1
|
Rosa CH, Monteiro CP, Barata C, Espada MC, Valamatos MJ, Bento A, Minhalma RJ, Reis JF. Cardiorespiratory and muscle oxygenation responses to voluntary hypoventilation at low lung volume in upper body repeated sprints. Eur J Appl Physiol 2024; 124:3741-3754. [PMID: 39138688 PMCID: PMC11568980 DOI: 10.1007/s00421-024-05569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE To investigate the impact of voluntary hypoventilation at low lung volumes (VHL) during upper body repeated sprints (RS) on performance, metabolic markers and muscle oxygenation in Brazilian Jiu-Jitsu (BJJ) athletes. METHODS Eighteen male well-trained athletes performed two randomized RS sessions, one with normal breathing (RSN) and another with VHL (RS-VHL), on an arm cycle ergometer, consisting of two sets of eight all-out 6-s sprints performed every 30 s. Peak (PPO), mean power output (MPO), and RS percentage decrement score were calculated. Arterial oxygen saturation (SpO2), heart rate (HR), gas exchange, and muscle oxygenation of the long head of the triceps brachii were continuously recorded. Blood lactate concentration ([La]) was measured at the end of each set. Bench press throw peak power (BPPP) was recorded before and after the RS protocol. RESULTS Although SpO2 was not different between conditions, PPO and MPO were significantly lower in RS-VHL. V ˙ E, HR, [La], and RER were lower in RS-VHL, and VO2 was higher in RS-VLH than in RSN. Muscle oxygenation was not different between conditions nor was its pattern of change across the RS protocol influenced by condition. [La] was lower in RS-VHL than in RSN after both sets. CONCLUSION Performance was significantly lower in RS-VHL, even though SPO2 was not consistent with hypoxemia. However, the fatigue index was not significantly affected by VHL, nor was the neuromuscular upper body power after the RS-VHL protocol. Additionally, [La] was lower, and oxygen consumption was higher in RS-VHL, suggesting a higher aerobic contribution in this condition.
Collapse
Affiliation(s)
- Cristóvão H Rosa
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina P Monteiro
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Barata
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
| | - Mário C Espada
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
- Instituto Politécnico de Setúbal, Escola Superior de Educação, Setúbal, Portugal
- Sport Physical Activity and Health Research & Innovation Center (SPRINT), Rio Maior, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
- Life Quality Research Centre (CIEQV), Setúbal, Portugal
| | - Maria João Valamatos
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
- Neuromuscular Research Laboratory, Faculdade Motricidade Humana, Universidade Lisboa, Oeiras, Portugal
| | - André Bento
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
| | - Ricardo J Minhalma
- Sport Physical Activity and Health Research & Innovation Center (SPRINT), Rio Maior, Portugal
- Escola Superior de Educacao e Comunicacao, Universidade do Algarve, Faro, Portugal
| | - Joana Filipa Reis
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal.
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal.
- Portugal Football School, Portuguese Football Federation, FPF, Cruz-Quebrada, Portugal.
| |
Collapse
|
2
|
Narang BJ, Drole K, Barber JFP, Goods PSR, Debevec T. Utility of hypoxic modalities for musculoskeletal injury rehabilitation in athletes: A narrative review of mechanisms and contemporary perspectives. J Sports Sci 2024:1-14. [PMID: 39448892 DOI: 10.1080/02640414.2024.2416779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Recent evidence suggests that different hypoxic modalities might accelerate the rehabilitation process in injured athletes. In this review, the application of hypoxia during rehabilitation from musculoskeletal injury is explored in relation to two principles: (1) facilitating the healing of damaged tissue, and (2) mitigating detraining and inducing training adaptations with a reduced training load. Key literature that explores the underlying mechanisms for these themes is presented, and considerations for practice and future research directions are outlined. For principle (1), passive intermittent hypoxic exposures might accelerate tissue healing through angiogenic and osteogenic mechanisms. Experimental evidence is largely derived from rodent research, so further work is warranted to establish whether clinically meaningful effects can be observed in humans, before optimal protocols are determined (duration, frequency, and hypoxic severity). Regarding principle (2), a hypoxia-related increase in the cardiometabolic stimulus imposed by low-load exercise is appealing for load-compromised athletes. As rehabilitation progresses, a variety of hypoxic modalities can be implemented to enhance adaptation to energy-systems and resistance-based training, and more efficiently return the athlete to competition readiness. While hypoxic modalities seem promising for accelerating musculoskeletal injury rehabilitation in humans, and are already being widely used in practice, a significant gap remains regarding their evidence-based application.
Collapse
Affiliation(s)
- Benjamin Jonathan Narang
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Kristina Drole
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Paul S R Goods
- Physical Activity, Sport and Exercise (PHASE) Research Group, School of Allied Health (Exercise Science), Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
3
|
Faiss R, Raberin A, Brocherie F, Millet GP. Repeated-sprint training in hypoxia: A review with 10 years of perspective. J Sports Sci 2024:1-15. [PMID: 39445500 DOI: 10.1080/02640414.2024.2416821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, numerous studies have investigated an innovative "live low-train high" approach based on the repetition of short (<30 s) "all-out" sprints with incomplete recoveries in hypoxia; the so-called Repeated-Sprint training in Hypoxia (RSH). The aims of the present review are therefore threefold. First, this study summarizes the available evidence on putative additional performance enhancement after RSH comparing to the same training in normoxia (RSN). Second, a critical analysis of underpinning mechanisms discusses how advantages can be obtained through RSH for sea-level performance enhancement. An enhanced microcirculatory vasodilation leading to improved muscle perfusion and/or oxygenation and an increase in muscular phosphocreatine content may help explain the superiority of RSH vs. RSN. Third, the present review aims to provide guidelines for coaches, athletes and scientists to apply RSH interventions with regard to the interval duration, exercise-to-rest ratio and training volume. In conclusion, this review supports repeated-sprint training in hypoxia as an efficient (but not magic) training intervention with 77% of the controlled studies reporting an additional benefit with added hypoxia, mainly for team-, combat- and racket-sports athletes but also for all other sports (e.g. endurance) that require repeated accelerations with lesser fatigue.
Collapse
Affiliation(s)
- Raphaël Faiss
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, French Institute of Sport, Paris, France
| | - Grégoire P Millet
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Shi Q, Tong TK, Nie J, Tao D, Zhang H, Tan X, Kong Z. Repeated-sprint training in hypoxia boosts up team-sport-specific repeated-sprint ability: 2-week vs 5-week training regimen. Eur J Appl Physiol 2023; 123:2699-2710. [PMID: 37335354 DOI: 10.1007/s00421-023-05252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE To investigate (1) the boosting effects immediately and 4 weeks following 2-week, 6-session repeated-sprint training in hypoxia (RSH2-wk, n = 10) on the ability of team-sport players in performing repeated sprints (RSA) during a team-sport-specific intermittent exercise protocol (RSAIEP) by comparing with normoxic counterpart (CON2-wk, n = 12), and (2) the dose effects of the RSH by comparing the RSA alterations in RSH2-wk with those resulting from a 5-week, 15-session regimen (RSH5-wk, n = 10). METHODS Repeated-sprint training protocol consisted of 3 sets, 5 × 5-s all-out sprints on non-motorized treadmill interspersed with 25-s passive recovery under the hypoxia of 13.5% and normoxia, respectively. The within- (pre-, post-, 4-week post-intervention) and between- (RSH2-wk, RSH5-wk, CON2-wk) group differences in the performance of four sets of RSA tests held during the RSAIEP on the same treadmill were assessed. RESULTS In comparison with pre-intervention, RSA variables, particularly the mean velocity, horizontal force, and power output during the RSAIEP enhanced significantly immediate post RSH in RSH2-wk (5.1-13.7%), while trivially in CON2-wk (2.1-6.2%). Nevertheless, the enhanced RSA in RSH2-wk diminished 4 weeks after the RSH (- 3.17-0.37%). For the RSH5-wk, the enhancement of RSA immediately following the 5-week RSH (4.2-16.3%) did not differ from that of RSH2-wk, yet the enhanced RSA was well-maintained 4-week post-RSH (0.12-1.14%). CONCLUSIONS Two-week and five-week RSH regimens could comparably boost up the effects of repeated-sprint training in normoxia, while dose effect detected on the RSA enhancement was minimal. Nevertheless, superior residual effects of the RSH on RSA appear to be associated with prolonged regimen.
Collapse
Affiliation(s)
- Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R, China
| | - Tomas K Tong
- Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong S.A.R, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R, China
| | - Dan Tao
- Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong S.A.R, China
| | - Haifeng Zhang
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaoying Tan
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Av. da Universidade, Taipa, Macao S.A.R, China.
| |
Collapse
|
5
|
Bouten J, Brick M, Saboua A, Hadjadj JL, Piscione J, Margot C, Doucende G, Bourrel N, Millet GP, Brocherie F. Effects of 2 Different Protocols of Repeated-Sprint Training in Hypoxia in Elite Female Rugby Sevens Players During an Altitude Training Camp. Int J Sports Physiol Perform 2023; 18:953-959. [PMID: 37487586 DOI: 10.1123/ijspp.2023-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Repeated-sprint training in hypoxia (RSH) is an effective way of improving physical performance compared with similar training in normoxia. RSH efficiency relies on hypoxia severity, but also on the oxidative-glycolytic balance determined by both sprint duration and exercise-to-rest ratio. This study investigated the effect of 2 types of RSH sessions during a classic altitude camp in world-class female rugby sevens players. METHODS Sixteen players performed 5 RSH sessions on a cycle ergometer (simulated altitude: 3000 m above sea level [asl]) during a 3-week natural altitude camp (1850 m asl). Players were assigned to 2 different protocols with either a high (RSH1:3, sprint duration: 8-10 s; exercise-to-rest ratios: 1:2-1:3; n = 7) or a low exercise-to-rest ratio (RSH1:5, sprint duration: 5-15 s; exercise-to-rest ratios: 1:2-1:5; n = 9). Repeated-sprint performances (maximal and mean power outputs [PPOmax, and PPOmean]) were measured before and after the intervention, along with physiological responses. RESULTS PPOmax (962 [100] to 1020 [143] W, P = .008, Cohen d = 0.47) and PPOmean (733 [71] to 773 [91] W, P = .008, d = 0.50) increased from before to after. A significant interaction effect (P = .048, d = 0.50) was observed for PPOmean, with a larger increase observed in RSH1:3 (P = .003). No interaction effects were observed (P > .05) for the other variables. CONCLUSION A classic altitude camp with 5 RSH sessions superimposed on rugby-sevens-specific training led to an improved repeated-sprint performance, suggesting that RSH effects are not blunted by prolonged hypoxic exposure. Interestingly, using a higher exercise-to-rest ratio during RSH appears to be more effective than when applying a lower exercise-to-rest ratio.
Collapse
Affiliation(s)
- Janne Bouten
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| | - Maxime Brick
- Research Department, French Rugby Union, Marcoussis,France
| | - Antoine Saboua
- Research Department, French Rugby Union, Marcoussis,France
| | | | | | - Chloé Margot
- Institute of Sport Sciences, University of Lausanne, Lausanne,Switzerland
| | - Gregory Doucende
- Centre National d'Entraînement en Altitude, Font Romeu,France
- Laboratoire Interdisciplinaire Performance Santé en Environnement de Montagne (LIPSEM), Université de Perpignan Via Domitia, Font Romeu,France
| | - Nicolas Bourrel
- Centre National d'Entraînement en Altitude, Font Romeu,France
- Institut National du Sport (INS), Montreal, QC,Canada
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne,Switzerland
| | - Franck Brocherie
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| |
Collapse
|
6
|
Hagiwara M, Yamagishi T, Okamoto S, Azuma Y, Yamashita D. Short-term repeated sprint training in hypoxia improves explosive power production capacity and repeated sprint ability in Japanese international-level male fencers: A case study. Physiol Rep 2023; 11:e15637. [PMID: 36945895 PMCID: PMC10031295 DOI: 10.14814/phy2.15637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
This case study reports the effects of six sessions of repeated sprint training in hypoxia (RSH) over 3 weeks on explosive power production capacity and repeated sprint ability (RSA) in two Japanese international-level foil fencers. The six RSH sessions (60-s sprints in total per session: consisting of two sets of five 6-s sprints with 30-s passive recovery, at simulated altitude of 3000 m) caused improvements of peak power output (PPO; Athlete A: 5.1%; Athlete B: 3.2%) and mean power output (MPO; Athlete A: 4.4%; Athlete B: 1.6%) over the 10 repeated sprints, respectively. The observed findings suggest that as few as six RSH sessions over 3 weeks can improve, at least to some extent, explosive power production capacity (PPO) and RSA (MPO) in the two elite fencers. To the best of our knowledge, this is the first study to apply short-term RSH in combat sport (fencing) with international-level athletes. Further studies are required to explore the effectiveness of short-term RSH in combat sports with a more robust study design (e.g., randomized control trial with adequate statistical power) as the modality of RSH would suit physical and physiological demands in the majority of combat sports (e.g., wrestling, boxing).
Collapse
Affiliation(s)
- Masahiro Hagiwara
- Department of Sport Science and ResearchJapan Institute of Sports Sciences, Japan High Performance Sport CenterTokyoJapan
| | - Takaki Yamagishi
- Department of Sport Science and ResearchJapan Institute of Sports Sciences, Japan High Performance Sport CenterTokyoJapan
| | - Shogo Okamoto
- Department of Sport Science and ResearchJapan Institute of Sports Sciences, Japan High Performance Sport CenterTokyoJapan
| | - Yasuyuki Azuma
- Department of Sport Science and ResearchJapan Institute of Sports Sciences, Japan High Performance Sport CenterTokyoJapan
- Albirex Niigata BBNiigataJapan
| | - Daichi Yamashita
- Department of Sport Science and ResearchJapan Institute of Sports Sciences, Japan High Performance Sport CenterTokyoJapan
| |
Collapse
|
7
|
Adding heat stress to repeated-sprint training in hypoxia does not enhance performance improvements in canoe/kayak athletes. Eur J Appl Physiol 2023; 123:339-349. [PMID: 36278988 DOI: 10.1007/s00421-022-05054-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The present study investigated the effects of adding heat stress to repeated-sprint training in hypoxia on performance and physiological adaptations in well-trained athletes. METHODS Sixteen canoe/kayak sprinters conducted 2 weeks of repeated-sprint training consisting of three sets of 5 × 10 s sprints with 20 s active recovery periods under conditions of either normobaric hypoxia (RSH, FiO2: 14.5%, ambient temperature: 18 ℃, n = 8) or combined heat and normobaric hypoxia (RSHH, FiO2: 14.5%, ambient temperature: 38 ℃, n = 8). Before and after training, the 10 × 10 s repeated-sprint ability (RSA) test and 500 m time trial were performed on a canoe/kayak ergometer. RESULTS Peak and average power outputs during the RSA test were significantly improved after training in both RSH (peak power: + 21.5 ± 4.6%, P < 0.001; average power: + 12.5 ± 1.9%, P < 0.001) and RSHH groups (peak power: + 18.8 ± 6.6%, P = 0.005; average power: + 10.9 ± 6.8%, P = 0.030). Indirect variables of skeletal muscle oxygen extraction (deoxygenated hemoglobin) and blood perfusion (total hemoglobin) during the RSA test were significantly increased after training in the RSH group (P = 0.041 and P = 0.034, respectively) but not in the RSHH group. In addition, finish time during the 500 m time trial was significantly shortened after the training only in the RSH group (RSH: - 3.9 ± 0.8%, P = 0.005; RSHH: - 3.1 ± 1.4%, P = 0.078). CONCLUSION Adding heat stress to RSH does not enhance performance improvement and may partially mask muscle tissue adaptation.
Collapse
|
8
|
Yamaguchi K, Kasai N, Hayashi N, Yatsutani H, Girard O, Goto K. Acute performance and physiological responses to repeated-sprint exercise in a combined hot and hypoxic environment. Physiol Rep 2021; 8:e14466. [PMID: 32592261 PMCID: PMC7319945 DOI: 10.14814/phy2.14466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated performance, energy metabolism, acid-base balance, and endocrine responses to repeated-sprint exercise in hot and/or hypoxic environment. In a single-blind, cross-over study, 10 male highly trained athletes completed a repeated cycle sprint exercise (3 sets of 3 × 10-s maximal sprints with 40-s passive recovery) under four conditions (control [CON; 20℃, 50% rH, FiO2 : 20.9%; sea level], hypoxia [HYP; 20℃, 50% rH, FiO2 : 14.5%; a simulated altitude of 3,000 m], hot [HOT; 35℃, 50% rH, FiO2 : 20.9%; sea level], and hot + hypoxia [HH; 35℃, 50% rH, FiO2 : 14.5%; a simulated altitude of 3,000 m]). Changes in power output, muscle and skin temperatures, and respiratory oxygen uptake were measured. Peak (CON: 912 ± 26 W, 95% confidence interval [CI]: 862-962 W, HYP: 915 ± 28 W [CI: 860-970 W], HOT: 937 ± 26 W [CI: 887-987 W], HH: 937 ± 26 W [CI: 886-987 W]) and mean (CON: 808 ± 22 W [CI: 765-851 W], HYP: 810 ± 23 W [CI: 765-855 W], HOT: 825 ± 22 W [CI: 781-868 W], HH: 824 ± 25 W [CI: 776-873 W]) power outputs were significantly greater when exercising in heat conditions (HOT and HH) during the first sprint (p < .05). Heat exposure (HOT and HH) elevated muscle and skin temperatures compared to other conditions (p < .05). Oxygen uptake and arterial oxygen saturation were significantly lower in hypoxic conditions (HYP and HH) versus the other conditions (p < .05). In summary, additional heat stress when sprinting repeatedly in hypoxia improved performance (early during exercise), while maintaining low arterial oxygen saturation.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Nobukazu Kasai
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.,Department of Sports Science, Japan Institute of Sports Sciences, Kitaku, Tokyo, Japan
| | - Nanako Hayashi
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Haruka Yatsutani
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Olivier Girard
- School of Human Science (Exercise and Sport Science), The University of Western Australia, Crawley, Australia
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
9
|
Intensified Training Supersedes the Impact of Heat and/or Altitude for Increasing Performance in Elite Rugby Union Players. Int J Sports Physiol Perform 2021; 16:1416-1423. [PMID: 33668015 DOI: 10.1123/ijspp.2020-0630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate whether including heat and altitude exposures during an elite team-sport training camp induces similar or greater performance benefits. METHODS The study assessed 56 elite male rugby players for maximal oxygen uptake, repeated-sprint cycling, and Yo-Yo intermittent recovery level 2 (Yo-Yo) before and after a 2-week training camp, which included 5 endurance and 5 repeated-sprint cycling sessions in addition to daily rugby training. Players were separated into 4 groups: (1) control (all sessions in temperate conditions at sea level), (2) heat training (endurance sessions in the heat), (3) altitude (repeated-sprint sessions and sleeping in hypoxia), and (4) combined heat and altitude (endurance in the heat, repeated sprints, and sleeping in hypoxia). RESULTS Training increased maximal oxygen uptake (4% [10%], P = .017), maximal aerobic power (9% [8%], P < .001), and repeated-sprint peak (5% [10%], P = .004) and average power (12% [14%], P < .001) independent of training conditions. Yo-Yo distance increased (16% [17%], P < .001) but not in the altitude group (P = .562). Training in heat lowered core temperature and increased sweat rate during a heat-response test (P < .05). CONCLUSION A 2-week intensified training camp improved maximal oxygen uptake, repeated-sprint ability, and aerobic performance in elite rugby players. Adding heat and/or altitude did not further enhance physical performance, and altitude appears to have been detrimental to improving Yo-Yo.
Collapse
|
10
|
Brocherie F, Beard A. All Alone We Go Faster, Together We Go Further: The Necessary Evolution of Professional and Elite Sporting Environment to Bridge the Gap Between Research and Practice. Front Sports Act Living 2021; 2:631147. [PMID: 33585813 PMCID: PMC7874745 DOI: 10.3389/fspor.2020.631147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Adam Beard
- High Performance Unit, Chicago Cubs Major League Baseball, Chicago, IL, United States
| |
Collapse
|
11
|
James C, Girard O. In-Season Repeated-Sprint Training in Hypoxia in International Field Hockey Players. Front Sports Act Living 2020; 2:66. [PMID: 33345057 PMCID: PMC7739710 DOI: 10.3389/fspor.2020.00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/13/2020] [Indexed: 11/13/2022] Open
Abstract
Repeated-sprint training in hypoxia (RSH) studies conducted “in-season” are scarce. This study investigated the effect of discontinuous, running-based RSH, on repeated-sprint treadmill performance in hypoxia in a team sport cohort, prior to international competition. Over a 6-week “in-season” period, 11 elite male players (Malaysia national team) completed eight multi-set RSH sessions on a non-motorized treadmill in a normobaric hypoxic chamber (FiO2 = 13.8%). Three testing sessions (Sessions 1, 5, and 8), involved three sets of 5 × 8-s sprints, with 52-s recovery between sprints and 4–5 min between sets. Training sessions (Sessions 2, 3, 4, 6, and 7) consisted of four to five sets of 4–5 × 8-s sprints. During testing sessions, maximum sprinting speed was recorded for each sprint with values averaged for each set. For each set, a peak speed and fatigue index were calculated. Data were compared using two-way repeated measures ANOVA (sessions × sets). Average speed per set increased between testing sessions (p = 0.001, ηp2 = 0.49), with higher values in Session 8 (25.1 ± 0.9 km.h−1, +4 ± 3%, p = 0.005), but not Session 5 (24.8 ± 1.0 km.h−1, +3 ± 3%, p = 0.405), vs. Session 1 (24.2 ± 1.5 km.h−1). Peak sprinting speed in each set also increased across testing sessions (p = 0.008, ηp2 = 0.382), with Session 8 (26.5 ± 1.1 km.h−1) higher than Session 5 (25.8 ± 1.0 km.h−1, +1 ± 4%, p = 0.06) and Session 1 (25.7 ± 1.5 km.h−1, +4 ± 4%, p = 0.034). Fatigue index differed between sessions (p = 0.04, ηp2 = 0.331, Session 1; −6.8 ± 4.8%, Session 5; −3.8 ± 2%, Session 8; −5.3 ± 2.6%). In international field hockey players, a 6-week in-season RSH program improved average and peak, repeated treadmill sprint speeds following eight, but not five sessions.
Collapse
Affiliation(s)
- Carl James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
12
|
Willis SJ, Borrani F, Millet GP. High-Intensity Exercise With Blood Flow Restriction or in Hypoxia as Valuable Spaceflight Countermeasures? Front Physiol 2019; 10:1266. [PMID: 31632298 PMCID: PMC6783686 DOI: 10.3389/fphys.2019.01266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/19/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sarah J Willis
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|