1
|
Mason R, Pearson LT, Barry G, Young F, Lennon O, Godfrey A, Stuart S. Wearables for Running Gait Analysis: A Systematic Review. Sports Med 2023; 53:241-268. [PMID: 36242762 PMCID: PMC9807497 DOI: 10.1007/s40279-022-01760-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Running gait assessment has traditionally been performed using subjective observation or expensive laboratory-based objective technologies, such as three-dimensional motion capture or force plates. However, recent developments in wearable devices allow for continuous monitoring and analysis of running mechanics in any environment. Objective measurement of running gait is an important (clinical) tool for injury assessment and provides measures that can be used to enhance performance. OBJECTIVES We aimed to systematically review the available literature investigating how wearable technology is being used for running gait analysis in adults. METHODS A systematic search of the literature was conducted in the following scientific databases: PubMed, Scopus, Web of Science and SPORTDiscus. Information was extracted from each included article regarding the type of study, participants, protocol, wearable device(s), main outcomes/measures, analysis and key findings. RESULTS A total of 131 articles were reviewed: 56 investigated the validity of wearable technology, 22 examined the reliability and 77 focused on applied use. Most studies used inertial measurement units (n = 62) [i.e. a combination of accelerometers, gyroscopes and magnetometers in a single unit] or solely accelerometers (n = 40), with one using gyroscopes alone and 31 using pressure sensors. On average, studies used one wearable device to examine running gait. Wearable locations were distributed among the shank, shoe and waist. The mean number of participants was 26 (± 27), with an average age of 28.3 (± 7.0) years. Most studies took place indoors (n = 93), using a treadmill (n = 62), with the main aims seeking to identify running gait outcomes or investigate the effects of injury, fatigue, intrinsic factors (e.g. age, sex, morphology) or footwear on running gait outcomes. Generally, wearables were found to be valid and reliable tools for assessing running gait compared to reference standards. CONCLUSIONS This comprehensive review highlighted that most studies that have examined running gait using wearable sensors have done so with young adult recreational runners, using one inertial measurement unit sensor, with participants running on a treadmill and reporting outcomes of ground contact time, stride length, stride frequency and tibial acceleration. Future studies are required to obtain consensus regarding terminology, protocols for testing validity and the reliability of devices and suitability of gait outcomes. CLINICAL TRIAL REGISTRATION CRD42021235527.
Collapse
Affiliation(s)
- Rachel Mason
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Liam T Pearson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gillian Barry
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Fraser Young
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Alterations in spontaneous electrical brain activity after an extreme mountain ultramarathon. Biol Psychol 2022; 171:108348. [DOI: 10.1016/j.biopsycho.2022.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
|
3
|
Mauvieux B, Hingrand C, Drigny J, Hodzic A, Baron P, Hurdiel R, Jouffroy R, Vauthier JC, Pessiglione M, Wiehler A, Degache F, Pavailler S, Heyman E, Plard M, Noirez P, Dubois B, Esculier JF, Nguyen AP, Van Cant J, Roy Baillargeon O, Pairot de Fontenay B, Delaunay PL, Besnard S. Study of the kinetics of the determinants of performance during a mountain ultra marathon: Multidisciplinary protocol of the first Trail Scientifique de Clécy 2021 (Preprint). JMIR Res Protoc 2022; 11:e38027. [PMID: 35704381 PMCID: PMC9244647 DOI: 10.2196/38027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background The growing interest of the scientific community in trail running has highlighted the acute effects of practice at the time of these races on isolated aspects of physiological and structural systems; biological, physiological, cognitive, and muscular functions; and the psychological state of athletes. However, no integrative study has been conducted under these conditions with so many participants and monitoring of pre-, per-, and postrace variables for up to 10 days over a distance close to 100 miles. Objective The aim of this study was to evaluate the kinetics of the performance parameters during a 156 km trail run and 6000 m of elevation gain in pre-, per-, and postrace conditions. The general hypothesis is based on significant alterations in the psychological, physiological, mechanical, biological, and cognitive parameters. Methods The Trail Scientifique de Clécy took place on November 11, 2021. This prospective experimental study provides a comprehensive exploration of the constraints and adaptations of psychophysiological and sociological variables assessed in real race conditions during a trail running of 156 km on hilly ground and 6000 m of elevation gain (D+). The study protocol allowed for repeatability of study measurements under the same experimental conditions during the race, with the race being divided into 6 identical loops of 26 km and 1000 m D+. Measurements were conducted the day before and the morning of the race, at the end of each lap, after a pit stop, and up to 10 days after the race. A total of 55 participants were included, 43 (78%) men and 12 (22%) women, who were experienced in ultra–trail-running events and with no contraindications to the practice of this sport. Results The launch of the study was authorized on October 26, 2021, under the trial number 21-0166 after a favorable opinion from the Comité de Protection des Personnes Ouest III (21.09.61/SIRIPH 2G 21.01586.000009). Of the 55 runners enrolled, 41 (75%) completed the race and 14 (25%) dropped out for various reasons, including gastric problems, hypothermia, fatigue, and musculoskeletal injuries. All the measurements for each team were completed in full. The race times (ie, excluding the measurements) ranged from 17.8206 hours for the first runner to 35.9225 hours for the last runner. The average time to complete all measurements for each lap was 64 (SD 3) minutes. Conclusions The Trail Scientifique de Clécy, by its protocol, allowed for a multidisciplinary approach to the discipline. This approach will allow for the explanation of the studied parameters in relation to each other and observation of the systems of dependence and independence. The initial results are expected in June 2022. International Registered Report Identifier (IRRID) RR1-10.2196/38027
Collapse
Affiliation(s)
| | | | - Joffrey Drigny
- U1075 Comete/INSERM, Université de Caen, Caen, France
- Unité de Médecine du Sport, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Amir Hodzic
- U1075 Comete/INSERM, Université de Caen, Caen, France
- Unité de Médecine du Sport, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Pauline Baron
- ULR 7369 - Unité de Recherche Pluridisciplinaire Sport, Santé, Société, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Rémy Hurdiel
- ULR 7369 - Unité de Recherche Pluridisciplinaire Sport, Santé, Société, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Romain Jouffroy
- Intensive Care Unit, Anaethesiology, SAMU, Necker Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- IRMES - Institute for Research in Medicine and Epidemiology of Sport, Institut National du Sport, de l'Expertise et de la Performance, Paris, France
- INSERM U-1018, Centre de recherche en Epidémiologie et Santé des Populations, Paris Saclay University, Paris, France
| | - Jean-Charles Vauthier
- Departement de Medecine Générale, Faculté de Médecine - Département du Grand Est de recherche en soins primaires, Université de Lorraine, Nancy, France
| | - Mathias Pessiglione
- Motivation, Brain and Behavior lab, Institut du cerveau et de la moelle épinière Inserm U1127, CNRS U9225, Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France
| | - Antonius Wiehler
- Motivation, Brain and Behavior lab, Institut du cerveau et de la moelle épinière Inserm U1127, CNRS U9225, Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France
| | | | | | - Elsa Heyman
- ULR 7369 - Unité de Recherche Pluridisciplinaire Sport, Santé, Société, Université de Lille, LILLE, France
- Institut Universitaire de France, Paris, France
| | - Mathilde Plard
- Espace et Sociétés UMR 6590 CNRS, Université d'Angers, Angers, France
| | - Philippe Noirez
- Performance Santé Métrologie Société (EA7507), Université Reims Champagne Ardenne, Reims, France
| | | | | | - Anh Phong Nguyen
- La Clinique du Coureur, Lac Beauport, QC, Canada
- Neuromusculoskeletal Laboratory, Institut de Recherche Expérimentale et Clinique, Catholic University of Louvain, Louvain La Neuve, Belgium
| | - Joachim Van Cant
- La Clinique du Coureur, Lac Beauport, QC, Canada
- Department of Physical Therapy, Institut Parnasse-ISEI, Brussels, Belgium
| | | | | | | | - Stéphane Besnard
- Explorations Fonctionnelles Neurologiques, Centre Hospitalier Universitaire de Caen, Caen, France
| |
Collapse
|
4
|
Le Goff C, Viallon M, Kaux JF, Andonian P, Moulin K, Seidel L, Giardini G, Gergelé L, Croisille P, Cavalier E, Millet GP. Kinetics of Cardiac Remodeling and Fibrosis Biomarkers During an Extreme Mountain Ultramarathon. Front Cardiovasc Med 2022; 9:790551. [PMID: 35321109 PMCID: PMC8934929 DOI: 10.3389/fcvm.2022.790551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives The effects of ultra-distance on cardiac remodeling and fibrosis are unclear. Moreover, there are no data reporting the kinetics of cardiac alterations throughout the event and during recovery. Our aim was to investigate the kinetics of biological markers including new cardiac fibrosis biomarkers suppression of tumorigenicity 2 (ST2) and galectin-3 (Gal-3) during and after an extreme mountain ultramarathon. Methods Fifty experienced runners participating in one of the most challenging mountain ultramarathons (330 km, D+ 25,000 m) were enrolled in our study. Blood samples were collected at four time points: before (Pre-), at 148 km (Mid-), at the finish line (Post-), and 3 days after the recovery period (Recov-). Results The cardiac fibrosis biomarkers (ST2 and Gal-3) increased from Pre- to Mid-. During the second half, ST2 remained higher than pre-values as opposed to Gal-3. Necrosis, ischemia, and myocyte injury biomarkers increased until Mid- then decreased but remained higher at Recov- than Pre-values. Oxidative stress appeared at Mid-. Lipid peroxides remained higher at Recov- compared to Pre-. The maximal value in most of these biomarkers was observed at Mid- and not at Post-. Conclusions The present study supports biphasic kinetics of cardiac fibrosis biomarkers, with a relative recovery during the second half of the event that seems specific to this extreme event. Overall, performing at such an extreme ultramarathon seems less deleterious for the heart than shorter events.
Collapse
Affiliation(s)
- Caroline Le Goff
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liège, Belgium
- *Correspondence: Caroline Le Goff
| | - Magalie Viallon
- Department of Radiology, University Hospital of Saint Etienne, Saint-Étienne, France
- CREATIS, CNRS (UMR 5220), INSERM (U1044), INSA Lyon, University of Lyon, Lyon, France
| | - Jean-François Kaux
- Physical Medicine and Sport Traumatology Department, SportS, IOC Research Centre for Prevention of Injury and Protection of Athlete Health, FIFA Medical Centre of Excellence, FIMS Collaborative Centre of Sports Medicine, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Pierre Andonian
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Kevin Moulin
- Department of Radiology, University Hospital of Saint Etienne, Saint-Étienne, France
- CREATIS, CNRS (UMR 5220), INSERM (U1044), INSA Lyon, University of Lyon, Lyon, France
| | - Laurence Seidel
- Biostatistics Department, University Hospital of Liège, Liège, Belgium
| | - Guido Giardini
- Neurology Department, Valle d'Aosta Regional Hospital, Aosta, Italy
| | - Laurent Gergelé
- Department of Anesthesiology, University Hospital of Saint Etienne, Saint-Étienne, France
| | - Pierre Croisille
- Department of Radiology, University Hospital of Saint Etienne, Saint-Étienne, France
- CREATIS, CNRS (UMR 5220), INSERM (U1044), INSA Lyon, University of Lyon, Lyon, France
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liège, Belgium
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Lemire M, Falbriard M, Aminian K, Millet GP, Meyer F. Level, Uphill, and Downhill Running Economy Values Are Correlated Except on Steep Slopes. Front Physiol 2021; 12:697315. [PMID: 34276417 PMCID: PMC8281813 DOI: 10.3389/fphys.2021.697315] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was first to determine if level, uphill, and downhill energy cost of running (ECR) values were correlated at different slopes and for different running speeds, and second, to determine the influence of lower limb strength on ECR. Twenty-nine healthy subjects completed a randomized series of 4-min running bouts on an instrumented treadmill to determine their cardiorespiratory and mechanical (i.e., ground reaction forces) responses at different constant speeds (8, 10, 12, and 14 km·h−1) and different slopes (−20, −10, −5, 0, +5, +10, +15, and +20%). The subjects also performed a knee extensor (KE) strength assessment. Oxygen and energy costs of running values were correlated between all slopes by pooling all running speeds (all r2 ≥ 0.27; p ≤ 0.021), except between the steepest uphill vs. level and the steepest downhill slope (i.e., +20% vs. 0% and −20% slopes; both p ≥ 0.214). When pooled across all running speeds, the ECR was inversely correlated with KE isometric maximal torque for the level and downhill running conditions (all r2 ≥ 0.24; p ≤ 0.049) except for the steepest downhill slope (−20%), but not for any uphill slopes. The optimal downhill grade (i.e., lowest oxygen cost) varied between running speeds and ranged from −14% and −20% (all p < 0.001). The present results suggest that compared to level and shallow slopes, on steep slopes ~±20%, running energetics are determined by different factors (i.e., reduced bouncing mechanism, greater muscle strength for negative slopes, and cardiopulmonary fitness for positive slopes). On shallow negative slopes and during level running, ECR is related to KE strength.
Collapse
Affiliation(s)
- Marcel Lemire
- Faculty of Medicine, Translational Medicine Federation, University of Strasbourg, Strasbourg, France.,Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France.,Institut de Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS), University of Haute-Alsace, Mulhouse, France
| | - Mathieu Falbriard
- Laboratory of Movement Analysis and Measurement, Swiss Federal School of Technology (EPFL), Lausanne, Switzerland
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Swiss Federal School of Technology (EPFL), Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Meyer
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Digital Signal Processing Group, Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Meyer F, Falbriard M, Mariani B, Aminian K, Millet GP. Continuous Analysis of Marathon Running Using Inertial Sensors: Hitting Two Walls? Int J Sports Med 2021; 42:1182-1190. [PMID: 33975367 DOI: 10.1055/a-1432-2336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Marathon running involves complex mechanisms that cannot be measured with objective metrics or laboratory equipment. The emergence of wearable sensors introduced new opportunities, allowing the continuous recording of relevant parameters. The present study aimed to assess the evolution of stride-by-stride spatio-temporal parameters, stiffness, and foot strike angle during a marathon and determine possible abrupt changes in running patterns. Twelve recreational runners were equipped with a Global Navigation Satellite System watch, and two inertial measurement units clamped on each foot during a marathon race. Data were split into eight 5-km sections and only level parts were analyzed. We observed gradual increases in contact time and duty factor as well as decreases in flight time, swing time, stride length, speed, maximal vertical force and stiffness during the race. Surprisingly, the average foot strike angle decreased during the race, but each participant maintained a rearfoot strike until the end. Two abrupt changes were also detected around km 25 and km 35. These two breaks are possibly due to the alteration of the stretch-shortening cycle combined with physiological limits. This study highlights new measurable phenomena that can only be analyzed through continuous monitoring of runners over a long period of time.
Collapse
Affiliation(s)
- Frédéric Meyer
- Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland.,Department of informatikk, University of Oslo, Faculty of Mathematics and Natural Sciences, Oslo, Norway
| | - Mathieu Falbriard
- Laboratory of Movement Analysis and Measurement (LMAM), EPFL, Lausanne, Switzerland
| | | | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement (LMAM), EPFL, Lausanne, Switzerland
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland
| |
Collapse
|