1
|
He Y, Deng J, Zhong X, Dai S, Song X, Zou Y, Ye G, Zhou X, Yin Z, Wan H, Zhao X. Engineered Hybrid Lantibiotic that Selectively Combats Infections Caused by Staphylococcus aureus. ACS Infect Dis 2024; 10:3891-3901. [PMID: 39512095 DOI: 10.1021/acsinfecdis.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rapid emergence of antibiotic-resistant strains of Staphylococcus aureus presents a substantial challenge to global public health, underscoring the urgent need for novel antibiotics with diverse mechanisms of action. In this study, we conducted mutagenesis on the C-terminal region of the lantibiotic ripcin C to enhance its antimicrobial efficacy against S. aureus. The resulting optimized variant, ripcin CP23A, demonstrated potent and selective antimicrobial activity, with a minimal inhibitory concentration of 2-4 mg/L against S. aureus. Beyond its strong antimicrobial properties, ripcin CP23A exhibited significant antibiofilm activity against methicillin-resistant S. aureus (MRSA). Mechanistic studies revealed that, in addition to targeting lipid II, ripcin CP23A disrupts bacterial membranes, a capability absent in ripcin C, which may contribute to its superior antimicrobial and antibiofilm effects. Moreover, ripcin CP23A displayed favorable biosafety and plasma stability profiles. Notably, in a mouse model of MRSA-induced mastitis, ripcin CP23A effectively reduced bacterial load, alleviated inflammation, and preserved the normal histomorphology of mammary glands. This study introduces ripcin CP23A as a promising antibiotic candidate for the treatment of MRSA-related infections.
Collapse
Affiliation(s)
- Yongcheng He
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiarong Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujun Dai
- Xinjiang Tycoon Group, Xinjiang, Changji 831199, China
| | - Xu Song
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Ramírez-Rendón D, Guzmán-Chávez F, García-Ausencio C, Rodríguez-Sanoja R, Sánchez S. The untapped potential of actinobacterial lanthipeptides as therapeutic agents. Mol Biol Rep 2023; 50:10605-10616. [PMID: 37934370 PMCID: PMC10676316 DOI: 10.1007/s11033-023-08880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The increase in bacterial resistance generated by the indiscriminate use of antibiotics in medical practice set new challenges for discovering bioactive natural products as alternatives for therapeutics. Lanthipeptides are an attractive natural product group that has been only partially explored and shows engaging biological activities. These molecules are small peptides with potential application as therapeutic agents. Some members show antibiotic activity against problematic drug-resistant pathogens and against a wide variety of viruses. Nevertheless, their biological activities are not restricted to antimicrobials, as their contribution to the treatment of cystic fibrosis, cancer, pain symptoms, control of inflammation, and blood pressure has been demonstrated. The study of biosynthetic gene clusters through genome mining has contributed to accelerating the discovery, enlargement, and diversification of this group of natural products. In this review, we provide insight into the recent advances in the development and research of actinobacterial lanthipeptides that hold great potential as therapeutics.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendón
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Fernando Guzmán-Chávez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México.
| |
Collapse
|
3
|
Yu D, Pei Z, Chen Y, Wang H, Xiao Y, Zhang H, Chen W, Lu W. Bifidobacterium longum subsp. infantis as widespread bacteriocin gene clusters carrier stands out among the Bifidobacterium. Appl Environ Microbiol 2023; 89:e0097923. [PMID: 37681950 PMCID: PMC10537742 DOI: 10.1128/aem.00979-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 09/09/2023] Open
Abstract
Bifidobacterium is the dominant genus, particularly in the intestinal tract niche of healthy breast-fed infants, and many of these strains have been proven to elicit positive effects on infant development. In addition to its effective antimicrobial activity against detrimental microorganisms, it helps to improve the intestinal microbiota balance. The isolation and identification of bacteriocins from Bifidobacterium have been limited since the mid-1980s, leading to an underestimation of its ability for bacteriocin production. Here, we employed a silicon-based search strategy to mine 354 putative bacteriocin gene clusters (BGCs), most of which have never been reported, from the genomes of 759 Bifidobacterium strains distributed across 9 species. Consistent with previous reports, most Bifidobacterium strains did not carry or carry only a single BGC; however, Bifidobacterium longum subsp. infantis, in contrast to other Bifidobacterium species, carried numerous BGCs, including lanthipeptides, lasso peptides, thiopeptides, and class IId bacteriocins. The antimicrobial activity of the crude bacteriocins and transcription analysis confirmed its potential for bacteriocin biosynthesis. Additionally, we investigated the association of bacteriocins with the phylogenetic positions of their homologs from other genera and niches. In conclusion, this study re-examines a few Bifidobacterium species traditionally regarded as a poor source of bacteriocins. These bacteriocin genes impart a competitive advantage to Bifidobacterium in colonizing the infant intestinal tract. IMPORTANCE Development of the human gut microbiota commences from birth, with bifidobacteria being among the first colonizers of the newborn intestinal tract and dominating it for a considerable period. To date, the genetic basis for the successful adaptation of bifidobacteria to this particular niche remains unclear since studies have mainly focused on glycoside hydrolase and adhesion-related genes. Bacteriocins are competitive factors that help producers maintain colonization advantages without destroying the niche balance; however, they have rarely been reported in Bifidobacterium. The advancement in sequencing methods and bacteriocin databases enables the use of a silicon-based search strategy for the comprehensive and rapid re-evaluation of the bacteriocin distribution of Bifidobacterium. Our study revealed that B. infantis carries abundant bacteriocin biosynthetic gene clusters for the first time, presenting new evidence regarding the competitive interactions of Bifidobacterium in the infant intestinal tract.
Collapse
Affiliation(s)
- Di Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yutao Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Biswas S. Synthesis of a Novel Lantibiotic Using Mutacin II Biosynthesis Apparatus. Microbiol Spectr 2023; 11:e0303022. [PMID: 36645288 PMCID: PMC9927145 DOI: 10.1128/spectrum.03030-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023] Open
Abstract
Owing to extensive metagenomic studies, we now have access to numerous sequences of novel bacteriocin-like antimicrobial peptides encoded by various cultivable and noncultivable bacteria. However, relatively rarely, we even have access to these cultivable strains to examine the potency and the targets of the predicted bacteriocins. In this study, we evaluated a heterologous biosynthetic system to produce biologically active nonnative novel lantibiotics, which are modified bacteriocins. We chose Streptococcus mutans, a dental pathogen, as the host organism because it is genetically easy to manipulate and is inherently a prolific producer of various bacteriocins. We chose the S. mutans T8 strain as the host, which produces the lantibiotic mutacin II, to express 10 selected homologs of mutacin II identified from GenBank. These lantibiotic peptides either are novel or have been studied very minimally. The core regions of the selected lantibiotic peptides were fused to the leader sequence of the mutacin II peptide and integrated into the chromosome such that the core region of the native mutacin II was replaced with the new core sequences. By this approach, using the mutacin II biosynthesis machinery, we obtained one bioactive novel lantibiotic peptide with 52% different residues compared to the mutacin II core region. This unknown lantibiotic is encoded by Streptococcus agalactiae and Streptococcus ovuberis strains. Since this peptide displays some homology with nukacin ISK-1, we named it nukacin Spp. 2. This study demonstrated that the mutacin II biosynthesis machinery can be successfully used as an efficient system for the production of biologically active novel lantibiotics. IMPORTANCE In this study, we report for the first time that Streptococcus mutans can be used as a host to produce various nonnative lantibiotics. We showed that in the T8 strain, we could produce bioactive lacticin 481 and nukacin ISK-1, both of which are homologs of mutacin II, using T8's modification and secretion apparatus. Similarly, we also synthesized a novel bioactive lantibiotic, which we named nukacin Spp. 2.
Collapse
Affiliation(s)
- Saswati Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Alshrari AS, Hudu SA, Elmigdadi F, Imran M. The Urgent Threat of Clostridioides difficile Infection: A Glimpse of the Drugs of the Future, with Related Patents and Prospects. Biomedicines 2023; 11:biomedicines11020426. [PMID: 36830964 PMCID: PMC9953237 DOI: 10.3390/biomedicines11020426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile infection (CDI) is an urgent threat and unmet medical need. The current treatments for CDI are not enough to fight the burden of CDI and recurrent CDI (r-CDI). This review aims to highlight the future drugs for CDI and their related patented applications. The non-patent literature was collected from PubMed and various authentic websites of pharmaceutical industries. The patent literature was collected from free patent databases. Many possible drugs of the future for CDI, with diverse mechanisms of action, are in development in the form of microbiota-modulating agents (e.g., ADS024, CP101, RBX2660, RBX7455, SYN-004, SER-109, VE303, DAV132, MET-2, and BB128), small molecules (e.g., ridinilazole, ibezapolstat, CRS3123, DNV3837, MGB-BP-3, alanyl-L-glutamine, and TNP-2198), antibodies (e.g., IM-01 and LMN-201), and non-toxic strains of CD (e.g., NTCD-M3). The development of some therapeutic agents (e.g., DS-2969b, OPS-2071, cadazolid, misoprostol, ramoplanin, KB109, LFF571, and Ramizol) stopped due to failed clinical trials or unknown reasons. The patent literature reveals some important inventions for the existing treatments of CDI and supports the possibility of developing more and better CDI-treatment-based inventions, including patient-compliant dosage forms, targeted drug delivery, drug combinations of anti-CDI drugs possessing diverse mechanisms of action, probiotic and enzymatic supplements, and vaccines. The current pipeline of anti-CDI medications appears promising. However, it will be fascinating to see how many of the cited are successful in gaining approval from drug regulators such as the US FDA and becoming medicines for CDI and r-CDI.
Collapse
Affiliation(s)
- Ahmed S. Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Correspondence: (S.A.H.); (M.I.)
| | - Fayig Elmigdadi
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (S.A.H.); (M.I.)
| |
Collapse
|
6
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
7
|
dos Santos GR, Soeiro VS, Talarico CF, Ataide JA, Lopes AM, Mazzola PG, Oliveira TJ, Oliveira Junior JM, Grotto D, Jozala AF. Bacterial Cellulose Membranes as Carriers for Nisin: Incorporation, Antimicrobial Activity, Cytotoxicity and Morphology. Polymers (Basel) 2022; 14:polym14173497. [PMID: 36080572 PMCID: PMC9460746 DOI: 10.3390/polym14173497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Based on the previous study, in which nisin and bacterial cellulose were utilized, this new experiment loads nisin into bacterial cellulose (N–BC) and evaluates the morphological characteristics, cytotoxicity, antimicrobial activity and stability of the developed system. The load efficiency of nisin in BC was evaluated by an agar diffusion assay, utilizing Lactobacillus sakei, and total proteins. After having found the ideal time and concentration for the loading process, the system stability was evaluated for 100 days at 4, 25 and 37 °C against Staphylococcus aureus and L. sakei. Thus, in this study, there is a system that proves to be efficient, once BC has enhanced the antimicrobial activity of nisin, acting as a selective barrier for other compounds present in the standard solution and protecting the peptide. After 4 h, with 45% of proteins, this activity was almost 2 log10 higher than that of the initial solution. Once the nisin solution was not pure, it is possible to suggest that the BC may have acted as a filter. This barrier enhanced the nisin activity and, as a consequence of the nisin loading, a stable N–BC system formed. The N–BC could create meaningful material for pharmaceutical and food applications.
Collapse
Affiliation(s)
- Gabriela Ribeiro dos Santos
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Victória Soares Soeiro
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Carolina Fernanda Talarico
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Science, University of Campinas (Unicamp), Campinas 13083-871, SP, Brazil
| | - André Moreni Lopes
- Faculty of Pharmaceutical Science, University of Campinas (Unicamp), Campinas 13083-871, SP, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Science, University of Campinas (Unicamp), Campinas 13083-871, SP, Brazil
| | - Thais Jardim Oliveira
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- LAFINAU—Laboratory of Nuclear Physics, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | | | - Denise Grotto
- LAPETOX—Laboratory of Toxicological Research, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Angela F. Jozala
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- Correspondence:
| |
Collapse
|
8
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Zhao X, Xu Y, Viel JH, Kuipers OP. Semisynthetic Macrocyclic Lipo-lanthipeptides Display Antimicrobial Activity Against Bacterial Pathogens. ACS Synth Biol 2021; 10:1980-1991. [PMID: 34347446 PMCID: PMC8383303 DOI: 10.1021/acssynbio.1c00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A large number of antimicrobial peptides depend on intramolecular disulfide bonds for their biological activity. However, the relative instability of disulfide bonds has limited the potential of some of these peptides to be developed into therapeutics. Conversely, peptides containing intramolecular (methyl)lanthionine-based bonds, lanthipeptides, are highly stable under a broader range of biological and physical conditions. Here, the class-II lanthipeptide synthetase CinM, from the cinnamycin gene cluster, was employed to create methyllanthionine stabilized analogues of disulfide-bond-containing antimicrobial peptides. The resulting analogues were subsequently modified in vitro by adding lipid tails of variable lengths through chemical addition. Finally, the created compounds were characterized by MIC tests against several relevant pathogens, killing assays, membrane permeability assays, and hemolysis assays. It was found that CinM could successfully install methyllanthionine bonds at the intended positions of the analogues and that the lipidated macrocyclic core peptides have bactericidal activity against tested Gram-positive and Gram-negative pathogenic bacteria. Additionally, fluorescence microscopy assays revealed that the lipidated compounds disrupt the bacterial membrane and lyse bacterial cells, hinting toward a potential mode of action. Notably, the semisynthesized macrocyclic lipo-lanthipeptides show low hemolytic activity. These results show that the methods developed here extend the toolbox for novel antimicrobial development and might enable the further development of novel compounds with killing activity against relevant pathogenic bacteria.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Yanli Xu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
10
|
Li C, Alam K, Zhao Y, Hao J, Yang Q, Zhang Y, Li R, Li A. Mining and Biosynthesis of Bioactive Lanthipeptides From Microorganisms. Front Bioeng Biotechnol 2021; 9:692466. [PMID: 34395400 PMCID: PMC8358304 DOI: 10.3389/fbioe.2021.692466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues in the worldwide and only a few new antimicrobial drugs have been discovered in recent decades. To overcome the ever-increasing emergence of multidrug-resistant (MDR) pathogens, discovery of new natural products (NPs) against MDR pathogens with new technologies is in great demands. Lanthipeptides which are ribosomally synthesized and post-translationally modified peptides (RiPPs) display high diversity in their chemical structures and mechanisms of action. Genome mining and biosynthetic engineering have also yielded new lanthipeptides, which are a valuable source of drug candidates. In this review we cover the recent advances in the field of microbial derived lanthipeptide discovery and development.
Collapse
Affiliation(s)
- Caiyun Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Khorshed Alam
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruijuan Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Zhao X, Kuipers OP. Nisin- and Ripcin-Derived Hybrid Lanthipeptides Display Selective Antimicrobial Activity against Staphylococcus aureus. ACS Synth Biol 2021; 10:1703-1714. [PMID: 34156232 PMCID: PMC8291769 DOI: 10.1021/acssynbio.1c00080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Lanthipeptides are (methyl)lanthionine ring-containing ribosomally synthesized and post-translationally modified peptides (RiPPs). Many lanthipeptides show strong antimicrobial activity against bacterial pathogens, including antibiotic-resistant bacterial pathogens. The group of disulfide-bond-containing antimicrobial peptides (AMPs) is well-known in nature and forms a rich source of templates for the production of novel peptides with corresponding (methyl)lanthionine analogues instead of disulfides. Here, we show that novel macrocyclic lanthipeptides (termed thanacin and ripcin) can be synthesized using the known antimicrobials thanatin and rip-thanatin as templates. Notably, the synthesized nisin(1-20)-ripcin hybrid lanthipeptides (ripcin B-G) showed selective antimicrobial activity against S. aureus, including an antibiotic-resistant MRSA strain. Interestingly, ripcin B-G, which are hybrid peptides of nisin(1-20) and ripcin that are each inactive against Gram-negative pathogens, showed substantial antimicrobial activity against the tested Gram-negative pathogens. Moreover, ripcin B-G was highly resistant against the nisin resistance protein (NSR; a peptidase that removes the C-terminal 6 amino acids of nisin and strongly reduces its antimicrobial activity), opposed to nisin itself. This study provides an example of converting disulfide-bond-based AMPs into (methyl)lanthionine-based macrocyclic hybrid lanthipeptides and can yield antimicrobial peptides with selective antimicrobial activity against S. aureus.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
12
|
Namsolleck P, Richardson A, Moll GN, Mescheder A. LP2, the first lanthipeptide GPCR agonist in a human pharmacokinetics and safety study. Peptides 2021; 136:170468. [PMID: 33253776 DOI: 10.1016/j.peptides.2020.170468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Introduction of a lanthionine into a peptide may enhance target affinity, target specificity and proteolytic resistance. This manuscript reports preclinical safety studies and the first-in-human study with the lanthipeptide AT2R agonist LP2, a structural analog of cAng-(1-7), whose N-terminus was protected against aminopeptidases by the presence of a d-lysine. None of the preclinical studies, including an in vitro multitarget panel, behavioral, respiratory and cardiovascular measurements, genotoxicity and toxicity studies in rat and dog, posed any safety concern. Due to lack of toxicity the maximum tolerated dose was not reached neither in rat nor in dog. In the human dose escalation study, healthy male volunteers received a single 1 mL subcutaneous injection (0.001 mg, 0.01 mg or 0.1 mg) of LP2 or matching placebo. In contrast to angiotensin II which has a T1/2 in plasma of < 1 min, LP2 has a T1/2 of approximately 2.1-2.6 hours. The fraction of the dose excreted unchanged in urine ranged from 84.73 ± 10.4 % at a dose of 0.001 mg to 66.4 ± 3.9 % at 0.1 mg. There were no deaths, serious adverse events or subject withdrawals as a result of an adverse event. The incidence of adverse events was 16.7 %; each was mild in severity. One adverse event, peripheral coldness, was considered to be possibly related to LP2 at 0.001 mg LP2. None of the results was considered to pose a clinically relevant safety concern. This study supports the potential for the therapeutic use of lanthipeptides.
Collapse
Affiliation(s)
| | - Alan Richardson
- AR Pharma Projects Ltd., Westside Cottage, Highfield Park, Marlow SL7 2DE, UK.
| | - Gert N Moll
- Lanthio Pharma, 9727 DL Groningen, the Netherlands; Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| | | |
Collapse
|
13
|
Reiners J, Lagedroste M, Gottstein J, Adeniyi ET, Kalscheuer R, Poschmann G, Stühler K, Smits SHJ, Schmitt L. Insights in the Antimicrobial Potential of the Natural Nisin Variant Nisin H. Front Microbiol 2020; 11:573614. [PMID: 33193179 PMCID: PMC7606277 DOI: 10.3389/fmicb.2020.573614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Lantibiotics are a growing class of antimicrobial peptides, which possess antimicrobial activity against mainly Gram-positive bacteria including the highly resistant strains such as methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci. In the last decades numerous lantibiotics were discovered in natural habitats or designed with bioengineering tools. In this study, we present an insight in the antimicrobial potential of the natural occurring lantibiotic nisin H from Streptococcus hyointestinalis as well as the variant nisin H F1I. We determined the yield of the heterologously expressed peptide and quantified the cleavage efficiency employing the nisin protease NisP. Furthermore, we analyzed the effect on the modification via mass spectrometry analysis. With standardized growth inhibition assays we benchmarked the activity of pure nisin H and the variant nisin H F1I, and their influence on the activity of the nisin immunity proteins NisI and NisFEG from Lactococcus lactis and the nisin resistance proteins SaNSR and SaNsrFP from Streptococcus agalactiae COH1. We further checked the antibacterial activity against clinical isolates of Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis via microdilution method. In summary, nisin H and the nisin H F1I variant possessed better antimicrobial potency than the natural nisin A.
Collapse
Affiliation(s)
- Jens Reiners
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marcel Lagedroste
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Gottstein
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Emmanuel T Adeniyi
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Biosynthesis of lanthionine-constrained agonists of G protein-coupled receptors. Biochem Soc Trans 2020; 48:2195-2203. [PMID: 33125486 PMCID: PMC7609037 DOI: 10.1042/bst20200427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The conformation with which natural agonistic peptides interact with G protein-coupled receptor(s) (GPCR(s)) partly results from intramolecular interactions such as hydrogen bridges or is induced by ligand–receptor interactions. The conformational freedom of a peptide can be constrained by intramolecular cross-links. Conformational constraints enhance the receptor specificity, may lead to biased activity and confer proteolytic resistance to peptidic GPCR agonists. Chemical synthesis allows to introduce a variety of cross-links into a peptide and is suitable for bulk production of relatively simple lead peptides. Lanthionines are thioether bridged alanines of which the two alanines can be introduced at different distances in chosen positions in a peptide. Thioether bridges are much more stable than disulfide bridges. Biosynthesis of lanthionine-constrained peptides exploiting engineered Gram-positive or Gram-negative bacteria that contain lanthionine-introducing enzymes constitutes a convenient method for discovery of lanthionine-stabilized GPCR agonists. The presence of an N-terminal leader peptide enables dehydratases to dehydrate serines and threonines in the peptide of interest after which a cyclase can couple the formed dehydroamino acids to cysteines forming (methyl)lanthionines. The leader peptide also guides the export of the formed lanthionine-containing precursor peptide out of Gram-positive bacteria via a lanthipeptide transporter. An engineered cleavage site in the C-terminus of the leader peptide allows to cleave off the leader peptide yielding the modified peptide of interest. Lanthipeptide GPCR agonists are an emerging class of therapeutics of which a few examples have demonstrated high efficacy in animal models of a variety of diseases. One lanthipeptide GPCR agonist has successfully passed clinical Phase Ia.
Collapse
|
15
|
Onajobi IB, Idowu EO, Adeyemi JO, Samson OJ, Ogunyinka PI, Fagade OE. In vitro antibacterial activities and molecular characterization of bacterial species isolated from farmlands against selected pathogens. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 27:e00513. [PMID: 32923377 PMCID: PMC7475235 DOI: 10.1016/j.btre.2020.e00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 04/12/2023]
Abstract
This study aims to screen bacterial isolates from Olabisi Onabanjo University Farmland for antibacterial activity against pathogenic microorganisms. Agar well diffusion method was used. Isolates were identified molecularly. Chi-square test revealed significant association between isolates, antibacterial activity with likelihood p-value = 0.000 and 5% significant level. Six among thirty-five isolates exhibited antibacterial activity against the test pathogenic species. A greater antibacterial activity (50 % inhibition) was observed in Lysinibacillus sphearicus strain PRE16. It inhibited the growth of Bacillus subtilis, Staphylococcus aureus and Escherichia coli by 23.00 ± 2.00, 18.00 ± 2.00 and 20.00 ± 4.00 respectively. DNA sequencing revealed antagonist isolates as Bacillus sp. BCN2, Brochothrix thermosphacta strain P30C4, Bacillus aryabhattai strain KNUC205, Alcaligenes faecalis strain KEM24, Bacillus arsenicus strain CSD05 and Lysinibacillus sphaericus strain PRE16. Phylogenetic analysis revealed close relatedness of most isolates with Bacillus species strains. These strains are suggested to be effective for the discovery of new antibacterial agents.
Collapse
Affiliation(s)
- Ismail B. Onajobi
- Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Esther O. Idowu
- Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Jamiu O. Adeyemi
- Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Oyindamola J. Samson
- Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Peter I. Ogunyinka
- Department of Mathematical Sciences, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Obasola E. Fagade
- Department of Microbiology, Faculty of Science, University of Ibadan, Nigeria
| |
Collapse
|
16
|
Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect 2019; 26:596-603. [PMID: 31574341 DOI: 10.1016/j.cmi.2019.09.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Standard treatments against bacterial infections are becoming ineffective due to the rise of antibacterial resistance worldwide. Classical approaches to develop new antibacterial agents are not sufficient to fulfil the current pipeline, therefore new strategies are currently being devised in the field of antibacterial discovery. OBJECTIVES The objective of this narrative review is to compile the most successful strategies for drug discovery within the antibacterial context that are currently being pursued. SOURCES Peer-reviewed publications from the MEDLINE database with robust data addressing the discovery of new antibacterial agents in the current pipeline have been selected. CONTENT Several strategies to discover new antibacterials are described in this review: (i) derivatives of known antibacterial agents; the activity of a known antimicrobial agent can be improved through two strategies: (a) the modification of the original chemical structure of an antimicrobial agent to circumvent antibacterial resistance mechanisms and (b) the development of a compound that inhibits the mechanisms of resistance to an antibacterial agent; (ii) new antibacterial agents targeting new proteins; (iii) inhibitors of virulence factors; (iv) nanoparticles; (v) antimicrobial peptides and peptidomimetics; (vi) phage therapy and enzybiotics; and (vii) antisense oligonucleotides. IMPLICATIONS This review intends to provide a positive message affirming that several different strategies to design new antibacterial agents are currently being developed, and we are therefore confident that in the near future some of the most promising approaches will come to fruition.
Collapse
Affiliation(s)
- J Vila
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Centre for Biomedical Diagnosis, Hospital Clínic, Barcelona, Spain.
| | - J Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
17
|
Influence of nisin hinge-region variants on lantibiotic immunity and resistance proteins. Bioorg Med Chem 2019; 27:3947-3953. [DOI: 10.1016/j.bmc.2019.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
|
18
|
Bypassing lantibiotic resistance by an effective nisin derivative. Bioorg Med Chem 2019; 27:3454-3462. [PMID: 31253534 DOI: 10.1016/j.bmc.2019.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin. This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR. NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.
Collapse
|