1
|
Witard OC, Hearris M, Morgan PT. Protein Nutrition for Endurance Athletes: A Metabolic Focus on Promoting Recovery and Training Adaptation. Sports Med 2025:10.1007/s40279-025-02203-8. [PMID: 40117058 DOI: 10.1007/s40279-025-02203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
The purpose of this narrative review is to provide an evidence-based update on the protein needs of endurance athletes with a focus on high-quality metabolic studies conducted on the topics of recovery and training adaptation over the past decade. We use the term 'protein needs' to delineate between the concepts of a daily protein requirement and per meal protein recommendations when devising scientific evidence-based protein guidelines for the endurance athlete to promote post-exercise recovery, enhance the adaptive response to endurance training and improve endurance performance. A habitual protein intake of 1.5 g/kg of body mass (BM)-1·day-1 is typical in male and female endurance athletes. Based on findings from a series of contemporary protein requirement studies, the evidence suggests a daily protein intake of ~ 1.8 g·kgBM-1·day-1 should be advocated for endurance athletes, with the caveat that the protein requirement may be further elevated in excess of 2.0 g·kgBM-1·day-1 during periods of carbohydrate-restricted training and on rest days. Regarding protein recommendations, the current lack of metabolic studies that determine the dose response of muscle protein synthesis to protein ingestion in relation to endurance exercise makes it difficult to present definitive guidelines on optimal per meal protein intakes for endurance athletes. Moreover, there remains no compelling evidence that co-ingesting protein with carbohydrate before or during endurance exercise confers any performance advantage, nor facilitates the resynthesis of liver or muscle glycogen stores during recovery, at least when carbohydrate recommendations are met. However, recent evidence suggests a role for protein nutrition in optimising the adaptive metabolic response to endurance training under conditions of low carbohydrate and/or energy availability that represent increasingly popular periodised strategies for endurance athletes.
Collapse
Affiliation(s)
- Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, Strand Campus, Strand, London, WC2R 2LS, UK.
| | - Mark Hearris
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Paul T Morgan
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
2
|
The impact of dietary protein supplementation on recovery from resistance exercise-induced muscle damage: A systematic review with meta-analysis. Eur J Clin Nutr 2022:10.1038/s41430-022-01250-y. [PMID: 36513777 PMCID: PMC10393778 DOI: 10.1038/s41430-022-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is unknown whether dietary protein consumption can attenuate resistance exercise-induced muscle damage (EIMD). Managing EIMD may accelerate muscle recovery and allow frequent, high-quality exercise to promote muscle adaptations. This systematic review and meta-analysis examined the impact of peri-exercise protein supplementation on resistance EIMD. METHODS A literature search was conducted on PubMed, SPORTDiscus, and Web of Science up to March 2021 for relevant articles. PEDro criteria were used to assess bias within included studies. A Hedges' g effect size (ES) was calculated for indirect markers of EIMD at h post-exercise. Weighted ESs were included in a random effects model to determine overall ESs over time. RESULTS Twenty-nine studies were included in the systematic review and 40 trials were included in ≥1 meta-analyses (16 total). There were significant overall effects of protein for preserving isometric maximal voluntary contraction (MVC) at 96 h (0.563 [0.232, 0.894]) and isokinetic MVC at 24 h (0.639 [0.116, 1.162]), 48 h (0.447 [0.104, 0.790]), and 72 h (0.569 [0.136, 1.002]). Overall ESs were large in favour of protein for attenuating creatine kinase concentration at 48 h (0.836 [-0.001, 1.673]) and 72 h (1.335 [0.294, 2.376]). Protein supplementation had no effect on muscle soreness compared with the control. CONCLUSION Peri-exercise protein consumption could help maintain maximal strength and lower creatine kinase concentration following resistance exercise but not reduce muscle soreness. Conflicting data may be due to methodological divergencies between studies. Standardised methods and data reporting for EIMD research are needed.
Collapse
|
3
|
Krill Protein Hydrolysate Provides High Absorption Rate for All Essential Amino Acids-A Randomized Control Cross-Over Trial. Nutrients 2021; 13:nu13093187. [PMID: 34579064 PMCID: PMC8465607 DOI: 10.3390/nu13093187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND adequate protein intake is essential to humans and, since the global demand for protein-containing foods is increasing, identifying new high-quality protein sources is needed. In this study, we investigated the acute postprandial bioavailability of amino acids (AAs) from a krill protein hydrolysate compared to a soy and a whey protein isolate. METHODS the study was a randomized, placebo-controlled crossover trial including ten healthy young males. On four non-consecutive days, volunteers consumed water or one of three protein-matched supplements: whey protein isolate, soy protein isolate or krill protein hydrolysate. Blood samples were collected prior to and until 180 min after consumption. Serum postprandial AA concentrations were determined using 1H NMR spectroscopy. Hunger and satiety were assessed using visual analogue scales (VAS). RESULTS whey and krill resulted in significantly higher AA concentrations compared to soy between 20-60 min and 20-40 min after consumption, respectively. Area under the curve (AUC) analyses revealed that whey resulted in the highest postprandial serum concentrations of essential AAs (EAAs) and branched chain AAs (BCAAs), followed by krill and soy, respectively. CONCLUSIONS krill protein hydrolysate increases postprandial serum EAA and BCAA concentrations in a superior manner to soy protein isolate and thus might represent a promising future protein source in human nutrition.
Collapse
|
4
|
Chapman S, Chung HC, Rawcliffe AJ, Izard R, Smith L, Roberts JD. Does Protein Supplementation Support Adaptations to Arduous Concurrent Exercise Training? A Systematic Review and Meta-Analysis with Military Based Applications. Nutrients 2021; 13:1416. [PMID: 33922458 PMCID: PMC8145048 DOI: 10.3390/nu13051416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
We evaluated the impact of protein supplementation on adaptations to arduous concurrent training in healthy adults with potential applications to individuals undergoing military training. Peer-reviewed papers published in English meeting the population, intervention, comparison and outcome criteria were included. Database searches were completed in PubMed, Web of science and SPORTDiscus. Study quality was evaluated using the COnsensus based standards for the selection of health status measurement instruments checklist. Of 11 studies included, nine focused on performance, six on body composition and four on muscle recovery. Cohen's d effect sizes showed that protein supplementation improved performance outcomes in response to concurrent training (ES = 0.89, 95% CI = 0.08-1.70). When analysed separately, improvements in muscle strength (SMD = +4.92 kg, 95% CI = -2.70-12.54 kg) were found, but not in aerobic endurance. Gains in fat-free mass (SMD = +0.75 kg, 95% CI = 0.44-1.06 kg) and reductions in fat-mass (SMD = -0.99, 95% CI = -1.43-0.23 kg) were greater with protein supplementation. Most studies did not report protein turnover, nitrogen balance and/or total daily protein intake. Therefore, further research is warranted. However, our findings infer that protein supplementation may support lean-mass accretion and strength gains during arduous concurrent training in physical active populations, including military recruits.
Collapse
Affiliation(s)
- Shaun Chapman
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, Wiltshire SN9 6BE, UK;
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Henry C. Chung
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Alex J. Rawcliffe
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, Wiltshire SN9 6BE, UK;
| | - Rachel Izard
- Defence Science and Technology, Porton Down, UK Ministry of Defence, Salisbury, Wiltshire SP4 0JQ, UK;
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| |
Collapse
|
5
|
Dietary Protein for Training Adaptation and Body Composition Manipulation in Track and Field Athletes. Int J Sport Nutr Exerc Metab 2019; 29:165-174. [PMID: 30507259 DOI: 10.1123/ijsnem.2018-0267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Track and field athletes engage in vigorous training that places stress on physiological systems requiring nutritional support for optimal recovery. Of paramount importance when optimizing recovery nutrition are rehydration and refueling which are covered in other papers in this volume. Here, we highlight the benefits for dietary protein intake over and above requirements set out in various countries at ∼0.8-1.0 g·kg body mass (BM)-1·day-1 for training adaptation, manipulating body composition, and optimizing performance in track and field athletes. To facilitate the remodeling of protein-containing structures, which are turning over rapidly due to their training volumes, track and field athletes with the goal of weight maintenance or weight gain should aim for protein intakes of ∼1.6 g·kg BM-1·day-1. Protein intakes at this level would not necessarily require an overemphasis on protein-containing foods and, beyond convenience, does not suggest a need to use protein or amino acid-based supplements. This review also highlights that optimal protein intakes may exceed 1.6 g·kg BM-1·day-1 for athletes who are restricting energy intake and attempting to minimize loss of lean BM. We discuss the underpinning rationale for weight loss in track and field athletes, explaining changes in metabolic pathways that occur in response to energy restriction when manipulating protein intake and training. Finally, this review offers practical advice on protein intakes that warrant consideration in allowing an optimal adaptive response for track and field athletes seeking to train effectively and to lose fat mass while energy restricted with minimal (or no) loss of lean BM.
Collapse
|
6
|
Kemmler W, von Stengel S, Schoene D, Kohl M. Changes of Maximum Leg Strength Indices During Adulthood a Cross-Sectional Study With Non-athletic Men Aged 19-91. Front Physiol 2018; 9:1524. [PMID: 30443219 PMCID: PMC6223067 DOI: 10.3389/fphys.2018.01524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
Age-related loss of muscle mass and function, also called sarcopenia, was recently added to the ICD-10 as an independent condition. However, declines in muscle mass and function are inevitable during the adulthood aging process. Concerning muscle strength as a crucial aspect of muscle function, maximum knee extension strength might be the most important physical parameter for independent living in the community. In this study, we aimed to determine the age-related decline in maximum isokinetic knee extension (MIES) and flexion strength (MIFS) in adult men. The primary study hypothesis was that there is a slight gradual decrease of MIES up to ≈age 60 years with a significant acceleration of decline after this "changepoint." We used a closed kinetic chain system (leg-press), which is seen as providing functionally more relevant results on maximum strength, to determine changes in maximum isokinetic hip/leg extensor (MIES) and flexor strength (MIFS) during adulthood in men. Apart from average annual changes, we aimed to identify whether the decline in maximum lower extremity strength is linear. MIES and MIFS data determined by an isokinetic leg-press of 362 non-athletic, healthy, and community-dwelling men 19-91 years old were included in the analysis. A changepoint analysis was conducted based on a multiple regression analysis adjusted for selected co-variables that might confound the proper relationship between age and maximum strength. In summary, maximum isokinetic leg-strength decline during adulthood averaged around 0.8-1.0% p.a.; however, the reduction was far from linear. MIES demonstrated a non-significant reduction of 5.2 N/p.a. (≈0.15% p.a.) up to the estimated breakpoint of 52.0 years and an accelerated loss of 44.0 N/p.a. (≈1.3% p.a.; p < 0.001). In parallel, the decline in MIFS (10.0 N/p.a.; ≈0.5% p.a.) prior to the breakpoint at age 59.0 years was significantly more pronounced. Nevertheless, we observed a further marked accelerated loss of MIFS (25.0 N/p.a.; ≈1.3% p.a.) in men ≥60 years. Apart from the "normative value" and closed kinetic chain aspect of this study, the practical application of our results suggests that sarcopenia prophylaxis in men should be started in the 5th decade in order to address the accelerated muscle decline of advanced age.
Collapse
Affiliation(s)
- Wolfgang Kemmler
- Institute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Simon von Stengel
- Institute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Schoene
- Institute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Kohl
- Faculty of Medical and Life Sciences, University of Furtwangen, Schwenningen, Germany
| |
Collapse
|
7
|
Brown MA, Stevenson EJ, Howatson G. Whey protein hydrolysate supplementation accelerates recovery from exercise-induced muscle damage in females. Appl Physiol Nutr Metab 2017; 43:324-330. [PMID: 29106812 DOI: 10.1139/apnm-2017-0412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A number of different forms of protein and their analogues have been investigated for their efficacy in ameliorating exercise-induced muscle damage (EIMD) and recovery. Preliminary data regarding whey protein hydrolysate (WPH) supplementation are promising. However, its efficacy beyond acute eccentric/resistance exercise bouts or longer term training programmes are limited and all investigations have been conducted in male or mixed-sex groups. This study sought to elucidate whether the benefits of WPH previously reported can be demonstrated in females following repeated-sprint exercise. Twenty physically active females were assigned to consume 2 doses of 70 mL WPH or isoenergetic carbohydrate (CHO) for 4 days post-EIMD. Measures of muscle soreness, limb girth, flexibility, muscle function, and creatine kinase were collected before, immediately after, and 24, 48, and 72 h postexercise. Time effects were observed for all variables (p < 0.05) except limb girth, which is indicative of EIMD. Flexibility improved beyond baseline measures following WPH by 72 h, but had failed to recover in the CHO group (p = 0.011). Reactive strength index was higher throughout recovery in the WPH group compared with CHO (p = 0.016). Reductions in creatine kinase were greater following WPH compared with CHO at 48 h post-EIMD (p = 0.031). The findings suggest that 4-day supplementation of WPH is beneficial for reducing symptoms of EIMD and improving recovery of muscle function in physically active females.
Collapse
Affiliation(s)
- Meghan A Brown
- a School of Sport and Exercise, University of Gloucestershire, Gloucester, GL2 9HW, UK.,b Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Emma J Stevenson
- c Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Glyn Howatson
- d Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.,e Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Protein Supplementation to Augment the Effects of High Intensity Resistance Training in Untrained Middle-Aged Males: The Randomized Controlled PUSH Trial. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3619398. [PMID: 28656141 PMCID: PMC5471590 DOI: 10.1155/2017/3619398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
High intensity (resistance exercise) training (HIT) defined as a "single set resistance exercise to muscular failure" is an efficient exercise method that allows people with low time budgets to realize an adequate training stimulus. Although there is an ongoing discussion, recent meta-analysis suggests the significant superiority of multiple set (MST) methods for body composition and strength parameters. The aim of this study is to determine whether additional protein supplementation may increase the effect of a HIT-protocol on body composition and strength to an equal MST-level. One hundred and twenty untrained males 30-50 years old were randomly allocated to three groups: (a) HIT, (b) HIT and protein supplementation (HIT&P), and (c) waiting-control (CG) and (after cross-over) high volume/high-intensity-training (HVHIT). HIT was defined as "single set to failure protocol" while HVHIT consistently applied two equal sets. Protein supplementation provided an overall intake of 1.5-1.7 g/kg/d/body mass. Primary study endpoint was lean body mass (LBM). LBM significantly improved in all exercise groups (p ≤ 0.043); however only HIT&P and HVHIT differ significantly from control (p ≤ 0.002). HIT diverges significantly from HIT&P (p = 0.017) and nonsignificantly from HVHIT (p = 0.059), while no differences were observed for HIT&P versus HVHIT (p = 0.691). In conclusion, moderate to high protein supplementation significantly increases the effects of a HIT-protocol on LBM in middle-aged untrained males.
Collapse
|
9
|
High Intensity Resistance Training Methods with and without Protein Supplementation to Fight Cardiometabolic Risk in Middle-Aged Males: A Randomized Controlled Trial. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9705287. [PMID: 26885526 PMCID: PMC4739448 DOI: 10.1155/2016/9705287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 11/24/2022]
Abstract
Time-effective protocols may potentially increase people's compliance with exercise. The purpose of this paper was to compare the relative effects of 16 weeks of high intensity (resistance) training (HIT) with and without protein supplementation (HIT&P) and HVHIT (high volume/high intensity training) versus a nontraining control group on cardiometabolic risk factors. One hundred and twenty untrained males 30–50 years old were randomly assigned to 3 subgroups: (a) a HIT group; (b) a HIT&P group, and (c) a waiting-control group (phase I) that crossed over to (d) high volume/high intensity training (HVHIT) during the second study phase. HIT was defined as “single set to failure protocol” while HVHIT consistently applied two sets. Protein supplementation provided an overall intake of 1.5 g/kg/body mass. Primary study endpoint was the metabolic syndrome Z-Score (MetS-Z-Score). MetS-Z-Score significantly improved in all exercise groups (p ≤ 0.001) with no significant difference between HIT, HIT&P, and HVHIT (p ≥ 0.829). However, all the exercise groups differed significantly from the CG (p < 0.001) which deteriorated significantly (p = 0.039). In conclusion, all exercise protocols were similarly effective in improving cardiometabolic risk factors. Thus, HIT may be the best choice for people with low time budgets looking to improve their cardiometabolic health.
Collapse
|
10
|
Rowlands DS, Nelson AR, Raymond F, Metairon S, Mansourian R, Clarke J, Stellingwerff T, Phillips SM. Protein-leucine ingestion activates a regenerative inflammo-myogenic transcriptome in skeletal muscle following intense endurance exercise. Physiol Genomics 2015; 48:21-32. [PMID: 26508702 DOI: 10.1152/physiolgenomics.00068.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/22/2015] [Indexed: 02/01/2023] Open
Abstract
Protein-leucine supplement ingestion following strenuous endurance exercise accentuates skeletal-muscle protein synthesis and adaptive molecular responses, but the underlying transcriptome is uncharacterized. In a randomized single-blind triple-crossover design, 12 trained men completed 100 min of high-intensity cycling then ingested 70/15/180/30 g protein-leucine-carbohydrate-fat (15LEU), 23/5/180/30 g (5LEU), or 0/0/274/30 g (CON) beverages during the first 90 min of a 240 min recovery period. Vastus lateralis muscle samples (30 and 240 min postexercise) underwent transcriptome analysis by microarray followed by bioinformatic analysis. Gene expression was regulated by protein-leucine in a dose-dependent manner affecting the inflammatory response and muscle growth and development. At 30 min, 15LEU and 5LEU vs. CON activated transcriptome networks with gene-set functions involving cell-cycle arrest (Z-score 2.0-2.7, P < 0.01), leukocyte maturation (1.7, P = 0.007), cell viability (2.4, P = 0.005), promyogenic networks encompassing myocyte differentiation and myogenin (MYOD1, MYOG), and a proteinaceous extracellular matrix, adhesion, and development program correlated with plasma lysine, arginine, tyrosine, taurine, glutamic acid, and asparagine concentrations. High protein-leucine dose (15LEU-5LEU) activated an IL-1I-centered proinflammatory network and leukocyte migration, differentiation, and survival functions (2.0-2.6, <0.001). By 240 min, the protein-leucine transcriptome was anti-inflammatory and promyogenic (IL-6, NF- β, SMAD, STAT3 network inhibition), with overrepresented functions including decreased leukocyte migration and connective tissue development (-1.8-2.4, P < 0.01), increased apoptosis of myeloid and muscle cells (2.2-3.0, P < 0.002), and cell metabolism (2.0-2.4, P < 0.01). The analysis suggests protein-leucine ingestion modulates inflammatory-myogenic regenerative processes during skeletal muscle recovery from endurance exercise. Further cellular and translational research is warranted to validate amino acid-mediated myeloid and myocellular mechanisms within skeletal-muscle functional plasticity.
Collapse
Affiliation(s)
- David S Rowlands
- School of Sport and Exercise and Institute of Food Nutrition, and Human Health, Massey University, Wellington, New Zealand; and
| | - Andre R Nelson
- School of Sport and Exercise and Institute of Food Nutrition, and Human Health, Massey University, Wellington, New Zealand; and Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
| | - Frederic Raymond
- Nestle Research Centre, Lausanne, Switzerland; and Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Sylviane Metairon
- Nestle Research Centre, Lausanne, Switzerland; and Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - Jim Clarke
- School of Sport and Exercise and Institute of Food Nutrition, and Human Health, Massey University, Wellington, New Zealand; and
| | - Trent Stellingwerff
- Nestle Research Centre, Lausanne, Switzerland; and Canadian Sport Institute Pacific, Victoria, Canada; and
| | | |
Collapse
|
11
|
Helms ER, Aragon AA, Fitschen PJ. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr 2014; 11:20. [PMID: 24864135 PMCID: PMC4033492 DOI: 10.1186/1550-2783-11-20] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 04/29/2014] [Indexed: 12/19/2022] Open
Abstract
The popularity of natural bodybuilding is increasing; however, evidence-based recommendations for it are lacking. This paper reviewed the scientific literature relevant to competition preparation on nutrition and supplementation, resulting in the following recommendations. Caloric intake should be set at a level that results in bodyweight losses of approximately 0.5 to 1%/wk to maximize muscle retention. Within this caloric intake, most but not all bodybuilders will respond best to consuming 2.3-3.1 g/kg of lean body mass per day of protein, 15-30% of calories from fat, and the reminder of calories from carbohydrate. Eating three to six meals per day with a meal containing 0.4-0.5 g/kg bodyweight of protein prior and subsequent to resistance training likely maximizes any theoretical benefits of nutrient timing and frequency. However, alterations in nutrient timing and frequency appear to have little effect on fat loss or lean mass retention. Among popular supplements, creatine monohydrate, caffeine and beta-alanine appear to have beneficial effects relevant to contest preparation, however others do not or warrant further study. The practice of dehydration and electrolyte manipulation in the final days and hours prior to competition can be dangerous, and may not improve appearance. Increasing carbohydrate intake at the end of preparation has a theoretical rationale to improve appearance, however it is understudied. Thus, if carbohydrate loading is pursued it should be practiced prior to competition and its benefit assessed individually. Finally, competitors should be aware of the increased risk of developing eating and body image disorders in aesthetic sport and therefore should have access to the appropriate mental health professionals.
Collapse
Affiliation(s)
- Eric R Helms
- Sport Performance Research in New Zealand (SPRINZ) at AUT Millennium Institute, AUT University, 17 Antares Place, Mairangi Bay, Auckland 0632, New Zealand
| | | | - Peter J Fitschen
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
12
|
Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, Baar K, Tipton KD. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol 2011; 589:4011-25. [PMID: 21746787 DOI: 10.1113/jphysiol.2011.211888] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of the present study was to determine mitochondrial and myofibrillar muscle protein synthesis (MPS) when carbohydrate (CHO) or carbohydrate plus protein (C+P) beverages were ingested following prolonged cycling exercise. The intracellular mechanisms thought to regulate MPS were also investigated. In a single-blind, cross-over study, 10 trained cyclists (age 29 ± 6 years, VO2max 66.5 ± 5.1 ml kg(−1) min(−1)) completed two trials in a randomized order. Subjects cycled for 90 min at 77 ± 1% VO2max before ingesting a CHO (25 g of carbohydrate) or C+P (25 g carbohydrate + 10 g whey protein) beverage immediately and 30 min post-exercise. A primed constant infusion of L-[ring-(13)C6]phenylalanine began 1.5 h prior to exercise and continued until 4 h post-exercise. Muscle biopsy samples were obtained to determine myofibrillar and mitochondrial MPS and the phosphorylation of intracellular signalling proteins. Arterialized blood samples were obtained throughout the protocol. Plasma amino acid and urea concentrations increased following ingestion of C+P only. Serum insulin concentration increased more for C+P than CHO. Myofibrillar MPS was ∼35% greater for C+P compared with CHO (0.087 ± 0.007 and 0.057 ± 0.006% h(−1), respectively; P = 0.025). Mitochondrial MPS rates were similar for C+P and CHO (0.082 ± 0.011 and 0.086 ± 0.018% h(−1), respectively). mTOR(Ser2448) phosphorylation was greater for C+P compared with CHO at 4 h post-exercise (P < 0.05). p70S6K(Thr389) phosphorylation increased at 4 h post-exercise for C+P (P < 0.05), whilst eEF2(Thr56) phosphorylation increased by ∼40% at 4 h post-exercise for CHO only (P < 0.01). The present study demonstrates that the ingestion of protein in addition to carbohydrate stimulates an increase in myofibrillar, but not mitochondrial, MPS following prolonged cycling. These data indicate that the increase in myofibrillar MPS for C+P could, potentially, be mediated through p70S6K, downstream of mTOR, which in turn may suppress the rise in eEF2 on translation elongation.
Collapse
Affiliation(s)
- Leigh Breen
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rowlands DS, Thomson JS, Timmons BW, Raymond F, Fuerholz A, Mansourian R, Zwahlen MC, Métairon S, Glover E, Stellingwerff T, Kussmann M, Tarnopolsky MA. Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein. Physiol Genomics 2011; 43:1004-20. [PMID: 21730029 DOI: 10.1152/physiolgenomics.00073.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postexercise protein feeding regulates the skeletal muscle adaptive response to endurance exercise, but the transcriptome guiding these adaptations in well-trained human skeletal muscle is uncharacterized. In a crossover design, eight cyclists ingested beverages containing protein, carbohydrate and fat (PTN: 0.4, 1.2, 0.2 g/kg, respectively) or isocaloric carbohydrate and fat (CON: 1.6, 0.2 g/kg) at 0 and 1 h following 100 min of cycling. Biopsies of the vastus lateralis were collected at 3 and 48 h following to determine the early and late transcriptome and regulatory signaling responses via microarray and immunoblot. The top gene ontology enriched by PTN were: muscle contraction, extracellular matrix--signaling and structure, and nucleoside, nucleotide, and nucleic acid metabolism (3 and 48 h); developmental processes, immunity, and defense (3 h); glycolysis, lipid and fatty acid metabolism (48 h). The transcriptome was also enriched within axonal guidance, actin cytoskeletal, Ca2+, cAMP, MAPK, and PPAR canonical pathways linking protein nutrition to exercise-stimulated signaling regulating extracellular matrix, slow-myofibril, and metabolic gene expression. At 3 h, PTN attenuated AMPKα1Thr172 phosphorylation but increased mTORC1Ser2448, rps6Ser240/244, and 4E-BP1-γ phosphorylation, suggesting increased translation initiation, while at 48 h AMPKα1Thr172 phosphorylation and PPARG and PPARGC1A expression increased, supporting the late metabolic transcriptome, relative to CON. To conclude, protein feeding following endurance exercise affects signaling associated with cell energy status and translation initiation and the transcriptome involved in skeletal muscle development, slow-myofibril remodeling, immunity and defense, and energy metabolism. Further research should determine the time course and posttranscriptional regulation of this transcriptome and the phenotype responding to chronic postexercise protein feeding.
Collapse
Affiliation(s)
- David S Rowlands
- School of Sport and Exercise and Institute of Food Nutrition and Human Health, Massey University, Wellington, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pramuková B, Čokášová D, Salaj R. Composition of the athletes diet. POTRAVINARSTVO 2011. [DOI: 10.5219/126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sports nutrition is a constantly evolving field with many of research papers published annually. However, designing the most suitable sports diet is very difficult. It must be given to the type of training, its duration and intensity, the age and sex of the athlete and also for overall health. The aim of this article is to summarize knowledges about sports nutrition, especially intake of carbohydrates, proteins, fats and dietary supplements and their influence on the performance and recovery of the athlete.
Collapse
|
15
|
Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr 2010; 7:30. [PMID: 20860817 PMCID: PMC2955583 DOI: 10.1186/1550-2783-7-30] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/22/2010] [Indexed: 12/27/2022] Open
Abstract
Background We examined the effects of short-term consumption of whey protein isolate on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. Methods Seventeen untrained male participants (23 ± 5 yr, 180 ± 6 cm, 80 ± 11 kg) were randomly separated into two supplement groups: i) whey protein isolate (WPH; n = 9); or ii) carbohydrate (CHO; n = 8). Participants consumed 1.5 g/kg.bw/day supplement (~30 g consumed immediately, and then once with breakfast, lunch, in the afternoon and after the evening meal) for a period of 14 days following a unilateral eccentric contraction-based resistance exercise session, consisting of 4 sets of 10 repetitions at 120% of maximum voluntary contraction on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase and lactate dehydrogenase (LDH) levels were assessed as blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. Results Isometric knee extension strength was significantly higher following WPH supplementation 3 (P < 0.05) and 7 (P < 0.01) days into recovery from exercise-induced muscle damage compared to CHO supplementation. In addition, strong tendencies for higher isokinetic forces (extension and flexion) were observed during the recovery period following WPH supplementation, with knee extension strength being significantly greater (P < 0.05) after 7 days recovery. Plasma LDH levels tended to be lower (P = 0.06) in the WPH supplemented group during recovery. Conclusions The major finding of this investigation was that whey protein isolate supplementation attenuated the impairment in isometric and isokinetic muscle forces during recovery from exercise-induced muscle injury.
Collapse
|
16
|
Tipton K. Measuring synthesis rates of different proteins: clues to training adaptations. J Physiol 2009; 587:721. [PMID: 19218621 DOI: 10.1113/jphysiol.2009.168641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Kevin Tipton
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
|
18
|
Tarnopolsky MA. Building muscle: nutrition to maximize bulk and strength adaptations to resistance exercise training. Eur J Sport Sci 2008. [DOI: 10.1080/17461390801919128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|