1
|
Yao D, Xie L, Du K, Yao X, Shen X. Decaffeinated green tea polyphenols supplementation had no adverse health effects in girls with obesity: a randomized controlled trial. Asia Pac J Clin Nutr 2024; 33:111-117. [PMID: 38494693 PMCID: PMC11170002 DOI: 10.6133/apjcn.202403_33(1).0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/27/2023] [Accepted: 11/13/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND OBJECTIVES While the health promoting effects of green tea polyphenols have been identi-fied among adult, research on children is scarce probably due to safety concerns about caffeine. This study aims to evaluate the safety of decaffeinated green tea polyphenols (DGTP) supplementation in girls with obesity and lay the foundation for its application in children population. METHODS AND STUDY DESIGN This 12-week randomized, double-blinded, parallel-controlled trial was performed among 62 girls with obesity aged 6 to 10 years old. Participants were allocated to take 400 mg/d DGTP (DGTP group, n = 31) or isodose placebo (Control group, n = 31) at random. Anthropometric measurements and biochemical parameters including hepatic and renal function indicators, serum minerals concentrations, and routine blood parameters, were measured at baseline and the end of this trial. DGTP intake diary was required for each participant to record any abnormal reactions. RESULTS After the 12-week supplementation, compared to Control group, the uric acid concentration in DGTP group showed a significant decrease (-48.0 ± 83.2 vs -0.01 ± 69.1, μmol/L), within the normal range. Regarding other biochemical indicators, there were no significant differences in changed values between the two groups. Throughout the trial, no adverse effects were reported in either group. CONCLUSIONS This study indicated that the supplementation of 400 mg/d DGTP for 12 weeks had no adverse health effects in girls with obesity, providing evidence for the DGTP adoption in children research.
Collapse
Affiliation(s)
- Die Yao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyao Xie
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Du
- Department of Clinical Laboratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Yao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Med-icine, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
2
|
Hwang S, Koo I, Patterson AD, Lambert JD. Comparative urine metabolomics of mice treated with non-toxic and toxic oral doses of (-)-epigallocatechin-3-gallate. Food Funct 2023; 14:9434-9445. [PMID: 37796030 DOI: 10.1039/d3fo02710d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), has been studied for its potential positive health effects, but human and animal model studies have reported potential toxicity at high oral bolus doses. This study used liquid chromatography-mass spectrometry-based metabolomics to compare the urinary EGCG metabolite profile after administration of a single non-toxic (100 mg kg-1) or toxic (750 mg kg-1) oral bolus dose to male C57BL6/J mice to better understand how EGCG metabolism varies with dose. EGCG metabolites, including methyl, glucuronide, sulfate, and glucoside conjugates, were tentatively identified based on their mass to charge (m/z) ratio and fragment ion patterns. Partial least squares discriminant analysis (PLS-DA) results showed clear separation of the urine metabolite profiles between treatment groups. The most differentiating metabolites in the negative and positive ion modes were provisionally identified as di-glucuronidated EGCG quinone and di-glucuronidated EGCG, respectively. The presence of EGCG oxidation products at toxic dose is consistent with studies showing that EGCG toxicity is associated with oxidative stress. Relative amounts of methylated metabolites increased with dose to a lesser extent than glucuronide and sulfate metabolites, indicating that methylation is more prominent at low doses, whereas glucuronidation and sulfation may be more important at higher doses. One limitation of the current work is that the lack of commercially-available EGCG metabolite standards prevented absolute metabolite quantification and identification. Despite this limitation, these findings provide a basis for better understanding the dose-dependent changes in EGCG metabolism and advance studies on how these differences may contribute to the toxicity of high doses of EGCG.
Collapse
Affiliation(s)
- Soomee Hwang
- Department of Food Science, The Pennsylvania State University, 332 Food Science Building, University Park, PA 16802, USA.
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, 332 Food Science Building, University Park, PA 16802, USA.
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Li D, Cao D, Cui Y, Sun Y, Jiang J, Cao X. The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front Pharmacol 2023; 14:1201085. [PMID: 37292151 PMCID: PMC10244546 DOI: 10.3389/fphar.2023.1201085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most notorious malignancies globally, has a high fatality and poor prognosis. Though remarkable breakthroughs have been made in the therapeutic strategies recently, the overall survival of HCC remains unsatisfactory. Consequently, the therapy of HCC remains a great challenge. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from the leaves of the tea bush, has been extensively investigated for its antitumor effects. In this review, we summarize the previous literature to elucidate the roles of EGCG in the chemoprophylaxis and therapy of HCC. Accumulating evidence has confirmed EGCG prevents and inhibits the hepatic tumorigenesis and progression through multiple biological mechanisms, mainly involving hepatitis virus infection, oxidative stress, proliferation, invasion, migration, angiogenesis, apoptosis, autophagy, and tumor metabolism. Furthermore, EGCG enhances the efficacy and sensitivity of chemotherapy, radiotherapy, and targeted therapy in HCC. In conclusion, preclinical studies have confirmed the potential of EGCG for chemoprevention and therapy of HCC under multifarious experimental models and conditions. Nevertheless, there is an urgent need to explore the safety and efficacy of EGCG in the clinical practice of HCC.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
5
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
6
|
Ferrari E, Bettuzzi S, Naponelli V. The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review. Int J Mol Sci 2022; 23:ijms23116075. [PMID: 35682754 PMCID: PMC9181147 DOI: 10.3390/ijms23116075] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an evolutionarily conserved process for the degradation of redundant or damaged cellular material by means of a lysosome-dependent mechanism, contributing to cell homeostasis and survival. Autophagy plays a multifaceted and context-dependent role in cancer initiation, maintenance, and progression; it has a tumor suppressive role in the absence of disease and is upregulated in cancer cells to meet their elevated metabolic demands. Autophagy represents a promising but challenging target in cancer treatment. Green tea is a widely used beverage with healthy effects on several diseases, including cancer. The bioactive compounds of green tea are mainly catechins, and epigallocatechin-gallate (EGCG) is the most abundant and biologically active among them. In this review, evidence of autophagy modulation and anti-cancer effects induced by EGCG treatment in experimental cancer models is presented. Reviewed articles reveal that EGCG promotes cytotoxic autophagy often through the inactivation of PI3K/Akt/mTOR pathway, resulting in apoptosis induction. EGCG pro-oxidant activity has been postulated to be responsible for its anti-cancer effects. In combination therapy with a chemotherapy drug, EGCG inhibits cell growth and the drug-induced pro-survival autophagy. The selected studies rightly claim EGCG as a valuable agent in cancer chemoprevention.
Collapse
|
7
|
Diniz LRL, Elshabrawy HA, Souza MTDS, Duarte ABS, Datta S, de Sousa DP. Catechins: Therapeutic Perspectives in COVID-19-Associated Acute Kidney Injury. Molecules 2021; 26:5951. [PMID: 34641495 PMCID: PMC8512361 DOI: 10.3390/molecules26195951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Data obtained from several intensive care units around the world have provided substantial evidence of the strong association between impairment of the renal function and in-hospital deaths of critically ill COVID-19 patients, especially those with comorbidities and requiring renal replacement therapy (RRT). Acute kidney injury (AKI) is a common renal disorder of various etiologies characterized by a sudden and sustained decrease of renal function. Studies have shown that 5-46% of COVID-19 patients develop AKI during hospital stay, and the mortality of those patients may reach up to 100% depending on various factors, such as organ failures and RRT requirement. Catechins are natural products that have multiple pharmacological activities, including anti-coronavirus and reno-protective activities against kidney injury induced by nephrotoxic agents, obstructive nephropathies and AKI accompanying metabolic and cardiovascular disorders. Therefore, in this review, we discuss the anti-SARS-CoV-2 and reno-protective effects of catechins from a mechanistic perspective. We believe that catechins may serve as promising therapeutics in COVID-19-associated AKI due to their well-recognized anti-SARS-CoV-2, and antioxidant and anti-inflammatory properties that mediate their reno-protective activities.
Collapse
Affiliation(s)
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | | | | | - Sabarno Datta
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil;
| |
Collapse
|
8
|
Kowalska J, Marzec A, Domian E, Galus S, Ciurzyńska A, Brzezińska R, Kowalska H. Influence of Tea Brewing Parameters on the Antioxidant Potential of Infusions and Extracts Depending on the Degree of Processing of the Leaves of Camellia sinensis. Molecules 2021; 26:4773. [PMID: 34443362 PMCID: PMC8400668 DOI: 10.3390/molecules26164773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022] Open
Abstract
The polyphenol content of tea depends on the growing region, harvest date, the production process used, and the brewing parameters. In this study, research was undertaken that included an analysis of the influence of the brewing process parameters on the content of total polyphenols (Folin-Ciocalteu), epigallocatechin gallate (HPLC), and antioxidant activity (against DPPH radicals) of fresh tea shrub leaves grown from Taiwan and of teas obtained from them (oolong, green in bags, and green loose from the spring and autumn harvest). The antioxidant potential was determined in the methanol and aqueous extracts, as well as in infusions that were obtained by using water at 65 or 100 °C and infusing the tea for 5 or 10 min. The highest content of total polyphenols and epigallocatechin gallate was found in green tea extracts from the spring harvest. However, in the case of infusions, the highest content of these compounds was found in green tea in bags. Steaming at 100 °C for 10 min, turned out to be the most favourable condition for the extraction. Oolong tea, brewed at 100 °C for 5 min was characterised by the highest antioxidant activity against stable DPPH radicals.
Collapse
Affiliation(s)
- Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Agnieszka Ciurzyńska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Rita Brzezińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| |
Collapse
|
9
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
10
|
Zwolak I. Epigallocatechin Gallate for Management of Heavy Metal-Induced Oxidative Stress: Mechanisms of Action, Efficacy, and Concerns. Int J Mol Sci 2021; 22:4027. [PMID: 33919748 PMCID: PMC8070748 DOI: 10.3390/ijms22084027] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
In this review, we highlight the effects of epigallocatechin gallate (EGCG) against toxicities induced by heavy metals (HMs). This most active green tea polyphenol was demonstrated to reduce HM toxicity in such cells and tissues as testis, liver, kidney, and neural cells. Several protective mechanisms that seem to play a pivotal role in EGCG-induced effects, including reactive oxygen species scavenging, HM chelation, activation of nuclear factor erythroid 2-related factor 2 (Nrf2), anti-inflammatory effects, and protection of mitochondria, are described. However, some studies, especially in vitro experiments, reported potentiation of harmful HM actions in the presence of EGCG. The adverse impact of EGCG on HM toxicity may be explained by such events as autooxidation of EGCG, EGCG-mediated iron (Fe3+) reduction, depletion of intracellular glutathione (GSH) levels, and disruption of mitochondrial functions. Furthermore, challenges hampering the potential EGCG application related to its low bioavailability and proper dosing are also discussed. Overall, in this review, we point out insights into mechanisms that might account for both the beneficial and adverse effects of EGCG in HM poisoning, which may have a bearing on the design of new therapeutics for HM intoxication therapy.
Collapse
Affiliation(s)
- Iwona Zwolak
- Centre for Interdisciplinary Research, Laboratory of Oxidative Stress, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708 Lublin, Poland
| |
Collapse
|
11
|
Adami GR, Tangney C, Schwartz JL, Dang KC. Gut/Oral Bacteria Variability May Explain the High Efficacy of Green Tea in Rodent Tumor Inhibition and Its Absence in Humans. Molecules 2020; 25:molecules25204753. [PMID: 33081212 PMCID: PMC7594096 DOI: 10.3390/molecules25204753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Consumption of green tea (GT) and GT polyphenols has prevented a range of cancers in rodents but has had mixed results in humans. Human subjects who drank GT for weeks showed changes in oral microbiome. However, GT-induced changes in RNA in oral epithelium were subject-specific, suggesting GT-induced changes of the oral epithelium occurred but differed across individuals. In contrast, studies in rodents consuming GT polyphenols revealed obvious changes in epithelial gene expression. GT polyphenols are poorly absorbed by digestive tract epithelium. Their metabolism by gut/oral microbial enzymes occurs and can alter absorption and function of these molecules and thus their bioactivity. This might explain the overall lack of consistency in oral epithelium RNA expression changes seen in human subjects who consumed GT. Each human has different gut/oral microbiomes, so they may have different levels of polyphenol-metabolizing bacteria. We speculate the similar gut/oral microbiomes in, for example, mice housed together are responsible for the minimal variance observed in tissue GT responses within a study. The consistency of the tissue response to GT within a rodent study eases the selection of a dose level that affects tumor rates. This leads to the theory that determination of optimal GT doses in a human requires knowledge about the gut/oral microbiome in that human.
Collapse
Affiliation(s)
- Guy R. Adami
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
- Correspondence: ; Tel.: +1-312-996-6251
| | - Christy Tangney
- Department of Clinical Nutrition, College of Health Sciences, Rush University Medical Center, 600 South Paulina St, Room 716 AAC, Chicago, IL 60612, USA;
| | - Joel L. Schwartz
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
| | - Kim Chi Dang
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
| |
Collapse
|
12
|
Wu Y, Cui J. (-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2209-2220. [PMID: 32062732 DOI: 10.1007/s00210-020-01841-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. (-)-Epigallocatechin-3-gallate (EGCG) has shown robust neuroprotective effects on various brain injury models in rodents. Herein, we aimed to investigate if EGCG protects against TBI and unravel the underlying mechanisms. A total of 102 mice were used for this study. TBI was induced by controlled cortical impact (CCI). EGCG was given immediately after TBI injury. Neurological functions were accessed by corner test, paw placement, modified neurological severity score, rotarod test, and Morris water maze test. AMPK inhibitor and AMPKα1-knockout mice were used to further study the signaling pathways involved in the observed effects. Our results show that EGCG significantly ameliorated CCI-induced neurological impairment, including spatial learning and memory. EGCG suppressed CCI-induced inflammation and oxidative stress. Furthermore, EGCG downregulated the phosphorylation of IKKα/β, IκBα, and nuclear translocation of NF-κB p65; upregulated AMPK phosphorylation; and altered corresponding changes in the phosphorylation of the downstream target's ribosomal protein S6, AS160, and CaMKKß. Our data demonstrate that EGCG protects against CCI-induced TBI through the activation of the AMPK pathway in mice, suggesting that EGCG might be a promising therapeutic intervention preventing locomotor and cognitive impairments after TBI.
Collapse
Affiliation(s)
- Yinyin Wu
- The Second People's Hospital of Hefei City, Intersection of Guangde Road and Leshui Road, Yaohai District, Hefei, 230011, Anhui, China.
| | - Jing Cui
- The Second People's Hospital of Hefei City, Intersection of Guangde Road and Leshui Road, Yaohai District, Hefei, 230011, Anhui, China
| |
Collapse
|
13
|
Ettcheto M, Cano A, Manzine PR, Busquets O, Verdaguer E, Castro-Torres RD, García ML, Beas-Zarate C, Olloquequi J, Auladell C, Folch J, Camins A. Epigallocatechin-3-Gallate (EGCG) Improves Cognitive Deficits Aggravated by an Obesogenic Diet Through Modulation of Unfolded Protein Response in APPswe/PS1dE9 Mice. Mol Neurobiol 2019; 57:1814-1827. [PMID: 31838720 DOI: 10.1007/s12035-019-01849-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a catechin found in green tea, has been previously investigated for its neuroprotective effects in vitro and in vivo. In the present study, we aimed to evaluate its possible beneficial effects in a well-established preclinical mixed model of familial Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) based on the use of transgenic APPswe/PS1dE9 (APP/PS1) mice fed with a high fat diet (HFD). C57BL/6 wild-type (WT) and APP/PS1 mice were used in this study. APP/PS1 mice were fed with a palmitic acid-enriched HFD (APP/PS1 HFD) containing 45% of fat mainly from hydrogenated coconut oil. Intraperitoneal glucose tolerance tests (IP-GTT) and insulin tolerance tests (IP-ITT) were performed. Western blot analyses were performed to analyse protein expression, and water maze and novel object recognition test were done to evaluate the cognitive process. EGCG treatment improves peripheral parameters such as insulin sensitivity or liver insulin pathway signalling, as well as central memory deficits. It also markedly increased synaptic markers and cAMP response element binding (CREB) phosphorylation rates, as a consequence of a decrease in the unfolded protein response (UPR) activation through the reduction in the activation factor 4 (ATF4) levels and posterior downregulation of protein tyrosine phosphatase 1B (PTP1B). Moreover, EGCG significantly decreased brain amyloid β (Aβ) production and plaque burden by increasing the levels of α-secretase (ADAM10). Also, it led to a reduction in neuroinflammation, as suggested by the decrease in astrocyte reactivity and toll-like receptor 4 (TLR4) levels. Collectively, evidence suggests that chronic EGCG prevents distinct neuropathological AD-related hallmarks. This study also provides novel insights into the metabolic and neurobiological mechanisms of EGCG against cognitive loss through its effects on UPR function, suggesting that this compound may be a promising disease-modifying treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Miren Ettcheto
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Patricia R Manzine
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Oriol Busquets
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rubén Dario Castro-Torres
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Department of Cellular and Molecular Biology, Neuroscience Division, C.U.C.B.A., University of Guadalajara, Sierra Mojada, Col. Independencia, Guadalajara, Jalisco, México
| | - Maria Luisa García
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Department of Cellular and Molecular Biology, Neuroscience Division, C.U.C.B.A., University of Guadalajara, Sierra Mojada, Col. Independencia, Guadalajara, Jalisco, México
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antoni Camins
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain. .,Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile. .,Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028, Barcelona, Spain.
| |
Collapse
|
14
|
Escobar-Avello D, Lozano-Castellón J, Mardones C, Pérez AJ, Saéz V, Riquelme S, von Baer D, Vallverdú-Queralt A. Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019; 24:molecules24203763. [PMID: 31635434 PMCID: PMC6832258 DOI: 10.3390/molecules24203763] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Grape canes (Vitis vinifera L.) are a viticulture industry by-product with an important content of secondary metabolites, mainly polyphenols with a broad spectrum of demonstrated health benefits. Grape canes, therefore, have considerable economic potential as a source of high-value phytochemicals. In this work, liquid chromatography coupled with electrospray ionization hybrid linear trap quadrupole-Orbitrap mass spectrometry (LC-LTQ-Orbitrap) was used for the comprehensive identification of polyphenolic compounds in grape canes. Identification of polyphenols was performed by comparing their retention times, accurate mass measured, and mass fragmentation patterns with those of reference substances or available data in the literature. A total of 75 compounds were identified, including phenolic acids, flavanols, flavonols, flavanonols, flavanones, and stilbenoids. The most abundant polyphenols were proanthocyanidins and stilbenoids and their oligomers. Moreover, the high-resolution mass spectrometry analysis revealed the occurrence of 17 polyphenols never described before in grape canes, thereby providing a more complete polyphenolic profile of this potentially valuable by-product.
Collapse
Affiliation(s)
- Danilo Escobar-Avello
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (D.E.-A.); (J.L.-C.)
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, 4191996 Coronel, Chile;
| | - Julián Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (D.E.-A.); (J.L.-C.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; (C.M.); (A.J.P.); (V.S.); (D.v.B.)
| | - Andy J. Pérez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; (C.M.); (A.J.P.); (V.S.); (D.v.B.)
| | - Vania Saéz
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; (C.M.); (A.J.P.); (V.S.); (D.v.B.)
| | - Sebastián Riquelme
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, 4191996 Coronel, Chile;
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; (C.M.); (A.J.P.); (V.S.); (D.v.B.)
| | - Dietrich von Baer
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; (C.M.); (A.J.P.); (V.S.); (D.v.B.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (D.E.-A.); (J.L.-C.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-403-4843
| |
Collapse
|
15
|
Multilevel structure-activity profiling reveals multiple green tea compound families that each modulate ubiquitin-activating enzyme and ubiquitination by a distinct mechanism. Sci Rep 2019; 9:12801. [PMID: 31488855 PMCID: PMC6728334 DOI: 10.1038/s41598-019-48888-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
We developed and implemented a reconstituted system to screen for modulators of the ubiquitination of proliferating cell nuclear antigen, a process that activates pathways of DNA damage tolerance and drug resistance. We identified the primary putatively health-beneficial green tea polyphenol epigallocatechin gallate (EGCG) and certain related small molecules as potent inhibitors of ubiquitination. EGCG directly and reversibly targets the ubiquitin-activating enzyme Uba1, blocking formation of the Uba1~ubiquitin thioester conjugate and thus ubiquitination and in the cell. Structure–activity relationship profiles across multiple biochemical and cellular assays for a battery of EGCG analogues revealed distinct chemical and mechanism-of-action clusters of molecules, with catechin gallates, alkyl gallates, and myricetin potently inhibiting ubiquitination. This study defines a number of related though distinct first-in-class inhibitors of ubiquitination, each series with its own unique activity pattern and mechanistic signature.
Collapse
|
16
|
|
17
|
Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea ( Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019; 11:nu11020474. [PMID: 30813433 PMCID: PMC6412948 DOI: 10.3390/nu11020474] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Tea is one of the most widely consumed beverages worldwide, and is available in various forms. Green tea is richer in antioxidants compared to other forms of tea. Tea is composed of polyphenols, caffeine, minerals, and trace amounts of vitamins, amino acids, and carbohydrates. The composition of the tea varies depending on the fermentation process employed to produce it. The phytochemicals present in green tea are known to stimulate the central nervous system and maintain overall health in humans. Skin aging is a complex process mediated by intrinsic factors such as senescence, along with extrinsic damage induced by external factors such as chronic exposure to ultraviolet (UV) irradiation—A process known as photoaging—Which can lead to erythema, edema, sunburn, hyperplasia, premature aging, and the development of non-melanoma and melanoma skin cancers. UV can cause skin damage either directly, through absorption of energy by biomolecules, or indirectly, by increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Green tea phytochemicals are a potent source of exogenous antioxidant candidates that could nullify excess endogenous ROS and RNS inside the body, and thereby diminish the impact of photoaging. Several in vivo and in vitro studies suggest that green tea supplementation increases the collagen and elastin fiber content, and suppresses collagen degrading enzyme MMP-3 production in the skin, conferring an anti-wrinkle effect. The precise mechanism behind the anti-photoaging effect of green tea has not been explored yet. Studies using the worm model have suggested that green tea mediated lifespan extension depends on the DAF-16 pathway. Apart from this, green tea has been reported to have stress resistance and neuroprotective properties. Its ROS scavenging activity makes it a potent stress mediator, as it can also regulate the stress induced by metal ions. It is known that tea polyphenols can induce the expression of different antioxidant enzymes and hinder the DNA oxidative damage. Growing evidence suggests that green tea can also be used as a potential agent to mediate neurodegenerative diseases, including Alzheimer’s disease. EGCG, an abundant catechin in tea, was found to suppress the neurotoxicity induced by Aβ as it activates glycogen synthase kinase-3β (GSK-3β), along with inhibiting c-Abl/FE65—the cytoplasmic nonreceptor tyrosine kinase which is involved in the development of the nervous system and in nuclear translocation. Additionally, green tea polyphenols induce autophagy, thereby revitalizing the overall health of the organism consuming it. Green tea was able to activate autophagy in HL-60 xenographs by increasing the activity of PI3 kinase and BECLIN-1. This manuscript describes the reported anti-photoaging, stress resistance, and neuroprotective and autophagy properties of one of the most widely known functional foods—green tea.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|