1
|
Hwang SA, Park KS, Kim WS, Shin KC, Ahn YR, Kim JS, Chee HK, Yang HS, Oh KB, Choi KM, Hwang JH, Hur CG, Yun IJ. Current Status of Genetically Engineered Pig to Monkey Kidney Xenotransplantation in Korea. Transplant Proc 2023:S0041-1345(23)00225-7. [PMID: 37179178 DOI: 10.1016/j.transproceed.2023.03.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND In South Korea, pig-to-nonhuman primate trials of solid organs have only been performed recently, and the results are not sufficiently satisfactory to initiate clinical trials. Since November 2011, we have performed 30 kidney pig-to-nonhuman primate xenotransplantations at Konkuk University Hospital. METHODS Donor αGal-knockout-based transgenic pigs were obtained from 3 institutes. The knock-in genes were CD39, CD46, CD55, CD73, and thrombomodulin, and 2-4 transgenic modifications with GTKO were done. The recipient animal was the cynomolgus monkey. We used the immunosuppressants anti-CD154, rituximab, anti-thymocyte globulin, tacrolimus, mycophenolate mofetil, and steroids. RESULTS The mean survival duration of the recipients was 39 days. Except for a few cases for which survival durations were <2 days because of technical failure, 24 grafts survived for >7 days, with an average survival duration of 50 days. Long-term survival was observed 115 days after the removal of the contralateral kidney, which is currently the longest-recorded graft survival in Korea. We confirmed functioning grafts for the surviving transplanted kidneys after the second-look operation, and no signs of hyperacute rejection were observed. CONCLUSIONS Although our survival results are relatively poor, they are the best-recorded results in South Korea, and the ongoing results are improving. With the support of government funds and the volunteering activities of clinical experts, we aim to further improve our experiments and contribute to the commencement of clinical trials of kidney xenotransplantation in Korea.
Collapse
Affiliation(s)
- Sun Ae Hwang
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Wan Seop Kim
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Ki Cheul Shin
- Department of Ophthalmology, Konkuk University Medical Center, Seoul, Korea
| | - Yu Rim Ahn
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Jun Seok Kim
- Department of Thoracic and Cardiovascular Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Hyun Keun Chee
- Department of Thoracic and Cardiovascular Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Hyun Suk Yang
- Department of Cardiology, Konkuk University School of Medicine, Seoul, Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Wanju-gun, Korea
| | - Ki Myung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju-si, Republic of Korea
| | - Jeong Ho Hwang
- Non-Human Primate Minipig Translational Toxicology Research, Korea Institute of Toxicology, Jeonbuk, Korea
| | | | - Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Tseng HT, Lin YW, Huang CY, Shih CM, Tsai YT, Liu CW, Tsai CS, Lin FY. Animal Models for Heart Transplantation Focusing on the Pathological Conditions. Biomedicines 2023; 11:biomedicines11051414. [PMID: 37239085 DOI: 10.3390/biomedicines11051414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiac transplant recipients face many complications due to transplant rejection. Scientists must conduct animal experiments to study disease onset mechanisms and develop countermeasures. Therefore, many animal models have been developed for research topics including immunopathology of graft rejection, immunosuppressive therapies, anastomotic techniques, and graft preservation techniques. Small experimental animals include rodents, rabbits, and guinea pigs. They have a high metabolic rate, high reproductive rate, small size for easy handling, and low cost. Additionally, they have genetically modified strains for pathological mechanisms research; however, there is a lacuna, as these research results rarely translate directly to clinical applications. Large animals, including canines, pigs, and non-human primates, have anatomical structures and physiological states that are similar to those of humans; therefore, they are often used to validate the results obtained from small animal studies and directly speculate on the feasibility of applying these results in clinical practice. Before 2023, PubMed Central® at the United States National Institute of Health's National Library of Medicine was used for literature searches on the animal models for heart transplantation focusing on the pathological conditions. Unpublished reports and abstracts from conferences were excluded from this review article. We discussed the applications of small- and large-animal models in heart transplantation-related studies. This review article aimed to provide researchers with a complete understanding of animal models for heart transplantation by focusing on the pathological conditions created by each model.
Collapse
Affiliation(s)
- Horng-Ta Tseng
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Yangming Campus), Taipei 112304, Taiwan
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
| | - Chen-Wei Liu
- Department of Basic Medical Science, College of Medicine, University of Arizona, Phoenix, AZ 85721, USA
| | - Chien-Sung Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Tsai H, Wu Y, Liu X, Xu Z, Liu L, Wang C, Zhang H, Huang Y, Wang L, Zhang W, Su D, Khan FU, Zhu X, Yang R, Pang Y, Eriksson JE, Zhu H, Wang D, Jia B, Cheng F, Chen H. Engineered Small Extracellular Vesicles as a FGL1/PD-L1 Dual-Targeting Delivery System for Alleviating Immune Rejection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102634. [PMID: 34738731 PMCID: PMC8787398 DOI: 10.1002/advs.202102634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Indexed: 06/13/2023]
Abstract
There is an urgent need for developing new immunosuppressive agents due to the toxicity of long-term use of broad immunosuppressive agents after organ transplantation. Comprehensive sample analysis revealed dysregulation of FGL1/LAG-3 and PD-L1/PD-1 immune checkpoints in allogeneic heart transplantation mice and clinical kidney transplant patients. In order to enhance these two immunosuppressive signal axes, a bioengineering strategy is developed to simultaneously display FGL1/PD-L1 (FP) on the surface of small extracellular vesicles (sEVs). Among various cell sources, FP sEVs derived from mesenchymal stem cells (MSCs) not only enriches FGL1/PD-L1 expression but also maintain the immunomodulatory properties of unmodified MSC sEVs. Next, it is confirmed that FGL1 and PD-L1 on sEVs are specifically bound to their receptors, LAG-3 and PD-1 on target cells. Importantly, FP sEVs significantly inhibite T cell activation and proliferation in vitro and a heart allograft model. Furthermore, FP sEVs encapsulated with low-dose FK506 (FP sEVs@FK506) exert stronger effects on inhibiting T cell proliferation, reducing CD8+ T cell density and cytokine production in the spleens and heart grafts, inducing regulatory T cells in lymph nodes, and extending graft survival. Taken together, dual-targeting sEVs have the potential to boost the immune inhibitory signalings in synergy and slow down transplant rejection.
Collapse
Affiliation(s)
- Hsiang‐i Tsai
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
- Department of Medical ImagingThe Affiliated Hospital of Jiangsu UniversityZhenjiang212001China
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
| | - Longshan Liu
- Organ Transplant CenterThe First Affiliated HospitalSun Yat‐Sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Changxi Wang
- Organ Transplant CenterThe First Affiliated HospitalSun Yat‐Sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Huanxi Zhang
- Organ Transplant CenterThe First Affiliated HospitalSun Yat‐Sen University58 Zhongshan 2nd RoadGuangzhouGuangdong510080China
| | - Yisheng Huang
- Department of Oral SurgeryStomatological HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R China
| | - Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
| | - Weixian Zhang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
| | | | - Xiaofeng Zhu
- School of Traditional Medicine Materials ResourceGuangdong Pharmaceutical University YunfuGuangdong527322China
| | - Rongya Yang
- Department of DermatologyThe Seventh Medical Center of PLA General HospitalPeking100010China
| | - Yuxin Pang
- School of Traditional Medicine Materials ResourceGuangdong Pharmaceutical University YunfuGuangdong527322China
| | - John E. Eriksson
- Cell BiologyBiosciencesFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFI‐20520Finland
| | - Haitao Zhu
- Department of Medical ImagingThe Affiliated Hospital of Jiangsu UniversityZhenjiang212001China
| | - Dongqing Wang
- Department of Medical ImagingThe Affiliated Hospital of Jiangsu UniversityZhenjiang212001China
| | - Bo Jia
- Department of Oral SurgeryStomatological HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107P. R. China
| |
Collapse
|
4
|
Abstract
Animal models provide the link between in vitro research and the first in-man application during clinical trials. They provide substantial information in preclinical studies for the assessment of new therapeutic interventions in advance of human clinical trials. However, each model has its advantages and limitations in the ability to imitate specific pathomechanisms. Therefore, the selection of an animal model for the evaluation of a specific research question or evaluation of a novel therapeutic strategy requires a precise analysis. Transplantation research is a discipline that largely benefits from the use of animal models with mouse and pig models being the most frequently used models in organ transplantation research. A suitable animal model should reflect best the situation in humans, and the researcher should be aware of the similarities as well as the limitations of the chosen model. Small animal models with rats and mice are contributing to the majority of animal experiments with the obvious advantages of these models being easy handling, low costs, and high reproductive rates. However, unfortunately, they often do not translate to clinical use. Large animal models, especially in transplantation medicine, are an important element for establishing preclinical models that do often translate to the clinic. Nevertheless, they can be costly, present increased regulatory requirements, and often are of high ethical concern. Therefore, it is crucial to select the right animal model from which extrapolations and valid conclusions can be obtained and translated into the human situation. This review provides an overview in the models frequently used in organ transplantation research.
Collapse
|
5
|
Tsai H, Zeng X, Liu L, Xin S, Wu Y, Xu Z, Zhang H, Liu G, Bi Z, Su D, Yang M, Tao Y, Wang C, Zhao J, Eriksson JE, Deng W, Cheng F, Chen H. NF45/NF90-mediated rDNA transcription provides a novel target for immunosuppressant development. EMBO Mol Med 2021; 13:e12834. [PMID: 33555115 PMCID: PMC7933818 DOI: 10.15252/emmm.202012834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Herein, we demonstrate that NFAT, a key regulator of the immune response, translocates from cytoplasm to nucleolus and interacts with NF45/NF90 complex to collaboratively promote rDNA transcription via triggering the directly binding of NF45/NF90 to the ARRE2-like sequences in rDNA promoter upon T-cell activation in vitro. The elevated pre-rRNA level of T cells is also observed in both mouse heart or skin transplantation models and in kidney transplanted patients. Importantly, T-cell activation can be significantly suppressed by inhibiting NF45/NF90-dependent rDNA transcription. Amazingly, CX5461, a rDNA transcription-specific inhibitor, outperformed FK506, the most commonly used immunosuppressant, both in terms of potency and off-target activity (i.e., toxicity), as demonstrated by a series of skin and heart allograft models. Collectively, this reveals NF45/NF90-mediated rDNA transcription as a novel signaling pathway essential for T-cell activation and as a new target for the development of safe and effective immunosuppressants.
Collapse
Affiliation(s)
- Hsiang‐i Tsai
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious DiseaseShenzhen People's Hospital2 Clinical Medical College of Jinan UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesMedicine School of Shenzhen UniversityShenzhenChina
| | - Longshan Liu
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shengchang Xin
- State Key Laboratory of Coordination ChemistryInstitute of Chemistry and Biomedical SciencesSchool of Life SciencesNanjing UniversityNanjingChina
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Huanxi Zhang
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Zirong Bi
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Min Yang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Yijing Tao
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Changxi Wang
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Zhao
- State Key Laboratory of Coordination ChemistryInstitute of Chemistry and Biomedical SciencesSchool of Life SciencesNanjing UniversityNanjingChina
| | - John E Eriksson
- Cell BiologyBiosciencesFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
6
|
How Qualification of 3D Disease Models Cuts the Gordian Knot in Preclinical Drug Development. Handb Exp Pharmacol 2020. [PMID: 32894342 DOI: 10.1007/164_2020_374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Preclinical research struggles with its predictive power for drug effects in patients. The clinical success of preclinically approved drug candidates ranges between 3% and 33%. Regardless of the approach, novel disease models and test methods need to prove their relevance and reliability for predicting drug effects in patients, which is usually achieved by method validation. Nevertheless, validating all models appears unrealistic due to the variety of diseases. Thus, novel concepts are needed to increase the quality of preclinical research.Herein, we introduce qualification as a minimal standard to establish the relevance of preclinical models and test methods. Qualification starts with prioritizing and translating scientific requirements into technical parameters by quality function deployment. Qualified models use authenticated cells, which resemble the corresponding cells in humans in morphology and drug target expression. Moreover, disease models differ from normal models in the expression of relevant biomarkers. As a result, qualified test methods can discriminate effects of treatment standards and the effects of weakly effective or ineffective substances. Observer-blind readout, adequate data documentation, dropout inclusion, and a priori power studies are as crucial as realistic dosage regimens for qualified approaches. Here, we showcase the implementation of qualification. Adjusting the level of model complexity and qualification to three defined phases of preclinical research assures the optimal level of certainty at each step.In conclusion, qualification strengthens the researchers' impact by defining basic requirements that novel approaches must fulfill while still allowing for scientific creativity. Qualification helps to improve the predictive power of preclinical research. Applied to human cell-based models, qualification reduces animal testing, since only effective drug candidates are subjected to final animal testing and subsequently to clinical trials.
Collapse
|
7
|
Flandre TD, Piaia A, Cary MG. Biologic Immunomodulatory Drugs and Infection in the Respiratory Tract of Nonhuman Primates. Toxicol Pathol 2020; 49:397-407. [PMID: 32873219 DOI: 10.1177/0192623320946705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Though rare due to measures and practices to control the risk, infections can occur in research and toxicology studies, especially in nonhuman primates (NHPs) exposed to xenobiotics, particularly immunomodulatory drugs. With such xenobiotics, immunocompromised or immunosuppressed animals will not be able to mount a protective response to infection by an opportunistic pathogen (bacteria, virus, parasite, or fungus) that might otherwise be nonpathogenic and remain clinically asymptomatic in immunocompetent animals. The respiratory tract is one of the most commonly affected systems in clinic, but also in toxicology studies. Pulmonary inflammation will be the main finding associated with opportunistic infections and may cause overt clinical disease with even early sacrifice or death, and may compromise or complicate the pathology evaluation. It is important to properly differentiate the various features of infection, to be aware of the range of possible opportunistic pathogens and how they may impact the interpretation of pathology findings. This review will present the most common bacterial, viral, parasitic, and fungal infections observed in the respiratory tract in NHPs during research and/or toxicology studies.
Collapse
Affiliation(s)
- Thierry D Flandre
- 98560Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Alessandro Piaia
- 98560Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
8
|
Xu Z, Tsai HI, Xiao Y, Wu Y, Su D, Yang M, Zha H, Yan F, Liu X, Cheng F, Chen H. Engineering Programmed Death Ligand-1/Cytotoxic T-Lymphocyte-Associated Antigen-4 Dual-Targeting Nanovesicles for Immunosuppressive Therapy in Transplantation. ACS NANO 2020; 14:7959-7969. [PMID: 32515579 DOI: 10.1021/acsnano.9b09065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
T cell activation by immune allorecognition is a major contributing factor toward the triggering of organ rejection. Immunosuppressive drugs have to be taken after organ transplantation, but long-term use of these drugs increases the risks of infection and other serious disorders. Here, we showed dysregulation of programmed cell death-ligand 1/programmed cell death 1 (PD-L1/PD-1) and cytotoxic T-lymphocyte-associated protein 4/cluster of differentiation 80 (CTLA-4/CD80) in the spleen of two organ transplantation models. Using a bioengineering approach, cellular exosome-like nanovesicles (NVs) displaying PD-L1/CTLA-4 dual-targeting cargos were designed, and their specificity to bind their ligands PD-1 and CD80 on T cell and dendritic cell surfaces was confirmed. These NVs consequently enhanced PD-L1/PD-1 and CTLA-4/CD80 immune inhibitory pathways, two key immune checkpoints to co-inhibit T cell activation and maintain peripheral tolerance. It was also confirmed that PD-L1/CTLA-4 NVs led to the reduction of T cell activation and proliferation in vitro and in vivo. Finally, it was demonstrated that PD-L1/CTLA-4 NVs reduced density of CD8+ T cells and cytokine production, enriched regulatory T cells, and prolonged the survival of mouse skin and heart grafts. Taken together, these data supported the idea that PD-L1/CTLA-4 dual-targeting NVs exert immune inhibitory effects and may be used as a prospective immunosuppressant in organ transplantation.
Collapse
Affiliation(s)
- Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hsiang-I Tsai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Min Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hualian Zha
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Fuxia Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| |
Collapse
|