1
|
Solon-Júnior LJF, de Sousa Fortes L, da Silva Oliveira JK, Toscano LDLT, da Silva Neto LV. A single dose of cajuína does not improve leukocyte count, lipid peroxidation, and physical performance in runners: a randomized, crossover, double‑blind, placebo study. Eur J Nutr 2025; 64:99. [PMID: 39985583 DOI: 10.1007/s00394-025-03612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
PURPOSE To investigate the effects of a single dose of cajuína juice physical performance, leukocyte counts, and oxidative stress markers following a 10-km time trial in male runners. METHODS A total of nine recreationally trained male runners (32 ± 9.2 years; 70.9 ± 8.1 kg, 1.71 ± 0.06 m, 3.9 ± 1.9 training sessions per week) were randomly assigned to receive either cajuína juice (containing approximately one gram of vitamin C) or a placebo (a similar drink containing 0 mg of vitamin C) two hours before exercise, with a one-week washout period between interventions. Blood samples were collected immediately before ingestion and post-exercise. Leukocyte counts, as well as malondialdehyde (MDA), uric acid, and albumin concentrations, were analyzed from the samples. RESULTS Physical performance was not affected by cajuína intake (p > 0.05). Although a time effect (p = 0.01) was observed for MDA concentrations, no condition (p = 0.47) or interaction effects (p = 0.84) were revealed. Additionally, there were no effects of condition, time, and interaction for albumin (p = 0.83, p = 0.37, and p = 0.16, respectively) and uric acid (p = 0.64, p = 0.19, and p = 0.55, respectively) concentrations. No significant or positive changes in leukocyte counts were observed (p > 0.05). CONCLUSION The single-dose intake of cajuína (Anacardium occidentale L.) does not improve leukocyte count, lipid peroxidation, or physical performance in recreationally trained male runners subjected to a 10-km time trial. TRIAL REGISTRATION The study was registered in the Brazilian Clinical Trials Registry (REBEC) under the following registration number: RBR-3cb6qtz. The study was prospectively registered on November 17, 2023.
Collapse
Affiliation(s)
- Luiz José Frota Solon-Júnior
- Department of Biotechnology, Federal University of Ceará, Sobral, Ceará, Brazil.
- State University Vale of Acaraú, Health Sciences Center, Sobral, Ceará, Brazil.
- Department of Physical Education, Federal University of Paraíba, Campus I Lot. Cidade Universitaria, Joao Pessoa, PB, 58051-900, Brazil.
| | - Leonardo de Sousa Fortes
- Department of Physical Education, Federal University of Paraíba, Campus I Lot. Cidade Universitaria, Joao Pessoa, PB, 58051-900, Brazil
| | | | | | | |
Collapse
|
2
|
Greed E, Pritchard J, Struszczak L, Bozbaş E, Ek G, Acheson J, Winney B, Qadir A, Wong KKL, Bowtell J, O’Leary M. Shatavari supplementation during eight weeks of resistance training increases training load, enhances skeletal muscle contractility and alters the skeletal muscle proteome in older women. Front Nutr 2025; 11:1498674. [PMID: 39834460 PMCID: PMC11743497 DOI: 10.3389/fnut.2024.1498674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Shatavari is a herbal dietary supplement that may increase skeletal muscle strength in younger and older adults. Shatavari contains compounds with both estradiol-like and antioxidant properties, which could enhance muscle function. Postmenopausal women may derive the greatest benefit, as estrogen deficiency adversely impacts skeletal muscle function. However, mechanistic insights are limited and the effects of shatavari on muscle function require further characterization. Methods In this randomized, double-blind trial, 17 young (23 ± 5 yr) and 22 older (63 ± 5 yr) women completed an 8-week leg resistance training programme. They consumed either a placebo or shatavari (1000 mg/d, equivalent to 26,500 mg/d fresh weight) supplement throughout. Pre and post training, measures of leg strength, neuromuscular function and vastus lateralis (VL) biopsies were obtained. Tandem-mass-tagged VL proteomic analyses were performed. Data were analyzed using a differential expression (Reactome) approach. Results Shatavari supplementation increased 8-week training load in older women (leg press repetitions completed, p = 0.049, η p 2 = 0.198; maximum weight lifted each week, p = 0.03, η p 2 = 0.386; ANCOVA). There was no effect of shatavari on muscle strength post-training. VL half relaxation time was shortened post-training in older women supplemented with shatavari (post-training change: shatavari -11.74 ± 11.93%, placebo 0.42 ± 14.73%, p = 0.021; ANCOVA). Shatavari supplementation diminished the expression of extracellular matrix proteins in both cohorts. Expression of proteins related to striated muscle contraction, transcription and translation were decreased by shatavari supplementation in older women. Discussion These novel observations support the notion that shatavari supplementation confers resistance to neuromuscular fatigue in older women. This could ameliorate sarcopenic declines in skeletal muscle function.
Collapse
Affiliation(s)
- Elsa Greed
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jack Pritchard
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Lauren Struszczak
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Esra Bozbaş
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Georgia Ek
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Jordan Acheson
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
- Department of Sport and Exercise Sciences, Institute of Sport, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ben Winney
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Aaliyah Qadir
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Karl Ka-Lam Wong
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Joanna Bowtell
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Mary O’Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Valder S, Habersatter E, Kostov T, Quenzer S, Herzig L, von Bernuth J, Matits L, Herdegen V, Diel P, Isenmann E. The Influence of a Polyphenol-Rich Red Berry Fruit Juice on Recovery Process and Leg Strength Capacity after Six Days of Intensive Endurance Exercise in Recreational Endurance Athletes. Nutrients 2024; 16:1428. [PMID: 38794667 PMCID: PMC11124493 DOI: 10.3390/nu16101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Various nutritional strategies are increasingly used in sports to reduce oxidative stress and promote recovery. Chokeberry is rich in polyphenols and can reduce oxidative stress. Consequently, chokeberry juices and mixed juices with chokeberry content are increasingly used in sports. However, the data are very limited. Therefore, this study investigates the effects of the short-term supplementation of a red fruit juice drink with chokeberry content or a placebo on muscle damage, oxidative status, and leg strength during a six-day intense endurance protocol. METHODS Eighteen recreational endurance athletes participated in a cross-over high intensity interval training (HIIT) design, receiving either juice or a placebo. Baseline and post-exercise assessments included blood samples, anthropometric data, and leg strength measurements. RESULTS A significant increase was measured in muscle damage following the endurance protocol in all participants (∆ CK juice: 117.12 ± 191.75 U/L, ∆ CK placebo: 164.35 ± 267.00 U/L; p = 0.001, η2 = 0.17). No group effects were detected in exercise-induced muscle damage (p = 0.371, η2 = 0.010) and oxidative status (p = 0.632, η2 = 0.000). The reduction in strength was stronger in the placebo group, but group effects are missing statistical significance (∆ e1RM juice: 1.34 ± 9.26 kg, ∆ e1RM placebo: -3.33 ± 11.49 kg; p = 0.988, η2 = 0.000). CONCLUSION Although a reduction in strength can be interpreted for the placebo treatment, no statistically significant influence of chokeberry could be determined. It appears that potential effects may only occur with prolonged application and a higher content of polyphenols, but further research is needed to confirm this.
Collapse
Affiliation(s)
- Sarah Valder
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Elisabeth Habersatter
- Department of Molecular and Cellular Sport Medicine, Institute for Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Tihomir Kostov
- Department of Molecular and Cellular Sport Medicine, Institute for Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Sina Quenzer
- Eckes-Granini Group GmbH, 55268 Nieder-Olm, Germany
- Department of Beverage Research, Chair Analysis and Technology of Plant-Based Foods, Geisenheim University, 65366 Geisenheim, Germany
| | - Lukas Herzig
- Department of Molecular and Cellular Sport Medicine, Institute for Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Jakob von Bernuth
- Department of Molecular and Cellular Sport Medicine, Institute for Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Lynn Matits
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, 89081 Ulm, Germany
| | | | - Patrick Diel
- Department of Molecular and Cellular Sport Medicine, Institute for Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Eduard Isenmann
- Department of Molecular and Cellular Sport Medicine, Institute for Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| |
Collapse
|
4
|
Gacek M, Wojtowicz A, Popek A. Personality Determinants Related to the Use of Selective and Effective Dietary Supplements by Elite Polish Team Sport Athletes. Sports (Basel) 2024; 12:29. [PMID: 38251303 PMCID: PMC10819768 DOI: 10.3390/sports12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION The purpose of this research was to analyse relationships between personality traits and the use of selected dietary supplements among Polish athletes training in team sports. This subject matter has not been explored in prior research. MATERIAL AND METHODS This research was carried out among a group of 213 athletes (men) in the 18-36 age range, with the implementation of a proprietary validated questionnaire for the use of dietary supplements and the NEO-PI-R inventory (Neuroticism-Extraversion-Openness Personality Inventory-Revised). Statistical analyses were performed with the Kruskal-Wallis and Mann-Whitney tests, assuming the following level of significance: α = 0.05. RESULTS It was shown that athletes who periodically and regularly consumed isotonic drinks, as well as energy bars and gels, were characterised by a lower level of neuroticism than those who did not consume them. Athletes who periodically took multivitamin preparations were characterised by a lower level of extraversion and openness, and those periodically using multimineral preparations were characterised by a higher level of agreeableness than those who did not use these agents. Athletes not taking creatine were characterised by the lowest level of conscientiousness among the study participants. The use of protein nutrients, probiotics and caffeine was not associated with any personality traits in the athletes. CONCLUSIONS Further relationships of the Big Five personality traits were demonstrated with the use of effective dietary supplements by athletes; the most unambiguous correlations were described for neuroticism and conscientiousness in such a way that the use of isotonic drinks, as well as energy bars and gels, was connected with a low level of neuroticism, while the use of creatine was connected with high conscientiousness.
Collapse
Affiliation(s)
- Maria Gacek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Education in Kraków, 31-571 Krakow, Poland
| | - Agnieszka Wojtowicz
- Department of Psychology, Institute of Social Sciences, University of Physical Education in Kraków, 31-571 Krakow, Poland;
| | - Adam Popek
- Department of Recreation and Biological Renewal, Institute of Recreation and Sports, University of Physical Education in Kraków, 31-571 Krakow, Poland;
| |
Collapse
|
5
|
Miranda Neto M, Meireles ACF, Alcântara MA, de Magalhães Cordeiro AMT, Silva AS. Peppermint essential oil (Mentha piperita L.) increases time to exhaustion in runners. Eur J Nutr 2023; 62:3411-3422. [PMID: 37665425 DOI: 10.1007/s00394-023-03235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion. METHODS In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density. RESULTS Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05). CONCLUSION Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study. BRAZILIAN REGISTRY OF CLINICAL TRIALS (REBEC) RBR-75zt25z.
Collapse
Affiliation(s)
- Manoel Miranda Neto
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, University City, João Pessoa, Paraíba, 58059-900, Brazil
| | - Ana Carolina Freitas Meireles
- Laboratory of Physical Training Studies Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Maristela Alves Alcântara
- Food Technology Department, Center for Technology and Regional Development, Federal University of Paraíba, Campus I, João Pessoa, Paraíba, Brazil
| | | | - Alexandre Sérgio Silva
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, University City, João Pessoa, Paraíba, 58059-900, Brazil.
- Associate Postgraduate Program in Physical Education, University of Pernambuco/Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
6
|
Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis? J Cardiovasc Transl Res 2023; 16:51-62. [PMID: 35921051 DOI: 10.1007/s12265-022-10297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.
Collapse
|
7
|
Kimble R, Jones K, Howatson G. The effect of dietary anthocyanins on biochemical, physiological, and subjective exercise recovery: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2023; 63:1262-1276. [PMID: 34402657 DOI: 10.1080/10408398.2021.1963208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anthocyanins (ACN), the sub-class of (poly)phenols responsible for the red-blue-purple pigmentation of fruit and vegetables, have gained considerable interest in sport and exercise research due to their potential to facilitate exercise recovery. A systematic literature search was performed using PubMed, The Cochrane Library, MEDLINE, SPORTDiscus and CINAHL. Thirty nine studies were included and the standardized mean difference (Hedges g) for creatine kinase (CK), anti-oxidative and inflammatory markers, strength, power and delayed onset muscle soreness (DOMS) indices were pooled in separate meta-analyses; meta-regression was also performed on reported ACN dose. Immediately post-exercise there was an increase in antioxidant capacity (g: 0.56) and reduced C reactive protein (g: -0.24) and tumor necrosis factor α (g: -40); p ≤ 0.02. Strength was improved with ACN at all time points (g: 0.45-0.67). DOMS (g: -0.23) was lower 24 hours post-exercise and power was improved 24 hours (g: 0.62) and 48 hours (g: 0.57) post exercise. The CK was lower 48 hours post-exercise (g: -0.31) and there was a trend for a positive association with ACN dose (p = 0.057). This systematic review provides new data showing ACN-rich foods promote functional and subjective recovery likely due to the antioxidant and anti-inflammatory properties of ACN.
Collapse
Affiliation(s)
- Rachel Kimble
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Burt D, Doma K, Connor J. The effects of exercise-induced muscle damage on varying intensities of endurance running performance: A systematic review and meta-analysis. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Effects of Polyphenol Consumption on Recovery in Team Sport Athletes of Both Sexes: A Systematic Review. Nutrients 2022; 14:nu14194085. [PMID: 36235737 PMCID: PMC9573146 DOI: 10.3390/nu14194085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Previous studies have shown that polyphenol consumption enhances recovery of the muscle after exercise-induced muscle damage (EIMD). However, EIMD markers have not been studied by sport type. The main aim of this research was to perform a systematic review to determine the efficacy of polyphenolic consumption in increasing muscle recovery for performing team sport skills. Eligible studies included, following PICOS structure, presented at least one of the following outcomes: maximal isometric voluntary contraction (MVIC); countermovement jump (CMJ); delayed onset muscle soreness (DOMS); 20 m sprint test; creatine kinase (CK); and C-reactive protein (hsCRP). A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. The risk of bias was assessed using the PEDro scale tool. The review showed a possibly positive impact of polyphenol consumption on recovery after EIMD in team sports athletes. No differences were found between sexes. Considering the limitations, there is moderate to very low certainty of polyphenol supplementation effects on recovery of team sport females and males. A dose of 60 mL/day, divided into two times per day, ingested for >7 days may present positive effects on muscle function and muscle soreness in team sport athletes. However, further investigation is required, specifically in females.
Collapse
|
10
|
Souza TCDM, Goston JL, Martins-Costa HC, Minighin EC, Anastácio LR. Can Anthocyanins Reduce Delayed Onset Muscle Soreness or Are We Barking Up the Wrong Tree? Prev Nutr Food Sci 2022; 27:265-275. [PMID: 36313058 PMCID: PMC9585400 DOI: 10.3746/pnf.2022.27.3.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Exercise-induced muscular overload can trigger delayed onset muscle soreness (DOMS). DOMS is related to the indiscriminate use of analgesics and nonsteroidal anti-inflammatory drugs without proper guidance, decreased physical exercise adherence and degenerating sports performance, increased risk of injury, and reduced muscle strength and function. Dietary anthocyanins have been extensively studied as potential natural treatments for DOMS, but the indication, dosage, and form of use remain highly variable. Therefore, this review aims to synergize and present evidence relating to the effect of anthocyanins on DOMS in clinical studies. Notably, the results of anthocyanin supplementation for DOMS were found to be inconclusive. The use of protocols with lower anthocyanin doses yielded better results than those with high-dose supplements, suggesting that anthocyanin-rich foods are more accessible as therapeutic tools, leading to the conclusion that these foods could be used to prevent and treat DOMS. However, consumption protocols for this purpose are not yet well established, and the answer is dependent on the methodological quality of future studies.
Collapse
Affiliation(s)
| | - Janaina Lavalli Goston
- Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG 30535-610, Brazil
| | - Hugo César Martins-Costa
- Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG 30535-610, Brazil
| | - Elaine Carvalho Minighin
- Department of Food Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Lucilene Rezende Anastácio
- Department of Food Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil,
Correspondence to Lucilene Rezende Anastácio, E-mail:
| |
Collapse
|
11
|
Heilbronn B, Doma K, Sinclair W, Connor J, Irvine-Brown L, Leicht A. Acute Fatigue Responses to Occupational Training in Military Personnel: A Systematic Review and Meta-Analysis. Mil Med 2022; 188:969-977. [PMID: 35639912 DOI: 10.1093/milmed/usac144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Military personnel are required to undertake rigorous physical training to meet the unique demands of combat, often leading to high levels of physiological stress. Inappropriate recovery periods with these high levels of physical stress may result in sub-optimal training and increased risk of injury in military personnel. However, no reviews have attempted to examine the magnitude of training-induced stress following military training activities. The aim of this systematic review was to assess the magnitude of physiological stress (physical, hormonal, and immunological) following task-specific training activities in military personnel. METHODS An extensive literature search was conducted within CINAHL, PubMed, Scopus, SportDiscus, and Web of Science databases with 7,220 records extracted and a total of 14 studies eligible for inclusion and evaluation. Study appraisal was conducted using the Kmet scale. Meta-analysis was conducted via forest plots, with standard mean difference (SMD, effect size) and inter-trial heterogeneity (I2) calculated between before (preactivity) and after (12-96 hours postactivity) military-specific activities for biomarkers of physiological stress (muscle damage, inflammation, and hormonal) and physical performance (muscular strength and power). RESULTS Military training activities resulted in significant levels of muscle damage (SMD = -1.28; P = .003) and significant impairments in strength and power (SMD = 0.91; P = .008) and testosterone levels (SMD = 1.48; P = .05) up to 96 hours postactivity. There were no significant differences in inflammation (SMD = -0.70; P = .11), cortisol (SMD = -0.18; P = .81), or insulin-like growth factor 1 (SMD = 0.65; P = .07) when compared to preactivity measures. CONCLUSIONS These findings indicate that assessments of muscle damage, anabolic hormones like testosterone, strength, and power are effective for determining the level of acute stress following military-specific activities. With regular monitoring of these measures, appropriate recovery periods may be implemented to optimize training adaptations and occupational performance, with minimal adverse training responses in military personnel.
Collapse
Affiliation(s)
- Brian Heilbronn
- Royal Australian Army Medical CORPS, Australian Army, Australian Defence Force, Australia.,Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Wade Sinclair
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Jonathan Connor
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Lachlan Irvine-Brown
- Royal Australian Army Medical CORPS, Australian Army, Australian Defence Force, Australia
| | - Anthony Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia.,Australian Institute of Tropical Health & Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
12
|
Oliver LS, Sullivan JP, Russell S, Peake JM, Nicholson M, McNulty C, Kelly VG. Effects of Nutritional Interventions on Accuracy and Reaction Time with Relevance to Mental Fatigue in Sporting, Military, and Aerospace Populations: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:307. [PMID: 35010566 PMCID: PMC8744602 DOI: 10.3390/ijerph19010307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
Background: Research in sport, military, and aerospace populations has shown that mental fatigue may impair cognitive performance. The effect of nutritional interventions that may mitigate such negative effects has been investigated. This systematic review and meta-analysis aimed to quantify the effects of nutritional interventions on cognitive domains often measured in mental fatigue research. Methods: A systematic search for articles was conducted using key terms relevant to mental fatigue in sport, military, and aerospace populations. Two reviewers screened 11,495 abstracts and 125 full texts. A meta-analysis was conducted whereby effect sizes were calculated using subgroups for nutritional intervention and cognitive domains. Results: Fourteen studies were included in the meta-analysis. The consumption of energy drinks was found to have a small positive effect on reaction time, whilst the use of beta-alanine, carbohydrate, and caffeine had no effect. Carbohydrate and caffeine use had no effect on accuracy. Conclusions: The results of this meta-analysis suggest that consuming energy drinks may improve reaction time. The lack of effect observed for other nutritional interventions is likely due to differences in the type, timing, dosage, and form of administration. More rigorous randomized controlled trials related to the effect of nutrition interventions before, during, and after induced mental fatigue are required.
Collapse
Affiliation(s)
- Liam S. Oliver
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
| | | | - Suzanna Russell
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, QLD 4014, Australia;
| | - Jonathan M. Peake
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mitchell Nicholson
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
| | - Craig McNulty
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
| | - Vincent G. Kelly
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4059, Australia
| |
Collapse
|
13
|
Doma K, Singh U, Boullosa D, Connor JD. The effect of branched-chain amino acid on muscle damage markers and performance following strenuous exercise: a systematic review and meta-analysis. Appl Physiol Nutr Metab 2021; 46:1303-1313. [PMID: 34612716 DOI: 10.1139/apnm-2021-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This systematic review and meta-analysis determined whether the ergogenic effects of branched-chain amino acids (BCAA) ameliorated markers of muscle damage and performance following strenuous exercise. In total, 25 studies were included, consisting of 479 participants (age 24.3 ± 8.3 years, height 1.73 ± 0.06 m, body mass 70.8 ± 9.5 kg, females 26.3%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the BCAA and placebo conditions at 24 and 48 hours following muscle-damaging exercises, using standardised mean differences and associated p-values via forest plots. Our meta-analysis demonstrated significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) at 48 hours post-exercise (standardised mean difference [SMD] = -0.41; p < 0.05) for the BCAA than placebo conditions, whilst muscle soreness was significant at 24 hours post-exercise (SMD = -0.28 ≤ d ≤ -0.61; p < 0.05) and 48 hours post-exercise (SMD = -0.41 ≤ d≤ -0.92; p < 0.01). However, no significant differences were identified between the BCAA and placebo conditions for muscle performance at 24 or 48 hours post-exercise (SMD = 0.08 ≤ d ≤ 0.21; p > 0.05). Overall, BCAA reduced the level of muscle damage biomarkers and muscle soreness following muscle-damaging exercises. However, the potential benefits of BCAA for muscle performance recovery is questionable and warrants further investigation to determine the practicality of BCAA for ameliorating muscle damage symptoms in diverse populations. PROSPERO registration number: CRD42020191248. Novelty: BCAA reduces the level of creatine kinase and muscle soreness following strenuous exercise with a dose-response relationship. BCAA does not accelerate recovery for muscle performance.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia
| | - Utkarsh Singh
- Sports Dynamix Private Limited, Chennai, Nadu, India
| | - Daniel Boullosa
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia.,INISA, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Jonathan Douglas Connor
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia
| |
Collapse
|
14
|
Rickards L, Lynn A, Harrop D, Barker ME, Russell M, Ranchordas MK. Effect of Polyphenol-Rich Foods, Juices, and Concentrates on Recovery from Exercise Induced Muscle Damage: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13092988. [PMID: 34578866 PMCID: PMC8465563 DOI: 10.3390/nu13092988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
Objectives. To determine the effects of consuming polyphenol-rich foods, juices and concentrates on recovery from exercise-induced muscle damage (EIMD). Method. Eligibility criteria. Randomised and quasi-randomised placebo-controlled trials with a parallel or cross-over design evaluating the effects of consuming polyphenol-rich foods, juices and concentrates on recovery from EIMD in humans. Eligible studies included at least one of the primary outcome measures: maximal isometric voluntary contraction; MIVC, delayed onset muscle soreness; DOMS, or countermovement jump; CMJ. Information sources. AMED, Cochrane Central Register of Controlled Trials, International Clinical Trials Registry Platform, PUBMED, SCOPUS (Elsevier), SPORTDiscus (EBSCO), and the UK Clinical Trials Gateway were searched from inception to September 2020. Risk of bias and quality of evidence. Risk of bias was assessed using Cochrane Risk of Bias 2 tool. Quality of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation framework. Synthesis of results. Random effects models were used to determine the effect of polyphenol supplementation on recovery from EIMD. Data are presented as standardised mean differences (SMD) with 95% confidence intervals (CI). Results. Included studies. Twenty-five studies were included; 15 had a parallel, and 10 had a cross-over design. A total of 527 participants (male: n = 425; female: n = 102) were included in the meta-analysis. Synthesis of results. Consumption of polyphenol-rich foods, juices and concentrates accelerated recovery of MIVC immediately post-exercise (SMD = 0.23, 95% CI 0.04, 0.42; p = 0.02; low-quality evidence), 24 h (SMD = 0.39, 95% CI 0.15, 0.62; p = 0.001; low-quality evidence), 48 h (SMD = 0.48, 95% CI 0.28, 0.67; p < 0.001; moderate-quality evidence), 72 h (SMD = 0.29, 95% CI 0.11, 0.46; p = 0.001; low-quality evidence) and 96 h post-exercise (SMD = 0.50, 95% CI 0.16, 0.83; p = 0.004; very low-quality evidence). DOMS was reduced at 24 h (SMD = −0.29, 95% CI −0.47, −0.11; p = 0.002; low-quality evidence), 48 h (SMD = −0.28, 95% CI −0.46, −0.09; p = 0.003; low-quality evidence) and 72 h post-exercise (SMD = −0.46, 95% CI −0.69, −0.24; p < 0.001; very low-quality evidence). CMJ height was greater immediately post-exercise (SMD = 0.27, 95% CI 0.01, 0.53; p = 0.04; low-quality evidence), at 24 h (SMD = 0.47, 95% CI 0.11, 0.83; p = 0.01; very low-quality evidence), 48 h (SMD = 0.58, 95% CI 0.24, 0.91; p < 0.001; very low-quality evidence) and 72 h post-exercise (SMD = 0.57, 95% CI 0.03, 1.10; p = 0.04; very low-quality evidence). Polyphenol supplementation did not alter creatine kinase, c-reactive protein, and interleukin−6 at any time points. At 72 h post-exercise, protein carbonyls (SMD = −0.64, 95% CI −1.14, −0.14; p = 0.01) were reduced. Discussion. Limitations of evidence. Risk of bias was high for 10 studies and moderate for 15. Sensitivity analyses excluding the high risk of bias studies reduced the SMDs for MIVC and DOMS, and for CMJ effects at 24 and 48 h were no longer statistically significant. Interpretation. Consuming polyphenol-rich foods, juices and concentrates accelerated recovery of muscle function while reducing muscle soreness in humans. Maximal benefit occurred 48–72 h post-exercise, however, the certainty of the evidence was moderate to very low. Supplementation could be useful when there is limited time between competitive events and impaired recovery could negatively impact performance.
Collapse
Affiliation(s)
- Lee Rickards
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
| | - Anthony Lynn
- Department of Service Sector, Management Business School, Sheffield Hallam University, Sheffield S1 1WP, UK; (A.L.); (M.E.B.)
| | - Deborah Harrop
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
| | - Margo E. Barker
- Department of Service Sector, Management Business School, Sheffield Hallam University, Sheffield S1 1WP, UK; (A.L.); (M.E.B.)
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds LS18 5HD, UK;
| | - Mayur K. Ranchordas
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
- Correspondence: ; Tel.: +44-11-4225-5678
| |
Collapse
|
15
|
Jones L, Bailey SJ, Rowland SN, Alsharif N, Shannon OM, Clifford T. The Effect of Nitrate-Rich Beetroot Juice on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. J Diet Suppl 2021; 19:749-771. [PMID: 34151694 DOI: 10.1080/19390211.2021.1939472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This systematic review and meta-analysis of randomized controlled trials examined whether dietary nitrate supplementation attenuates exercise-induced muscle damage (EIMD) and is reported according to the PRISMA guidelines. Medline and SPORTDiscus databases were searched from inception to June 2020. Inclusion criteria were studies in adult humans consuming inorganic nitrate before and after exercise and that measured markers implicated in the etiology of EIMD (muscle function, muscle soreness, inflammation, myocellular protein efflux, oxidative stress, range of motion) <168 h post. The Cochrane Collaboration risk of bias two tool was used to critically appraise the studies; forest plots were generated with random-effects models and standardized mean differences (SMD). Nine studies were included in the systematic review and six in the meta-analysis. All studies were rated to have some concerns for risk of bias. All trials in the meta-analysis provided nitrate as beetroot juice, which accelerated isometric strength recovery 72 h post-exercise (SMD: 0.54, p = 0.01) and countermovement jump performance 24-72 h post-exercise (SMD range: 0.75-1.32, p < 0.03). Pressure pain threshold was greater with beetroot juice 48 (SMD: 0.58, p = 0.03) and 72 h post-exercise (SMD: 0.61, p = 0.02). Beetroot juice had no effect on markers of oxidative stress and creatine kinase (p > 0.05), but c-reactive protein was higher vs. placebo at 48 h post-exercise (SMD: 0.55, p = 0.03). These findings suggest that nitrate-rich beetroot juice may attenuate some markers of EIMD, but more large-scale controlled trials in elite athletes are needed.
Collapse
Affiliation(s)
- Louise Jones
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Nehal Alsharif
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
16
|
Doma K, Gahreman D, Ramachandran AK, Singh U, Connor J. The effect of leaf extract supplementation on exercise-induced muscle damage and muscular performance: A systematic review and meta-analysis. J Sports Sci 2021; 39:1952-1968. [PMID: 33874859 DOI: 10.1080/02640414.2021.1911050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This systematic review and meta-analysis investigated the effects of leaf-plant extracts typically used for tea beverages on the level of exercise-induced muscle damage. The meta-analysis was conducted by comparing measures between the leaf-extract supplements (SUPP) and placebo (PLA) conditions at 24 h and 48 h following the muscle-damaging protocols from 19 studies with 416 participants. The results showed that the SUPP condition exhibited significantly lower indirect muscle damage markers than the PLA condition at 24- and 48-h post-exercise (p < 0.05). Furthermore, oxidative stress markers were significantly lower for the SUPP condition than the PLA condition at 24-h post-exercise (p < 0.05), although not at 48-h post-exercise (p > 0.05). In addition, no differences were found for anti-oxidant status at 24- and 48-h post-exercise (p > 0.05) between conditions. Muscle performance measures significantly increased for the SUPP condition than the PLA condition at 24-h post-exercise (p < 0.05), but not at 48-h post-exercise (p > 0.05). These results demonstrate that leaf plant extracts reduces the level of various biomarkers indicative of exercise-induced stress, although its effect on anti-oxidant status remains equivocal. Nonetheless, leaf-plant extracts typically ingested as a tea beverage may be an effective recovery strategy following strenuous exercises.
Collapse
Affiliation(s)
- Kenji Doma
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Daniel Gahreman
- Exercise and Sport Science, College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | | | | | - Jonathan Connor
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
17
|
The 4R's Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010103. [PMID: 33375691 PMCID: PMC7796021 DOI: 10.3390/ijerph18010103] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
Post-exercise recovery is a broad term that refers to the restoration of training capacity. After training or competition, there is fatigue accumulation and a reduction in sports performance. In the hours and days following training, the body recovers and performance is expected to return to normal or improve. ScienceDirect, PubMed/MEDLINE, and Google Scholar databases were reviewed to identify studies and position declarations examining the relationship between nutrition and sports recovery. As an evidence-based framework, a 4R’s approach to optimizing post-exercise recovery was identified: (i) Rehydration—a fundamental process that will depend on the athlete, environment and sports event; (ii) Refuel—the consumption of carbohydrates is not only important to replenish the glycogen reserves but also to contribute to the energy requirements for the immune system and tissue reparation. Several bioengineered carbohydrates were discussed but further research is needed; (iii) Repair—post-exercise ingestion of high-quality protein and creatine monohydrate benefit the tissue growth and repair; and (iv) Rest—pre-sleep nutrition has a restorative effect that facilitates the recovery of the musculoskeletal, endocrine, immune, and nervous systems. Nutritional consultancy based on the 4R’s is important for the wise stewardship of the hydration, feeding, and supplementation strategies to achieve a timely recovery.
Collapse
|
18
|
Martinez-Negrin G, Acton JP, Cocksedge SP, Bailey SJ, Clifford T. The effect of dietary (poly)phenols on exercise-induced physiological adaptations: A systematic review and meta-analysis of human intervention trials. Crit Rev Food Sci Nutr 2020; 62:2872-2887. [PMID: 33356471 DOI: 10.1080/10408398.2020.1860898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We performed a systematic review and meta-analysis to determine whether (poly)phenol supplementation augments the physiological adaptations to exercise training. Eligible studies administered a (poly)phenol supplement alongside ≥2 weeks of supervised exercise in adult humans. After screening, 22 studies were included in the analysis. Isoflavones and green tea (poly)phenols were administered most frequently. Quality assessments suggested most studies were free from bias. (Poly)phenols had no effect on training-induced adaptations in muscle strength, peak power output, and V̇O2max, but enhanced exercise capacity (SMD: 0.67, 95% CI: 0.25 to 1.09, p < 0.01). (Poly)phenols had no overall effect on fat loss (SMD: 0.10, 95% CI: -0.10 to 0.29; p = 0.97) or lean mass gains (SMD: 0.06, 95% CI: -0.18 to 0.30, p = 0.62) but sub-analysis suggested that isoflavones increased lean mass (SMD: 0.25, 95 CI%: -0.00 to 0.50, p = 0.05). Resveratrol impaired adaptations in two studies, although this was a non-statistically significant finding (SMD: -0.54, 95% CI: -1.15 to 0.07, p = 0.08). Our results suggest that isoflavones may augment aspects of the adaptive response to exercise training, while resveratrol may compromise training adaptations. More high-quality research is needed to resolve the effects of (poly)phenols on exercise training adaptations.
Collapse
Affiliation(s)
- Guille Martinez-Negrin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jarred P Acton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stuart P Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|