1
|
Davison G, Schoeman M, Chidley C, Dulson DK, Schweighofer P, Witting C, Posch W, Matta GG, Consoli C, Farley K, McCullough C, Wilflingseder D. ColdZyme® reduces viral load and upper respiratory tract infection duration and protects airway epithelia from infection with human rhinoviruses. J Physiol 2025; 603:1483-1501. [PMID: 40019230 PMCID: PMC11908491 DOI: 10.1113/jp288136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025] Open
Abstract
Upper respiratory tract infection (URTI) has a significant economic and social impact and is a major factor compromising athletes' training and competition. The effects of ColdZyme® Mouth Spray on URTI were investigated using an in vivo study in athletes, combined with a novel in vitro air-liquid interface human airway model. Endurance athletes were randomised to ColdZyme (n = 78) or placebo (n = 76) and monitored over 3 months. They completed daily symptom and training logs and collected throat swabs over 7 days during perceived URTI. In vitro studies examined rhinovirus infectivity and epithelial barrier integrity of airway epithelial cells. Eighty-two in vivo episodes were analysed with significantly lower (P = 0.012) episode duration in the ColdZyme vs. Placebo group (mean ± SD, 6.2 ± 2.6, (median [interquartile range]) 5.5 [4-9] days vs. 10.7 ± 10.2, 7.0 [5-11]). There was no difference in incidence (P = 0.149). Training absence and symptom ratings were lower (P < 0.05) in the ColdZyme group. Swabs were returned for 50 episodes, with at least one pathogen detected in all (rhinovirus was most abundant). Absolute quantification (qPCR) for rhinovirus revealed a significantly lower 7-day area under the curve in ColdZyme vs. placebo (median reduction, 94%, P = 0.029). In vitro, viral load was significantly lower (median reductions 80-100%), and epithelial barrier integrity better maintained, and no virus was detected by immunofluorescence analyses of pseudostratified epithelia, with ColdZyme treatment (all P < 0.05). ColdZyme is beneficial for reducing URTI duration, symptom ratings and missed training days. These novel data suggest that the mechanisms involve the protection of epithelial cells against rhinovirus infection and damage. KEY POINTS: Upper respiratory tract infections (URTI) are a common complaint in the general population and athletes alike, with social, well-being and economic consequences, including performance detriments in athletes and reduced work productivity in the general population. Strategies to minimise the risk of contracting a URTI and/or reduce the time taken to clear an infection are desirable to athletes and the general population alike. The present study employed an in vivo study with athletes in combination with a novel in vitro human airway cell model to examine the effects of ColdZyme Mouth Spray on URTI and viral infectivity. The duration for which URTI symptoms persisted was lower with ColdZyme treatment, which also resulted in fewer training absence days. Swabs from participants in the in vivo study and supernatants from the in vitro studies showed lower rhinovirus viral load with ColdZyme treatment compared with placebo or control.
Collapse
Affiliation(s)
- Glen Davison
- School of Natural SciencesUniversity of KentKentUK
| | | | - Corinna Chidley
- School of Sport and Exercise ScienceUniversity of DerbyDerbyUK
| | - Deborah K. Dulson
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | - Paul Schweighofer
- Institute of Hygiene and Medical MicrobiologyMedical University of InnsbruckInnsbruckAustria
| | - Christina Witting
- Institute of Hygiene and Medical MicrobiologyMedical University of InnsbruckInnsbruckAustria
| | - Wilfried Posch
- Institute of Hygiene and Medical MicrobiologyMedical University of InnsbruckInnsbruckAustria
| | | | - Claudia Consoli
- College of Biomedical and Life SciencesCardiff UniversityCardiffUK
| | - Kyle Farley
- School of Sport and Exercise ScienceUniversity of DerbyDerbyUK
| | | | - Doris Wilflingseder
- Institute of Hygiene and Medical MicrobiologyMedical University of InnsbruckInnsbruckAustria
- Infectiology and Virology UnitUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
2
|
Rossiter M. Health risks to athletes at olympic and commonwealth games. Occup Med (Lond) 2023; 73:9-12. [PMID: 36638199 DOI: 10.1093/occmed/kqac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- M Rossiter
- The Candover Clinic, Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK
- Team GB, 101 New Cavendish Street, London W1W 6XH, UK
- Commonwealth Games England, 5th floor, Holborn Tower, 137-144 High Holborn, London WC1V 6PL, UK
| |
Collapse
|
3
|
Davison G. Comment on Huijghebaert et al. Does Trypsin Oral Spray (Viruprotect ®/ColdZyme ®) Protect against COVID-19 and Common Colds or Induce Mutation? Caveats in Medical Device Regulations in the European Union. Int. J. Environ. Res. Public Health 2021, 18, 5066. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:630. [PMID: 36612951 PMCID: PMC9819963 DOI: 10.3390/ijerph20010630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
I read with interest the recent paper of Huijghebaert et al. published recently in this journal [...].
Collapse
Affiliation(s)
- Glen Davison
- School of Sport and Exercise Sciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7PR, UK
| |
Collapse
|
4
|
Huijghebaert S, Vanham G, Van Winckel M, Allegaert K. Reply to Davison, G. Comment on "Huijghebaert et al. Does Trypsin Oral Spray (Viruprotect ®/ColdZyme ®) Protect against COVID-19 and Common Colds or Induce Mutation? Caveats in Medical Device Regulations in the European Union. Int. J. Environ. Res. Public Health 2021, 18, 5066". INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:631. [PMID: 36612954 PMCID: PMC9819804 DOI: 10.3390/ijerph20010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
We have read the comment from Davison with great interest [...].
Collapse
Affiliation(s)
| | - Guido Vanham
- Department of Virology, Institute of Tropical Medicine, Nationale Straat 155, 2000 Antwerp, Belgium
| | - Myriam Van Winckel
- Department of Paediatrics, Ghent University Hospital and Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Hospital Pharmacy, Wytemaweg Hospital Pharmacy, Postbus 2040, Erasmus MC, 3075 CE Rotterdam, The Netherlands
| |
Collapse
|
5
|
Derman W, Badenhorst M, Eken MM, Ezeiza-Gomez J, Fitzpatrick J, Gleeson M, Kunorozva L, Mjosund K, Mountjoy M, Sewry N, Schwellnus M. Incidence of acute respiratory illnesses in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus on 'acute respiratory illness in the athlete'. Br J Sports Med 2022; 56:630-638. [PMID: 35260411 DOI: 10.1136/bjsports-2021-104737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the incidence of acute respiratory illness (ARill) in athletes and by method of diagnosis, anatomical classification, ages, levels of performance and seasons. DESIGN Systematic review and meta-analysis. DATA SOURCES Electronic databases: PubMed-Medline, EbscoHost and Web of Science. ELIGIBILITY CRITERIA Original research articles published between January 1990 and July 2020 in English reporting the incidence of ARill in athletes, at any level of performance (elite/non-elite), aged 15-65 years. RESULTS Across all 124 studies (n=1 28 360 athletes), the incidence of ARill, estimated by dividing the number of cases by the total number of athlete days, was 4.7 (95% CI 3.9 to 5.7) per 1000 athlete days. In studies reporting acute respiratory infections (ARinf; suspected and confirmed) the incidence was 4.9 (95% CI 4.0 to 6.0), which was similar in studies reporting undiagnosed ARill (3.7; 95% CI 2.1 to 6.7). Incidences of 5.9 (95% CI 4.8 to 7.2) and 2.8 (95% CI 1.8 to 4.5) were found for studies reporting upper ARinf and general ARinf (upper or lower), respectively. The incidence of ARinf was similar across the different methods to diagnose ARinf. A higher incidence of ARinf was found in non-elite (8.7; 95% CI 6.1 to 12.5) vs elite athletes (4.2; 95% CI 3.3 to 5.3). SUMMARY/CONCLUSIONS These findings suggest: (1) the incidence of ARill equates to approximately 4.7 per athlete per year; (2) the incidence of upper ARinf was significantly higher than general (upper/lower) ARinf; (3) elite athletes have a lower incidence of ARinf than non-elite athletes; (4) if pathogen identification is not available, physicians can confidently use validated questionnaires and checklists to screen athletes for suspected ARinf. For future studies, we recommend that a clear diagnosis of ARill is reported. PROSPERO REGISTRATION NUMBER CRD42020160472.
Collapse
Affiliation(s)
- Wayne Derman
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa .,International Olympic Committee Research Centre, Pretoria, South Africa
| | - Marelise Badenhorst
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Maaike Maria Eken
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Josu Ezeiza-Gomez
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,International Olympic Committee Research Centre, Pretoria, South Africa
| | - Jane Fitzpatrick
- Centre for Health and Exercise Sports Medicine, Faculty of Medicine Dentistry and Health Science, University of Melbourne, Parkville, Victoria, Australia
| | - Maree Gleeson
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lovemore Kunorozva
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Katja Mjosund
- Paavo Nurmi Centre, Sport and Exercise Medicine Unit, University of Turku, Turku, Finland
| | - Margo Mountjoy
- Department of Family Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicola Sewry
- International Olympic Committee Research Centre, Pretoria, South Africa.,Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| | - Martin Schwellnus
- International Olympic Committee Research Centre, Pretoria, South Africa.,Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| |
Collapse
|
6
|
Ivanova N, Sotirova Y, Gavrailov G, Nikolova K, Andonova V. Advances in the Prophylaxis of Respiratory Infections by the Nasal and the Oromucosal Route: Relevance to the Fight with the SARS-CoV-2 Pandemic. Pharmaceutics 2022; 14:530. [PMID: 35335905 PMCID: PMC8953301 DOI: 10.3390/pharmaceutics14030530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
In this time of COVID-19 pandemic, the strategies for prevention of the infection are a primary concern. Looking more globally on the subject and acknowledging the high degree of misuse of protective face masks from the population, we focused this review on alternative pharmaceutical developments eligible for self-defense against respiratory infections. In particular, the attention herein is directed to the nasal and oromucosal formulations intended to boost the local immunity, neutralize or mechanically "trap" the pathogens at the site of entry (nose or mouth). The current work presents a critical review of the contemporary methods of immune- and chemoprophylaxis and their suitability and applicability in topical mucosal dosage forms for SARS-CoV-2 prophylaxis.
Collapse
Affiliation(s)
- Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Yoana Sotirova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Georgi Gavrailov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| |
Collapse
|
7
|
Snyders C, Pyne DB, Sewry N, Hull JH, Kaulback K, Schwellnus M. Acute respiratory illness and return to sport: a systematic review and meta-analysis by a subgroup of the IOC consensus on 'acute respiratory illness in the athlete'. Br J Sports Med 2021; 56:223-231. [PMID: 34789459 DOI: 10.1136/bjsports-2021-104719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine the days until return to sport (RTS) after acute respiratory illness (ARill), frequency of time loss after ARill resulting in >1 day lost from training/competition, and symptom duration (days) of ARill in athletes. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, EBSCOhost, Web of Science, January 1990-July 2020. ELIGIBILITY CRITERIA Original research articles published in English on athletes/military recruits (15-65 years) with symptoms/diagnosis of an ARill and reporting any of the following: days until RTS after ARill, frequency (%) of time loss >1 day after ARill or symptom duration (days) of ARill. RESULTS 767 articles were identified; 54 were included (n=31 065 athletes). 4 studies reported days until RTS (range: 0-8.5 days). Frequency (%) of time loss >1 day after ARill was 20.4% (95% CI 15.3% to 25.4%). The mean symptom duration for all ARill was 7.1 days (95% CI 6.2 to 8.0). Results were similar between subgroups: pathological classification (acute respiratory infection (ARinf) vs undiagnosed ARill), anatomical classification (upper vs general ARill) or diagnostic method of ARinf (symptoms, physical examination, special investigations identifying pathogens). CONCLUSIONS In 80% of ARill in athletes, no days were lost from training/competition. The mean duration of ARill symptoms in athletes was 7 days. Outcomes were not influenced by pathological or anatomical classification of ARill, or in ARinf diagnosed by various methods. Current data are limited, and future studies with standardised approaches to definitions, diagnostic methods and classifications of ARill are needed to obtain detailed clinical, laboratory and specific pathogen data to inform RTS. PROSPERO REGISTRATION NUMBER CRD42020160479.
Collapse
Affiliation(s)
- Carolette Snyders
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - David B Pyne
- Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, Canberra, Australia
| | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,IOC Research Centre, Pretoria, Gauteng, South Africa
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - Kelly Kaulback
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa .,IOC Research Centre, Pretoria, Gauteng, South Africa
| |
Collapse
|
8
|
Huijghebaert S, Vanham G, Van Winckel M, Allegaert K. Does Trypsin Oral Spray (Viruprotect ®/ColdZyme ®) Protect against COVID-19 and Common Colds or Induce Mutation? Caveats in Medical Device Regulations in the European Union. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105066. [PMID: 34064793 PMCID: PMC8150360 DOI: 10.3390/ijerph18105066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND nasal or oral sprays are often marketed as medical devices (MDs) in the European Union to prevent common cold (CC), with ColdZyme®/Viruprotect® (trypsin/glycerol) mouth spray claiming to prevent colds and the COVID-19 virus from infecting host cells and to shorten/reduce CC symptoms as an example. We analyzed the published (pre)-clinical evidence. METHODS preclinical: comparison of in vitro tests with validated host cell models to determine viral infectivity. Clinical: efficacy, proportion of users protected against virus (compared with non-users) and safety associated with trypsin/glycerol. RESULTS preclinical data showed that exogenous trypsin enhances SARS-CoV-2 infectivity and syncytia formation in host models, while culture passages in trypsin presence induce spike protein mutants. The manufacturer claims >98% SARS-CoV-2 deactivation, although clinically irrelevant as based on a tryptic viral digest, inserting trypsin inactivation before host cells exposure. Efficacy and safety were not adequately addressed in clinical studies or leaflets (no COVID-19 data). Protection was obtained among 9-39% of users, comparable to or lower than placebo-treated or non-users. Several potential safety risks (tissue digestion, bronchoconstriction) were identified. CONCLUSIONS the current European MD regulations may result in insufficient exploration of (pre)clinical proof of action. Exogenous trypsin exposure even raises concerns (higher SARS-CoV-2 infectivity, mutations), whereas its clinical protective performance against respiratory viruses as published remains poor and substandard.
Collapse
Affiliation(s)
| | - Guido Vanham
- Department of Virology, Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Myriam Van Winckel
- Department of Paediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium;
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Clinical Pharmacy, Wytemaweg Hospital Pharmacy, 3075 CE Rotterdam, The Netherlands
- Correspondence: ; Tel.: +32-(16)-34342020
| |
Collapse
|
9
|
Gudmundsdottir Á, Scheving R, Lindberg F, Stefansson B. Inactivation of SARS-CoV-2 and HCoV-229E in vitro by ColdZyme® a medical device mouth spray against the common cold. J Med Virol 2020; 93:1792-1795. [PMID: 32975843 PMCID: PMC7537187 DOI: 10.1002/jmv.26554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Background The coronavirus disease 2019 (COVID‐19) pandemic calls for effective and safe treatments. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) causing COVID‐19 actively replicates in the throat, unlike SARS‐CoV, and shows high pharyngeal viral shedding even in patients with mild symptoms of the disease. HCoV‐229E is one of four coronaviruses causing the common cold. In this study, the efficacy of ColdZyme® (CZ‐MD), a medical device mouth spray, was tested against SARS‐CoV‐2 and HCoV‐229E in vitro. The CZ‐MD provides a protective glycerol barrier containing cod trypsin as an ancillary component. Combined, these ingredients can inactivate common cold viruses in the throat and mouth. The CZ‐MD is believed to act on the viral surface proteins that would perturb their entry pathway into cells. The efficacy and safety of the CZ‐MD have been demonstrated in clinical trials on the common cold. Method of Study The ability of the CZ‐MD to inactivate SARS‐CoV‐2 and HCoV‐229E was tested using an in vitro virucidal suspension test (ASTM E1052). Results CZ‐MD inactivated SARS‐CoV‐2 by 98.3% and HCoV‐229E by 99.9%. Conclusion CZ‐MD mouth spray can inactivate the respiratory coronaviruses SARS‐CoV‐2 and HCoV‐229E in vitro. Although the in vitro results presented cannot be directly translated into clinical efficacy, the study indicates that CZ‐MD might offer a protective barrier against SARS‐CoV‐2 and a decreased risk of COVID‐19 transmission. The ability of ColdZyme® (CZ‐MD), a medical device mouth spray, to inactivate coronaviruses (SARS‐CoV‐2 and HCoV‐229E) was tested using an in vitro virucidal suspension test (ASTM E1052). CZ‐MD mouth spray inactivated SARS‐CoV‐2 and HCoV‐229E in vitro by 98.3% and 99.9% respectively. The study indicates that CZ‐MD might offer a protective barrier against SARS‐CoV‐2 and a decreased risk of COVID‐19 transmission.
Collapse
Affiliation(s)
- Ágústa Gudmundsdottir
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,Zymetech, Reykjavík, Iceland
| | | | - Fredrik Lindberg
- Enzymatica AB, Lund, Sweden.,Medical Faculty, Lund University, Lund, Sweden
| | | |
Collapse
|