1
|
Dias MS, Freitas SMSF, de Freitas PB. Multi-Joint Synergy in Foot Height Stabilization Across Different Running Speeds: An Uncontrolled Manifold Analysis. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2025:1-10. [PMID: 40209227 DOI: 10.1080/02701367.2025.2480143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/12/2025] [Indexed: 04/12/2025]
Abstract
The uncontrolled manifold (UCM) framework was employed to investigate the presence of a multi-joint synergy stabilizing foot height during the swing phase of treadmill running and its potential dependence on running speed. Experienced runners (N = 28; aged 22-51) ran on an instrumented treadmill set at three different speeds: 2.5, 3.5, and 4.5 m/s. Kinematic data were utilized to calculate UCM outcomes: variances in the joint space that had no effect (VUCM) and those that influenced (VORT) foot height, and the synergy index (ΔVZ, the normalized difference between VUCM and VORT). They were computed for each normalized frame (1-100%) of the swing phase and averaged in 10% intervals. ΔVZ was greater than zero and varied across the swing phase, being lowest at 51-60% and highest at 81-100%. ΔVZ was the lowest at the slowest speed in the second half of the swing phase, because of a low VUCM. The findings indicate that the CNS organizes a multi-joint synergy to stabilize foot height, with the strongest synergy at the end of the swing phase to ensure safe foot placement and landing. Faster running speeds enhance this synergy, allowing greater adaptability to perturbations, while slower speeds lead to a more cautious approach, reducing overall variance.
Collapse
|
2
|
Kettner C, Stetter BJ, Stein T. The effects of different shoe stack heights and running speeds on full-body running coordination: An uncontrolled manifold analysis. J Biomech 2025; 183:112615. [PMID: 40056729 DOI: 10.1016/j.jbiomech.2025.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Stack height is a highly discussed key design feature of running shoes but its effects are not well understood. This study analyzed how shoe stack height and running speed influence full-body running coordination and motor variability structure using an uncontrolled manifold (UCM) analysis. The joint angle variability (i.e. elementary variables) was analyzed in terms of its effects on a synergy stabilizing the center of mass (CoM, i.e. performance variable). A total of 17 healthy experienced runners participated and ran at 10 and 15 km/h on a treadmill with three running shoes differing in stack height (H: 50 mm, M: 35 mm, L: 27 mm). The UCM components (UCM||, UCM Ʇ & UCMratio) were compared with statistical parametric mapping rmANOVAs for different shoes and speeds. The shoes did not show significant effects for the three UCM components. With increasing speed from 10 to 15 km/h, the joint angle coordination variability affecting the CoM (UCMꞱ) increased and UCMratio decreased independent of the shoe condition. This indicated that stack height did not influence the motor variability structure. However, independent of the shoes, the variability affecting CoM increased which led to a weakened synergy stabilizing CoM (UCMratio). It can be suggested that the variations in the tested running speeds had a greater impact on the running coordination than those of the tested shoes within the UCM framework.
Collapse
Affiliation(s)
- Cagla Kettner
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Bernd J Stetter
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany; Sports Orthopedics, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Thorsten Stein
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
3
|
Rabello R, Desai GA, Sforza C, Gruber AH. Running stiffness and spatiotemporal parameters are similar between non-runners and runners with different experience levels. Sports Biomech 2025:1-15. [PMID: 40126086 DOI: 10.1080/14763141.2025.2480094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Spatiotemporal parameters and leg and joint stiffness are variables that represent the fundamental dynamics of running. Therefore, these variables may effectively differentiate between less-experienced and more-experienced runners' gait, possibly addressing differing injury rates between populations. We compared stiffness and spatiotemporal parameters between runners with different experience levels, including a group with no previous running experience. Healthy physically active participants (22.1 ± 3.6y) were divided into three groups, according to experience: experienced (running >1-year, 14-48 km/week; n = 23, 9F), novice (running <1-year, 5-21 km/week; n = 15, 4F) and non-runners (no running for the past 5 years; n = 17, 7F). Three-dimensional motion capture and force plates measured gait mechanics during overground running at 3.35 m·s-1. Knee, ankle and three-dimensional leg stiffness, contact time, flight time and step length were compared between groups using independent-measures ANCOVA (covariate = sex). No biomechanical variable was significantly different between the groups (leg: p = 0.652, Hedges' g = 0.09-0.17; ankle: p = 0.439, g = 0.07-0.19; knee: p = 0.153, g = 0.13-0.29; contact time: p = 0.592, g = 0.06-0.24; flight time: p = 0.513, g = 0.03-0.40; step length: p = 0.107, g = 0.26-0.61). Stiffness and spatiotemporal parameters were not different between runners with greater than 1-year of experience when compared to runners with less than 1-year experience and non-runners. Therefore, running gait may not differentially affect injury rates between experience levels.
Collapse
Affiliation(s)
- Rodrigo Rabello
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Sports and Exercise Medicine, Queen Mary University of London, London, UK
| | - Gauri A Desai
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Chiarella Sforza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Allison H Gruber
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
Frayne DH, Norman-Gerum VT, Howarth SJ, Brown SHM. Experience influences kinematic motor synergies: an Uncontrolled manifold approach to simulated Nordic skiing. J Sports Sci 2024; 42:2267-2278. [PMID: 37742214 DOI: 10.1080/02640414.2023.2260237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Motor synergies are defined as central nervous system mechanisms which adjust participating degrees of freedom to ensure dynamic stability (control) of certain performance variables and have been identified during many motor tasks. The potential for synergistic control of individual segments during full-body tasks is often overlooked. Thus, this study compared individual differences in the potential stabilization of multiple performance variables on the basis of experience during a full-body sport activity. Normalized time series of synergy indices from Uncontrolled Manifold analyses on experienced (n = 9) and inexperienced (n = 19) participants were analysed using statistical parametric mapping during simulated Nordic skiing. Regardless of experience, hand, upper arm, and whole-body centre of mass (COM) kinematics were found to be stabilized by kinematic motor synergies. Only experienced Nordic skiers stabilized trunk COM position at all, while trunk COM velocity was stabilized for a longer duration than inexperienced participants. However, inexperienced participants stabilized hand velocity for a greater duration overall and to a greater magnitude during early pull phase than the experienced skiers. That motor synergies for hand and trunk COM velocity differed between experience groups suggests potential utility for these performance variables as indicators of motor skill development for full-body tasks such as Nordic skiing.
Collapse
Affiliation(s)
- Devon H Frayne
- Department of Human Health and Nutritional Sciences, University of Guelph, Guleph, Canada
| | - Valerie T Norman-Gerum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guleph, Canada
| | - Samuel J Howarth
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, ON, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guleph, Canada
| |
Collapse
|
5
|
Marineau E, Ducas J, Mathieu J, Rodriguez ADP, Descarreaux M, Abboud J. From Novice to Expert: How Expertise Shapes Motor Variability in Sports Biomechanics-a Scoping Review. Scand J Med Sci Sports 2024; 34:e14706. [PMID: 39049526 DOI: 10.1111/sms.14706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
With expertise, athletes develop motor strategies that enhance sports performance or reduce functional costs. Motor variability is known as a relevant way to characterize these strategies in athletes with different levels of expertise. The aim of this scoping review is to gather and discuss the latest advances in the impact of expertise on motor variability during sports-related tasks. A search encompassing three databases, Medline, SportDiscus, and Academic Search Complete, was performed. Our research methodology included three core themes: motor variability, laboratory instruments, and sports. Motor variability metrics (e.g., standard deviation and approximate entropy) and laboratory instruments (e.g., motion capture system, EMG, and force plate) were compiled. Athletes' expertise was defined by the time of deliberate practice, the performance results, or the level in which they performed. Overall, 48 of the 59 included studies determined that higher-skilled athletes had lesser motor variability than lower-skilled athletes. This difference in motor variability between skill levels was present within individual athletes (intra-individual) and between athletes (inter-individual). This result was independent of the criteria used to define expertise, the type of instrumentation used, and the metrics used to quantify motor variability.
Collapse
Affiliation(s)
- Emile Marineau
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
- Groupe de recherche sur les affections neuromusculosquelettiques de l'Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Julien Ducas
- Groupe de recherche sur les affections neuromusculosquelettiques de l'Université du Québec à Trois-Rivières, Trois-Rivières, Canada
- Department of Physical Activity Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Janny Mathieu
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
- Groupe de recherche sur les affections neuromusculosquelettiques de l'Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Alvaro De Pano Rodriguez
- Groupe de recherche sur les affections neuromusculosquelettiques de l'Université du Québec à Trois-Rivières, Trois-Rivières, Canada
- Department of Physical Activity Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Martin Descarreaux
- Groupe de recherche sur les affections neuromusculosquelettiques de l'Université du Québec à Trois-Rivières, Trois-Rivières, Canada
- Department of Physical Activity Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Jacques Abboud
- Groupe de recherche sur les affections neuromusculosquelettiques de l'Université du Québec à Trois-Rivières, Trois-Rivières, Canada
- Department of Physical Activity Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
6
|
Liew BXW, Rügamer D, Birn-Jeffery AV. Neuromechanical stabilisation of the centre of mass during running. Gait Posture 2024; 108:189-194. [PMID: 38103324 DOI: 10.1016/j.gaitpost.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Stabilisation of the centre of mass (COM) trajectory is thought to be important during running. There is emerging evidence of the importance of leg length and angle regulation during running, which could contribute to stability in the COM trajectory The present study aimed to understand if leg length and angle stabilises the vertical and anterior-posterior (AP) COM displacements, and if the stability alters with running speeds. METHODS Data for this study came from an open-source treadmill running dataset (n = 28). Leg length (m) was calculated by taking the resultant distance of the two-dimensional sagittal plane leg vector (from pelvis segment to centre of pressure). Leg angle was defined by the angle subtended between the leg vector and the horizontal surface. Leg length and angle were scaled to a standard deviation of one. Uncontrolled manifold analysis (UCM) was used to provide an index of motor abundance (IMA) in the stabilisation of the vertical and AP COM displacement. RESULTS IMAAP and IMAvertical were largely destabilising and always stabilising, respectively. As speed increased, the peak destabilising effect on IMAAP increased from -0.66(0.18) at 2.5 m/s to -1.12(0.18) at 4.5 m/s, and the peak stabilising effect on IMAvertical increased from 0.69 (0.19) at 2.5 m/s to 1.18 (0.18) at 4.5 m/s. CONCLUSION Two simple parameters from a simple spring-mass model, leg length and angle, can explain the control behind running. The variability in leg length and angle helped stabilise the vertical COM, whilst maintaining constant running speed may rely more on inter-limb variation to adjust the horizontal COM accelerations.
Collapse
Affiliation(s)
- Bernard X W Liew
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom.
| | - David Rügamer
- Department of Statistics, Ludwig-Maximilians-Universität München, Germany; Munich Center for Machine Learning, Munich, Germany
| | - Aleksandra V Birn-Jeffery
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom
| |
Collapse
|
7
|
Garofolini A, Mickle KJ, McLaughlin P, Taylor SB. Assessing the effects of foot strike patterns and shoe types on the control of leg length and orientation in running. Sci Rep 2024; 14:2220. [PMID: 38278965 PMCID: PMC10817954 DOI: 10.1038/s41598-024-52446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
This research investigates the stabilization of leg length and orientation during the landing phase of running, examining the effects of different footwear and foot strike patterns. Analyzing kinematic data from twenty male long-distance runners, both rearfoot and forefoot strikers, we utilized the Uncontrolled Manifold approach to assess stability. Findings reveal that both leg length and orientation are indeed stabilized during landing, challenging the hypothesis that rearfoot strikers exhibit less variance in deviations than forefoot strikers, and that increased footwear assistance would reduce these deviations. Surprisingly, footwear with a lower minimalist index enhanced post-landing stability, suggesting that cushioning contributes to both force dissipation and leg length stability. The study indicates that both foot strike patterns are capable of effectively reducing task-relevant variance, with no inherent restriction on flexibility for rearfoot strikers. However, there is an indication of potential reliance on footwear for stability. These insights advance our understanding of the biomechanics of running, highlighting the role of footwear in stabilizing leg length and orientation, which has significant implications for running efficiency and injury prevention.
Collapse
Affiliation(s)
| | - Karen J Mickle
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Patrick McLaughlin
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Simon B Taylor
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
8
|
Hoolihan B, Wheat J, Dascombe B, Vickery-Howe D, Middleton K. The effect of external loads and biological sex on coupling variability during load carriage. Gait Posture 2023; 100:236-242. [PMID: 36640597 DOI: 10.1016/j.gaitpost.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/27/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Load carriage is a fundamental requirement for military personnel that commonly results in lower-limb injuries. Coupling variability represents a potential injury mechanism for such repetitive tasks and its unknown whether external loads and biological sex affect coupling variability during load carriage. RESEARCH QUESTION Is there a sex-by-load interaction during load carriage at self-selected walking speeds? METHODS Twenty-six participants (13 males, 13 females) completed three 10-minute treadmill-based trials wearing body-borne external load (0 %BM, 20 %BM, and 40 %BM) at load-specific self-selected walking speeds. A Vicon motion capture system tracked markers with a lower-body direct-kinematic model calculating sagittal-plane segment kinematics of the thigh, shank, and foot across 19 strides. Continuous relative phase standard deviation (CRPv) provided a measure of coupling variability for each coupling angle (Thigh-Shank and Shank-Foot). The CRPv for each load and sex was compared using statistical parametric mapping repeated measures ANOVA and paired t tests. RESULTS Significant sex-by-load interactions were reported for the Thigh-Shank coupling. Males demonstrated no significant load differences in CRPv, however, females displayed significantly higher CRPv in the 40 %BM than the 0 %BM condition. A significant main effect of load was observed in the Shank-Foot coupling, with the 40 %BM having significantly greater CRPv than the other load conditions. SIGNIFICANCE Both biological sex and external loads significantly affected CRPv during load carriage at self-selected walking speeds. Females demonstrated greater CRPv at the heavier loads, suggesting that the perturbation from the heavier mass increases coupling variability, which may also be amplified by a greater total passive load due to their relatively higher adipose tissue compared to males. The consistent CRPv in males suggests that higher relative loads may be required to change coupling variability. Collectively, these results suggest that external load affects the coupling variability of males and females differently, providing potential for injury screening and monitoring programs.
Collapse
Affiliation(s)
- Brooke Hoolihan
- Applied Sport Science and Exercise Testing Laboratory, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, Australia; Applied Biomechanics Laboratory, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia.
| | - Jonathan Wheat
- Sports Engineering Research Group, Sport and Physical Activity Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Ben Dascombe
- Applied Sport Science and Exercise Testing Laboratory, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, Australia
| | - Danielle Vickery-Howe
- Applied Biomechanics Laboratory, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia
| | - Kane Middleton
- Applied Biomechanics Laboratory, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia
| |
Collapse
|
9
|
Fadillioglu C, Möhler F, Reuter M, Stein T. Changes in Key Biomechanical Parameters According to the Expertise Level in Runners at Different Running Speeds. Bioengineering (Basel) 2022; 9:616. [PMID: 36354527 PMCID: PMC9687194 DOI: 10.3390/bioengineering9110616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2024] Open
Abstract
Running has become increasingly popular worldwide. Among runners, there exists a wide range of expertise levels. Investigating the differences between runners at two extreme levels, that is novices and experts, is crucial to understand the changes that occur as a result of multiple years of training. Vertical oscillation of center of mass (CoM), stride frequency normalized to the leg length, and duty factor, which describes the step time relative to the flight time, are key biomechanical parameters that have been shown to be closely related to the running economy and are used to characterize the running style. The variability characteristics of these parameters may reveal valuable information concerning the control of human locomotion. However, how the expertise level and running speed affect the variability of these key biomechanical parameters has not yet been investigated. The aim of this study was to analyze the effects of expertise level (novice vs. expert) and running speed (10 km/h vs. 15 km/h) on these parameters and their variability. It was hypothesized that expert runners would have lower vertical oscillation of CoM, normalized stride frequency, and duty factor and show less variability in these parameters. The parameters' variability was operationalized by the coefficient of variation. The mean values and variability of these key biomechanical parameters according to expertise level and running speed were compared with rmANOVAs. The results showed that the experts had a lower duty factor and less variable vertical oscillation of CoM and normalized stride frequency, independently of the running speed. At a higher running speed, the variability of vertical oscillation of CoM was higher, whereas that of normalized stride frequency and duty factor did not change significantly. To the best of our knowledge, this is the first study analyzing the effects of expertise level and running speed on the variability of key biomechanical parameters.
Collapse
Affiliation(s)
- Cagla Fadillioglu
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Felix Möhler
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marcel Reuter
- Department of Applied Training Science, German University of Applied Sciences for Prevention and Health Management (DHfPG), 66123 Saarbrücken, Germany
| | - Thorsten Stein
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
10
|
Singh H, Shih HT, Kal E, Bennett T, Wulf G. A distal external focus of attention facilitates compensatory coordination of body parts. J Sports Sci 2022; 40:2282-2291. [PMID: 36418176 DOI: 10.1080/02640414.2022.2150419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many studies have shown that focusing on an intended movement effect that is farther away from the body (distal external focus) results in performance benefits relative to focusing on an effect that is closer to the body (proximal external focus) or focusing on the body itself (internal focus) (see, Chua, Jimenez-Diaz, Lewthwaite, Kim & Wulf, 2021). Furthermore, the advantages of a distal external focus seem to be particularly pronounced in skilled performers (Singh & Wulf, 2020). The present study examined whether such benefits of more distal attentional focus may be associated with enhanced functional variability. Volleyball players (n = 20) performed 60 overhand volleyball serves to a target. Using a within-participants design, the effects of a distal external focus (bullseye), proximal external focus (ball) and an internal focus (hand) were compared. The distal focus condition resulted in significantly higher accuracy scores than did the proximal and internal focus conditions. In addition, uncontrolled manifold analysis showed that functional variability (as measured by the index of synergy) was greatest in the distal focus condition. These findings suggest that a distal external focus on the task goal may enhance movement outcomes by optimising compensatory coordination of body parts.
Collapse
Affiliation(s)
- Harjiv Singh
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA.,Orlando Magic Basketball Club, Orlando, FL, USA
| | - Hui-Ting Shih
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| | - Elmar Kal
- Centre for Cognitive Neuroscience, Brunel University London, London, UK
| | - Tim Bennett
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Gabriele Wulf
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| |
Collapse
|
11
|
Möhler F, Fadillioglu C, Scheffler L, Müller H, Stein T. Running-Induced Fatigue Changes the Structure of Motor Variability in Novice Runners. BIOLOGY 2022; 11:biology11060942. [PMID: 35741462 PMCID: PMC9220051 DOI: 10.3390/biology11060942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Understanding the effects of fatigue is a central issue in the context of endurance sports. Given the popularity of running, there are numerous novices among runners. Therefore, understanding the effects of fatigue in novice runners is an important issue. Various studies have drawn conclusions about the control of certain variables by analyzing motor variability. One variable that plays a crucial role during running is the center of mass (CoM), as it reflects the movement of the whole body in a simplified way. Therefore, the aim of this study was to analyze the effects of fatigue on the motor variability structure that stabilizes the CoM trajectory in novice runners. To do so, the uncontrolled manifold approach was applied to a 3D whole-body model using the CoM as the result variable. It was found that motor variability increased with fatigue (UCMꓕ). However, the UCMRatio did not change. This indicates that the control of the CoM decreased, whereas the stability was not affected. The decreases in control were correlated with the degree of exhaustion, as indicated by the Borg scale (during breaking and flight phase). It can be summarized that running-induced fatigue increases the step-to-step variability in novice runners and affects the control of their CoM.
Collapse
Affiliation(s)
- Felix Möhler
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (C.F.); (L.S.); (T.S.)
- Correspondence:
| | - Cagla Fadillioglu
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (C.F.); (L.S.); (T.S.)
| | - Lucia Scheffler
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (C.F.); (L.S.); (T.S.)
| | - Hermann Müller
- Training Science, Department of Sports Science, Justus-Liebig-Universität Giessen, 35394 Giessen, Germany;
| | - Thorsten Stein
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (C.F.); (L.S.); (T.S.)
| |
Collapse
|
12
|
Kimura A, Yokozawa T, Ozaki H. Clarifying the Biomechanical Concept of Coordination Through Comparison With Coordination in Motor Control. Front Sports Act Living 2021; 3:753062. [PMID: 34723181 PMCID: PMC8551718 DOI: 10.3389/fspor.2021.753062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
Coordination is a multidisciplinary concept in human movement science, particularly in the field of biomechanics and motor control. However, the term is not used synonymously by researchers and has substantially different meanings depending on the studies. Therefore, it is necessary to clarify the meaning of coordination to avoid confusion. The meaning of coordination in motor control from computational and ecological perspectives has been clarified, and the meanings differed between them. However, in biomechanics, each study has defined the meaning of the term and the meanings are diverse, and no study has attempted to bring together the diversity of the meanings of the term. Therefore, the purpose of this study is to provide a summary of the different meanings of coordination across the theoretical landscape and clarify the meaning of coordination in biomechanics. We showed that in biomechanics, coordination generally means the relation between elements that act toward the achievement of a motor task, which we call biomechanical coordination. We also showed that the term coordination used in computational and ecological perspectives has two different meanings, respectively. Each one had some similarities with biomechanical coordination. The findings of this study lead to an accurate understanding of the concept of coordination, which would help researchers formulate their empirical arguments for coordination in a more transparent manner. It would allow for accurate interpretation of data and theory development. By comprehensively providing multiple perspectives on coordination, this study intends to promote coordination studies in biomechanics.
Collapse
Affiliation(s)
- Arata Kimura
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Toshiharu Yokozawa
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Hiroki Ozaki
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
13
|
Möhler F, Stetter B, Müller H, Stein T. Stride-to-Stride Variability of the Center of Mass in Male Trained Runners After an Exhaustive Run: A Three Dimensional Movement Variability Analysis With a Subject-Specific Anthropometric Model. Front Sports Act Living 2021; 3:665500. [PMID: 34109313 PMCID: PMC8181123 DOI: 10.3389/fspor.2021.665500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
The motion of the human body can be described by the motion of its center of mass (CoM). Since the trajectory of the CoM is a crucial variable during running, one can assume that trained runners would try to keep their CoM trajectory constant from stride to stride. However, when exposed to fatigue, runners might have to adapt certain biomechanical parameters. The Uncontrolled Manifold approach (UCM) and the Tolerance, Noise, and Covariation (TNC) approach are used to analyze changes in movement variability while considering the overall task of keeping a certain task relevant variable constant. The purpose of this study was to investigate if and how runners adjust their CoM trajectory during a run to fatigue at a constant speed on a treadmill and how fatigue affects the variability of the CoM trajectory. Additionally, the results obtained with the TNC approach were compared to the results obtained with the UCM analysis in an earlier study on the same dataset. Therefore, two TNC analyses were conducted to assess effects of fatigue on the CoM trajectory from two viewpoints: one analyzing the CoM with respect to a lab coordinate system (PVlab) and another one analyzing the CoM with respect to the right foot (PVfoot). Full body kinematics of 13 healthy young athletes were captured in a rested and in a fatigued state and an anthropometric model was used to calculate the CoM based on the joint angles. Variability was quantified by the coefficient of variation of the length of the position vector of the CoM and by the components Tolerance, Noise, and Covariation which were analyzed both in 3D and the projections in the vertical, anterior-posterior and medio-lateral coordinate axes. Concerning PVlab we found that runners increased their stride-to-stride variability in medio-lateral direction (1%). Concerning PVfoot we found that runners lowered their CoM (4 mm) and increased their stride-to-stride variability in the absorption phase in both 3D and in the vertical direction. Although we identified statistically relevant differences between the two running states, we have to point out that the effects were small (CV ≤ 1%) and must be interpreted cautiously.
Collapse
Affiliation(s)
- Felix Möhler
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bernd Stetter
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Sports Orthopaedics, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hermann Müller
- Training Science, Department of Sports Science, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Thorsten Stein
- BioMotion Center, Institute of Sports and Sports Science (IfSS), Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
14
|
Abstract
Even for a stereotyped task, sensorimotor behavior is generally variable due to noise, redundancy, adaptability, learning or plasticity. The sources and significance of different kinds of behavioral variability have attracted considerable attention in recent years. However, the idea that part of this variability depends on unique individual strategies has been explored to a lesser extent. In particular, the notion of style recurs infrequently in the literature on sensorimotor behavior. In general use, style refers to a distinctive manner or custom of behaving oneself or of doing something, especially one that is typical of a person, group of people, place, context, or period. The application of the term to the domain of perceptual and motor phenomenology opens new perspectives on the nature of behavioral variability, perspectives that are complementary to those typically considered in the studies of sensorimotor variability. In particular, the concept of style may help toward the development of personalised physiology and medicine by providing markers of individual behaviour and response to different stimuli or treatments. Here, we cover some potential applications of the concept of perceptual-motor style to different areas of neuroscience, both in the healthy and the diseased. We prefer to be as general as possible in the types of applications we consider, even at the expense of running the risk of encompassing loosely related studies, given the relative novelty of the introduction of the term perceptual-motor style in neurosciences.
Collapse
Affiliation(s)
- Pierre-Paul Vidal
- CNRS, SSA, ENS Paris Saclay, Université de Paris, Centre Borelli, 75005 Paris, France
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Francesco Lacquaniti
- Department of Systems Medicine, Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| |
Collapse
|
15
|
Mantilla J, Wang D, Bargiotas I, Wang J, Cao J, Oudre L, Vidal PP. Motor style at rest and during locomotion in human. J Neurophysiol 2020; 123:2269-2284. [PMID: 32319842 DOI: 10.1152/jn.00019.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Humans exhibit various motor styles that reflect their intra- and interindividual variability when implementing sensorimotor transformations. This opens important questions, such as, At what point should they be readjusted to maintain optimal motor control? Do changes in motor style reveal the onset of a pathological process and can these changes help rehabilitation and recovery? To further investigate the concept of motor style, tests were carried out to quantify posture at rest and motor control in 18 healthy subjects under four conditions: walking at three velocities (comfortable walking, walking at 4 km/h, and race walking) and running at maximum velocity. The results suggest that motor control can be conveniently decomposed into a static component (a stable configuration of the head and column with respect to the gravitational vertical) and dynamic components (head, trunk, and limb movements) in humans, as in quadrupeds, and both at rest and during locomotion. These skeletal configurations provide static markers to quantify the motor style of individuals because they exhibit large variability among subjects. Also, using four measurements (jerk, root mean square, sample entropy, and the two-thirds power law), it was shown that the dynamics were variable at both intra- and interindividual levels during locomotion. Variability increased following a head-to -toe gradient. These findings led us to select dynamic markers that could define, together with static markers, the motor style of a subject. Finally, our results support the view that postural and motor control are subserved by different neuronal networks in frontal, sagittal, and transversal planes.NEW & NOTEWORTHY During human locomotion, motor control can be conveniently decomposed into a static and dynamic components. Variable dynamics were observed at both the intra- and interindividual levels during locomotion. Variability increased following a head-to-toe gradient. Finally, our results support the view that postural and motor control are subserved by different neuronal networks in the frontal, sagittal, and transversal planes.
Collapse
Affiliation(s)
- Juan Mantilla
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France
| | - Danping Wang
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China.,Plateforme Sensorimotricité, CNRS, INSERM, Paris, France
| | - Ioannis Bargiotas
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France
| | - Junhong Wang
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Jiuwen Cao
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Laurent Oudre
- L2TI, Sorbonne Paris Nord University, Villetaneuse, France
| | - Pierre-Paul Vidal
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France.,Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|