
|
Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. Clin Sci (Lond) 2019; 133:1321-1339. [PMID: 31221822 DOI: 10.1042/cs20190372] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is among the most common complications of diabetes mellitus (DM), and remains the leading cause of end-stage renal diseases (ESRDs) in developed countries, with no definitive therapy yet available. It is imperative to decipher the exact mechanisms underlying DKD and identify novel therapeutic targets. Burgeoning evidence indicates that long non-coding RNAs (lncRNAs) are essential for diverse biological processes. However, their roles and the mechanisms of action remain to be defined in disease conditions like diabetes and DKD. The pathogenesis of DKD is twofold, so is the principle of treatments. As the underlying disease, diabetes per se is the root cause of DKD and thus a primary focus of therapy. Meanwhile, aberrant molecular signaling in kidney parenchymal cells and inflammatory cells may directly contribute to DKD. Evidence suggests that a number of lncRNAs are centrally involved in development and progression of DKD either via direct pathogenic roles or as indirect mediators of some nephropathic pathways, like TGF-β1, NF-κB, STAT3 and GSK-3β signaling. Some lncRNAs are thus likely to serve as biomarkers for early diagnosis or prognosis of DKD or as therapeutic targets for slowing progression or even inducing regression of established DKD. Here, we elaborated the latest evidence in support of lncRNAs as a key player in DKD. In an attempt to strengthen our understanding of the pathogenesis of DKD, and to envisage novel therapeutic strategies based on targeting lncRNAs, we also delineated the potential mechanisms of action as well as the efficacy of targeting lncRNA in preclinical models of DKD.
Collapse
|
14
|
Delanaye P, Scheen AJ. Preventing and treating kidney disease in patients with type 2 diabetes. Expert Opin Pharmacother 2018; 20:277-294. [PMID: 30462565 DOI: 10.1080/14656566.2018.1551362] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic kidney disease (CKD) represents a huge burden in patients with type 2 diabetes (T2DM). This review therefore has the aim of assessing the add-on value of new glucose-lowering agents compared or combined with inhibitors of the renin angiotensin aldosterone system (RAAS) on renal outcomes in T2DM patients. AREAS COVERED This article first summarizes the results reported with RAAS inhibitors, mainstay of nephroprotection in T2DM with albuminuria. Second, it describes the positive results with glucagon-like peptide-1 receptor agonists (GLP-1RAs) and, even more impressive, sodium-glucose cotransporter type 2 inhibitors (SGLT2is). Third, besides the potential of combined therapies, it briefly considers some new approaches currently in development. EXPERT OPINION RAAS inhibitors exert renoprotective effects beyond their blood pressure lowering effects while SGLT2is, and possibly GLP-1RAs, exert nephroprotection independently of their glucose-lowering activity. These effects were demonstrated not only on surrogate endpoints such as albuminuria and estimated glomerular filtration rate decline, but also on hard endpoints, including progression to end-stage renal disease requiring replacement therapy. The underlying mechanisms are different and potentially complementary on glomerular hemodynamics, arguing for combined therapies. Nevertheless, there is still room for new emerging drugs to tackle CKD in T2DM.
Collapse
Affiliation(s)
- Pierre Delanaye
- a Division of Nephrology, Dialysis and Transplantation, Department of Medicine , Liège , Belgium
| | - André J Scheen
- b Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM) , University of Liège , Liège , Belgium.,c Department of Medicine, Division of Diabetes , Nutrition and Metabolic Disorders , Liège , Belgium
| |
Collapse
|
15
|
Fernandes R, Viana SD, Nunes S, Reis F. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1876-1897. [PMID: 30287404 DOI: 10.1016/j.bbadis.2018.09.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
The increased prevalence of type 2 diabetes mellitus (T2DM) and life expectancy of diabetic patients fosters the worldwide prevalence of retinopathy and nephropathy, two major microvascular complications that have been difficult to treat with contemporary glucose-lowering medications. The gut microbiota (GM) has become a lively field research in the last years; there is a growing recognition that altered intestinal microbiota composition and function can directly impact the phenomenon of ageing and age-related disorders. In fact, human GM, envisaged as a potential source of novel therapeutics, strongly modulates host immunity and metabolism. It is now clear that gut dysbiosis and their products (e.g. p-cresyl sulfate, trimethylamine‑N‑oxide) dictate a secretory associated senescence phenotype and chronic low-grade inflammation, features shared in the physiological process of ageing ("inflammaging") as well as in T2DM ("metaflammation") and in its microvascular complications. This review provides an in-depth look on the crosstalk between GM, host immunity and metabolism. Further, it characterizes human GM signatures of elderly and T2DM patients. Finally, a comprehensive scrutiny of recent molecular findings (e.g. epigenetic changes) underlying causal relationships between GM dysbiosis and diabetic retinopathy/nephropathy complications is pinpointed, with the ultimate goal to unravel potential pathophysiological mechanisms that may be explored, in a near future, as personalized disease-modifying therapeutic approaches.
Collapse
Affiliation(s)
- Rosa Fernandes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Sofia D Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|