1
|
Abolghasemi S, Abolghasemi R, Ardalani H. The music effect on motor skills of healthy people, a systematic review. J Bodyw Mov Ther 2024; 40:1166-1176. [PMID: 39593429 DOI: 10.1016/j.jbmt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/25/2024] [Accepted: 07/07/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE Music has an undeniable effect on the quality and quantity of life. In some clinical trial studies, its effect on improving the motor skills of human subjects has been checked. Until now, there has been no systematic review of the effects of music on the motor skills of healthy non-musician, non-athlete people. METHODS We searched the full text of English clinical trial research articles in medical PubMed, Web of Science, and Science Direct databases from 1 January 2000 to 30 June 2023 with sensitive relevant keywords. We excluded studies that were conducted on artists and athletes. RESULTS Based on the PRISMA flow diagram and after multistep screening, finally 26 records were reviewed. The art music type was only in one article and the popular music type was in 8 articles. In terms of the type of motor skill that was evaluated as a consequence of the use of music, the fine motor skills were evaluated in 4 articles and the gross motor skills were evaluated in 21 articles. The review showed that the number of fetal movements in three articles was significantly higher than that of the control group. In 20 studies, the effect of music on improving motor skills was positive, but in 2 studies, no statistically significant differences between groups due to the effects of music stimuli were found in outcomes. A reciprocal effect was also observed in a study, i.e generating action enhances auditory temporal sensitivity. Twenty studies had an overall low and unknown risk of bias. The most common types of bias were due to measurement of outcomes and the selection of the reported result. CONCLUSION The systematic review of 26 clinical trial studies about the effects of music on the motor skills of healthy non-musician, non-athlete people showed that except for 2 articles, music led to the improvement of motor skills. It is necessary to conduct further research with similar methods in terms of music type and motor skill types to conclude more accurate results.
Collapse
Affiliation(s)
| | - Reyhaneh Abolghasemi
- New Hearing Technologies Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hossein Ardalani
- Department of Philosophy of Art, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
2
|
Dawson L, Beato M, Devereux G, McErlain-Naylor SA. A Review of the Validity and Reliability of Accelerometer-Based Metrics From Upper Back-Mounted GNSS Player Tracking Systems for Athlete Training Load Monitoring. J Strength Cond Res 2024; 38:e459-e474. [PMID: 38968210 DOI: 10.1519/jsc.0000000000004835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
ABSTRACT Dawson, L, Beato, M, Devereux, G, and McErlain-Naylor, SA. A review of the validity and reliability of accelerometer-based metrics from upper back-mounted GNSS player tracking systems for athlete training load monitoring. J Strength Cond Res 38(8): e459-e474, 2024-Athlete load monitoring using upper back-mounted global navigation satellite system (GNSS) player tracking is common within many team sports. However, accelerometer-based load monitoring may provide information that cannot be achieved with GNSS alone. This review focuses on the accelerometer-based metrics quantifying the accumulation of accelerations as an estimation of athlete training load, appraising the validity and reliability of accelerometer use in upper back-mounted GNSS player tracking systems, the accelerometer-based metrics, and their potential for application within athlete monitoring. Reliability of GNSS-housed accelerometers and accelerometer-based metrics are dependent on the equipment model, signal processing methods, and the activity being monitored. Furthermore, GNSS unit placement on the upper back may be suboptimal for accelerometer-based estimation of mechanical load. Because there are currently no feasible gold standard comparisons for field-based whole-body biomechanical load, the validity of accelerometer-based load metrics has largely been considered in relation to other measures of training load and exercise intensity. In terms of convergent validity, accelerometer-based metrics (e.g., PlayerLoad, Dynamic Stress Load, Body Load) have correlated, albeit with varying magnitudes and certainty, with measures of internal physiological load, exercise intensity, total distance, collisions and impacts, fatigue, and injury risk and incidence. Currently, comparisons of these metrics should not be made between athletes because of mass or technique differences or between manufacturers because of processing variations. Notable areas for further study include the associations between accelerometer-based metrics and other parts of biomechanical load-adaptation pathways of interest, such as internal biomechanical loads or methods of manipulating these metrics through effective training design.
Collapse
Affiliation(s)
- Laura Dawson
- School of Allied Health Sciences, University of Suffolk, Ipswich, United Kingdom
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, United Kingdom; and
| | - Marco Beato
- School of Allied Health Sciences, University of Suffolk, Ipswich, United Kingdom
| | - Gavin Devereux
- School of Allied Health Sciences, University of Suffolk, Ipswich, United Kingdom
| | - Stuart A McErlain-Naylor
- School of Allied Health Sciences, University of Suffolk, Ipswich, United Kingdom
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
3
|
Manolov R, Onghena P. Testing delayed, gradual, and temporary treatment effects in randomized single-case experiments: A general response function framework. Behav Res Methods 2024; 56:3915-3936. [PMID: 37749426 PMCID: PMC11133040 DOI: 10.3758/s13428-023-02230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Randomization tests represent a class of significance tests to assess the statistical significance of treatment effects in randomized single-case experiments. Most applications of single-case randomization tests concern simple treatment effects: immediate, abrupt, and permanent changes in the level of the outcome variable. However, researchers are confronted with delayed, gradual, and temporary treatment effects; in general, with "response functions" that are markedly different from single-step functions. We here introduce a general framework that allows specifying a test statistic for a randomization test based on predicted response functions that is sensitive to a wide variety of data patterns beyond immediate and sustained changes in level: different latencies (degrees of delay) of effect, abrupt versus gradual effects, and different durations of the effect (permanent or temporary). There may be reasonable expectations regarding the kind of effect (abrupt or gradual), entailing a different focal data feature (e.g., level or slope). However, the exact amount of latency and the exact duration of a temporary effect may not be known a priori, justifying an exploratory approach studying the effect of specifying different latencies or delayed effects and different durations for temporary effects. We provide illustrations of the proposal with real data, and we present a user-friendly freely available web application implementing it.
Collapse
Affiliation(s)
- Rumen Manolov
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Spain.
| | - Patrick Onghena
- Faculty of Psychology and Educational Sciences, Methodology of Educational Sciences Research Group, KU Leuven, Tiensestraat 102, 3000, Leuven, Belgium
| |
Collapse
|
4
|
Qirko H. Pace setting as an adaptive precursor of rhythmic musicality. Ann N Y Acad Sci 2024; 1533:5-15. [PMID: 38412090 DOI: 10.1111/nyas.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Human musicality (the capacity to make and appreciate music) is difficult to explain in evolutionary terms, though many theories attempt to do so. This paper focuses on musicality's potential adaptive precursors, particularly as related to rhythm. It suggests that pace setting for walking and running long distances over extended time periods (endurance locomotion, EL) is a good candidate for an adaptive building block of rhythmic musicality. The argument is as follows: (1) over time, our hominin lineage developed a host of adaptations for efficient EL; (2) the ability to set and maintain a regular pace was a crucial adaptation in the service of EL, providing proximate rewards for successful execution; (3) maintaining a pace in EL occasioned hearing, feeling, and attending to regular rhythmic patterns; (4) these rhythmic patterns, as well as proximate rewards for maintaining them, became disassociated from locomotion and entrained in new proto-musical contexts. Support for the model and possibilities for generating predictions to test it are discussed.
Collapse
Affiliation(s)
- Hector Qirko
- Department of Sociology and Anthropology, College of Charleston, Charleston, South Carolina, USA
| |
Collapse
|
5
|
Yang K, McErlain-Naylor SA, Isaia B, Callaway A, Beeby S. E-Textiles for Sports and Fitness Sensing: Current State, Challenges, and Future Opportunities. SENSORS (BASEL, SWITZERLAND) 2024; 24:1058. [PMID: 38400216 PMCID: PMC10893116 DOI: 10.3390/s24041058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
E-textiles have emerged as a fast-growing area in wearable technology for sports and fitness due to the soft and comfortable nature of textile materials and the capability for smart functionality to be integrated into familiar sports clothing. This review paper presents the roles of wearable technologies in sport and fitness in monitoring movement and biosignals used to assess performance, reduce injury risk, and motivate training/exercise. The drivers of research in e-textiles are discussed after reviewing existing non-textile and textile-based commercial wearable products. Different sensing components/materials (e.g., inertial measurement units, electrodes for biosignals, piezoresistive sensors), manufacturing processes, and their applications in sports and fitness published in the literature were reviewed and discussed. Finally, the paper presents the current challenges of e-textiles to achieve practical applications at scale and future perspectives in e-textiles research and development.
Collapse
Affiliation(s)
- Kai Yang
- Winchester School of Art, University of Southampton, Southampton SO23 8DL, UK;
| | | | - Beckie Isaia
- Centre for Flexible Electronics and E-Textiles (C-FLEET), School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;
| | - Andrew Callaway
- Department of Rehabilitation and Sport Sciences, Bournemouth University, Bournemouth BH12 5BB, UK;
| | - Steve Beeby
- Centre for Flexible Electronics and E-Textiles (C-FLEET), School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
6
|
Emmery L, Hackney ME, Kesar T, McKay JL, Rosenberg MC. An integrated review of music cognition and rhythmic stimuli in sensorimotor neurocognition and neurorehabilitation. Ann N Y Acad Sci 2023; 1530:74-86. [PMID: 37917153 PMCID: PMC10841443 DOI: 10.1111/nyas.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This work reviews the growing body of interdisciplinary research on music cognition, using biomechanical, kinesiological, clinical, psychosocial, and sociological methods. The review primarily examines the relationship between temporal elements in music and motor responses under varying contexts, with considerable relevance for clinical rehabilitation. After providing an overview of the terminology and approaches pertinent to theories of rhythm and meter from the musical-theoretical and cognitive fields, this review focuses on studies on the effects of rhythmic sensory stimulation on gait, rhythmic cues' effect on the motor system, reactions to rhythmic stimuli attempting to synchronize mobility (i.e., musical embodiment), and the application of rhythm for motor rehabilitation for individuals with Parkinson's disease, stroke, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative or neurotraumatic diseases. This work ultimately bridges the gap between the musical-theoretical and cognitive science fields to facilitate innovative research in which each discipline informs the other.
Collapse
Affiliation(s)
- Laura Emmery
- Department of Music, Emory College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Madeleine E. Hackney
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA HealthCare System, Decatur, Georgia, USA
- Department of Medicine, Division of Geriatrics and Gerontology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Veterans Affairs Birmingham/Atlanta Geriatric Research Education and Clinical Center
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory University School of Nursing, Atlanta, Georgia, USA
| | - Trisha Kesar
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - J. Lucas McKay
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael C. Rosenberg
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
The Effects of Cadence Manipulation on Joint Kinetic Patterns and Stride-to-Stride Kinetic Variability in Female Runners. J Appl Biomech 2022; 38:373-381. [PMID: 36126939 DOI: 10.1123/jab.2022-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
Altering running cadence is commonly done to reduce the risk of running-related injury/reinjury. This study examined how altering running cadence affects joint kinetic patterns and stride-to-stride kinetic variability in uninjured female runners. Twenty-four uninjured female recreational runners ran on an instrumented treadmill with their typical running cadence and with a running cadence that was 7.5% higher and 7.5% lower than typical. Ground reaction force and kinematic data were recorded during each condition, and principal component analysis was used to capture the primary sources of variability from the sagittal plane hip, knee, and ankle moment time series. Runners exhibited a reduction in the magnitude of their knee extension moments when they increased their cadence and an increase in their knee extension moments when they lowered their cadence compared with when they ran with their typical cadence. They also exhibited greater stride-to-stride variability in the magnitude of their hip flexion moments and knee extension moments when they deviated from their typical running cadence (ie, running with either a higher or lower cadence). These differences suggest that runners could alter their cadence throughout a run in an attempt to limit overly repetitive localized tissue stresses.
Collapse
|