1
|
Cohen-Eick N, Shuman E, van Zomeren M, Halperin E. Should I Stay or Should I Go? Motives and Barriers for Sustained Collective Action Toward Social Change. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2025; 51:910-927. [PMID: 37921088 PMCID: PMC12044214 DOI: 10.1177/01461672231206638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
Israel's year-long protest calling for Prime Minister Netanyahu's resignation created an opportunity to examine unique factors influencing sustained collective action (SCA; i.e., repeated participation in social movement action for the same cause). As little is known about how to explain such dedication, we compared a well-established set of predictors of one-time collective action (CA) with a new predictors set of SCA, focusing on collective instrumental and socio-emotional (CISE) motivations grounded in previous participation experience, to predict subsequent participation. In a unique longitudinal design, we tracked protestors over 6 weeks. Our findings showed that less emotional exhaustion, more subjective effort into participation, and a perceived closer timeframe for desired social change positively predicted SCA. This differentiates SCA from CA-moreover, as one-time CA predictors did not predict SCA, this suggests a need for a new model to explain SCA based on CISE motivations that reflect continuous goal pursuit.
Collapse
Affiliation(s)
- Noa Cohen-Eick
- The Hebrew University of Jerusalem, Israel
- University of Groningen, the Netherlands
| | - Eric Shuman
- New York University, USA
- Harvard Business School, Cambridge, MA, USA
| | | | | |
Collapse
|
2
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Prado J, Knops A. Spatial attention in mental arithmetic: A literature review and meta-analysis. Psychon Bull Rev 2024; 31:2036-2057. [PMID: 38565841 DOI: 10.3758/s13423-024-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
We review the evidence for the conceptual association between arithmetic and space and quantify the effect size in meta-analyses. We focus on three effects: (a) the operational momentum effect (OME), which has been defined as participants' tendency to overestimate results of addition problems and underestimate results of subtraction problems; (b) the arithmetic cueing effect, in which arithmetic problems serve as spatial cues in target detection or temporal order judgment tasks; and (c) the associations between arithmetic and space observed with eye- and hand-tracking studies. The OME was consistently found in paradigms that provided the participants with numerical response alternatives. The OME shows a large effect size, driven by an underestimation during subtraction while addition was unbiased. In contrast, paradigms in which participants indicated their estimate by transcoding their final estimate to a spatial reference frame revealed no consistent OME. Arithmetic cueing studies show a reliable small to medium effect size, driven by a rightward bias for addition. Finally, eye- and hand-tracking studies point to replicable associations between arithmetic and eye or hand movements. To account for the complexity of the observed pattern, we introduce the Adaptive Pathways in Mental Arithmetic (APiMA) framework. The model accommodates central notions of numerical and arithmetic processing and helps identifying which pathway a given paradigm operates on. It proposes that the divergence between OME and arithmetic cueing studies comes from the predominant use of non-symbolic versus symbolic stimuli, respectively. Overall, our review and findings clearly support an association between arithmetic and spatial processing.
Collapse
Affiliation(s)
- Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Lyon, France
| | - André Knops
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France.
| |
Collapse
|
4
|
Suárez-Pellicioni M, Prado J, Booth JR. Neurocognitive mechanisms underlying multiplication and subtraction performance in adults and skill development in children: a scoping review. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Haman M, Lipowska K. Preschoolers prior formal mathematics education engage numerical magnitude representation rather than counting principles in symbolic +/-1 arithmetic: Evidence from the Operational Momentum effect. Dev Sci 2022; 26:e13322. [PMID: 36069221 DOI: 10.1111/desc.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
In numerical cognition research, the operational momentum (OM) phenomenon (tendency to overestimate the results of addition and/or binding addition to the right side and underestimating subtraction and/or binding it to the left side) can help illuminate the most basic representations and processes of mental arithmetic and their development. This study is the first to demonstrate OM in symbolic arithmetic in preschoolers. It was modeled on Haman and Lipowska's (2021) non-symbolic arithmetic task, using Arabic numerals instead of visual sets. Seventy-seven children (4-7 years old) who know Arabic numerals and counting principles, but without prior school math education, solved addition and subtraction problems presented as videos with 1 as the second operand. In principle, such problems may be difficult when involving a non-symbolic approximate number processing system, whereas in symbolic format they can be solved based solely on the successor/predecessor functions and knowledge of numerical orders, without reference to representation of numerical magnitudes. Nevertheless, participants made systematic errors, in particular, overestimating results of addition in line with the typical OM tendency. Moreover, subtraction and addition induced longer response times when primed with left- and right-directed movement, respectively, which corresponds to the reversed spatial form of OM. These results largely replicate those of non-symbolic task and show that children at early stages of mastering symbolic arithmetic may rely on numerical magnitude processing and spatial-numerical associations rather than newly-mastered counting principles and the concept of an exact number. Adding and subtracting 1 in a symbolic format formally requires only knowledge of numerical orders and the predecessor/successor function, but not numerical magnitude processing Preschoolers knowing the counting principles and Arabic numerals, but without prior mathematics education, demonstrated operational momentum by overestimating results of symbolic addition of 1 In the same arithmetic task children showed faster reactions for addition primed with an object moving leftward and in subtraction primed with rightward motion These effects replicate findings from non-symbolic ±1 arithmetic, indicating that preschoolers use magnitude representation and spatial-numerical associations for symbolic calculation This article is protected by copyright. All rights reserved.
Collapse
|
6
|
Jang S, Cho S. Operational momentum during children's approximate arithmetic relates to symbolic math skills and space-magnitude association. J Exp Child Psychol 2021; 213:105253. [PMID: 34419664 DOI: 10.1016/j.jecp.2021.105253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/21/2021] [Accepted: 07/03/2021] [Indexed: 01/29/2023]
Abstract
Operational momentum (OM) refers to the behavioral tendency to overestimate or underestimate the results of addition or subtraction, respectively. The cognitive mechanism of the OM effect and how it is related to the development of symbolic math abilities are not well understood. The current study examined whether individual differences in the OM effect are related to symbolic arithmetic abilities, number line estimation performance, and the space-magnitude association effect in young children. In this study, first-grade elementary school children manifested the OM effect during approximate addition and subtraction. Individual differences in the OM effect were not correlated with number line estimation error. Interestingly, children who showed a greater degree of the OM effect performed not worse, but better on the symbolic arithmetic task. In addition, the OM effect was correlated with the space-magnitude association (size congruity) effect measured with the Numerical Stroop task. More specifically, the OM bias was correlated with the ability to inhibit interference from competing information on the incongruent trials of the Numerical Stroop task. Our results suggest that the inaccuracy of numerical magnitude representations is not the source of the OM effect. Given that children with better math ability showed a greater OM bias, a stronger OM effect may reflect better intuition in arithmetic operations. Altogether, we carefully interpret these findings as suggesting that a greater OM effect reflects superior intuition or fundamental knowledge of arithmetic operations and a more adult-like maturation of the reorienting component of the attentional system.
Collapse
Affiliation(s)
- Selim Jang
- Department of Psychology, Chung-Ang University, Seoul, South Korea; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Soohyun Cho
- Department of Psychology, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
7
|
Haman M, Młodzianowski H, Gołȩbiowski M. Perceived Motion and Operational Momentum: How Speed, Distance, and Time Influence Two-Digit Arithmetic. Front Psychol 2021; 12:653423. [PMID: 34326791 PMCID: PMC8313890 DOI: 10.3389/fpsyg.2021.653423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Operational momentum was originally defined as a bias toward underestimating outcomes of subtraction and overestimating outcomes of addition. It was suggested that these estimation biases are due to leftward attentional shift along the mental number-line (spatially organized internal representation of number) in subtraction and rightward shift in addition. This assumes the use of “recycled” mechanisms of spatial attention, including “representational momentum” – a tendency to overestimate future position of a moving object, which compensates for the moving object’s shift during preparation of a reaction. We tested a strong version of this assumption directly, priming two-digit addition and subtraction problems with leftward and rightward motion of varied velocity, as velocity of the tracked object was found to be a factor in determining representational momentum effect size. Operands were subsequently moving across the computer screen, and the participants’ task was to validate an outcome proposed at the end of the event, which was either too low, correct, or too high. We found improved accuracy in detecting too-high outcomes of addition, as well as complex patterns of interactions involving arithmetic operation, outcome option, speed, and direction of motion, in the analysis of reaction times. These results significantly extend previous evidence for the involvement of spatial attention in mental arithmetic, showing movement of the external attention focus as a factor directing internal attention in processing numerical information. As a whole, however, the results are incompatible with expectations derived from the strong analogy between operational and representational momenta. We suggest that the full model may be more complex than simply “moving attention along the mental number-line” as a direct counterpart of attention directed at a moving object.
Collapse
Affiliation(s)
- Maciej Haman
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
8
|
Deemer ED, Derosa PA, Duhon SA, Dotterer AM. Psychological Momentum and Inertia: Toward a Model of Academic Motivation. JOURNAL OF CAREER DEVELOPMENT 2021. [DOI: 10.1177/0894845319848847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Building upon psychological momentum theory, we draw an analogy between motivational constructs proposed herein and the physical principles of mass, inertia, and momentum. From these principles, we derived constructs representing academic inertia in states of both low and high momentum. The sample consisted of 105 African American college students in science, technology, engineering, and mathematics majors. Results of a confirmatory factor analysis (CFA) of a newly developed scale yielded support for two distinct factors reflecting low momentum state inertia (LMSI) and high momentum state inertia (HMSI). The conditional relationship between LMSI and HMSI was then examined with inspiration as a moderating variable. Consistent with our prediction, results indicated that the relationship between LMSI and HMSI was positive and significant at low levels of inspiration, while this slope was not significant at high levels of inspiration. Implications for cognitive-affective factors that may inhibit or facilitate psychological momentum in the context of academic functioning are discussed.
Collapse
Affiliation(s)
- Eric D. Deemer
- Department of Educational Studies, Purdue University, West Lafayette, IN, USA
| | - Pedro A. Derosa
- Physics/Integrated STEM Education Research Center (ISERC), Louisiana Tech University, Ruston, LA, USA
| | - Stacey A. Duhon
- College of Arts and Sciences, Grambling State University, Grambling, LA, USA
| | - Aryn M. Dotterer
- Department of Human Development and Family Studies, Utah State University, Logan, UT, USA
| |
Collapse
|
9
|
Bernabini L, Tobia V, Guarini A, Bonifacci P. Predictors of Children's Early Numeracy: Environmental Variables, Intergenerational Pathways, and Children's Cognitive, Linguistic, and Non-symbolic Number Skills. Front Psychol 2020; 11:505065. [PMID: 33240141 PMCID: PMC7677194 DOI: 10.3389/fpsyg.2020.505065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/08/2020] [Indexed: 01/20/2023] Open
Abstract
Early numeracy skills in preschool years have been found to be related to a variety of different factors, including Approximate Number System (ANS) skills, children's cognitive and linguistic skills, and environmental variables such as home numeracy activities. The present study aimed to analyze the differential role of environmental variables, intergenerational patterns, children's cognitive and linguistic skills, and their ANS in supporting early math skills. The sample included 64 children in their last year of kindergarten and one parent of each child. Children were administered a battery of cognitive and linguistic tasks, and a non-symbolic comparison task as a measure of ANS. Parents were administered similar tasks assessing cognitive skills, math skills, and ANS skills (estimation and non-symbolic comparison), together with a questionnaire on home numeracy. Results showed that home numeracy predicted children's early math skills better than a number of parent and child variables. Considering children's skills, their ability in the non-symbolic magnitude comparison task was the strongest predictor of early math skills. Results reinforce the importance of the role of home numeracy activities and children's ANS skills above that of parents' math skills.
Collapse
Affiliation(s)
- Luca Bernabini
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Valentina Tobia
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Paola Bonifacci
- Department of Psychology, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Bonato M, D'Ovidio U, Fias W, Zorzi M. A momentum effect in temporal arithmetic. Cognition 2020; 206:104488. [PMID: 33242739 DOI: 10.1016/j.cognition.2020.104488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
The mental representation of brief temporal durations, when assessed in standard laboratory conditions, is highly accurate. Here we show that adding or subtracting temporal durations systematically results in strong and opposite biases, namely over-estimation for addition and under-estimation for subtraction. The difference with respect to a baseline temporal reproduction task changed across durations in an operation-specific way and survived correcting for the effect due to operation sign alone, indexing a reliable signature of arithmetic processing on time representation. A second experiment replicated these findings with a different set of stimuli. This novel behavioral marker conceptually mirrors in the time domain the representational momentum found with motion, whereby the estimated spatial position of a visual target is displaced in the direction of motion itself. This momentum effect in temporal arithmetic suggests a striking analogy between time processing and visuospatial processing, which might index the presence of common computational principles.
Collapse
Affiliation(s)
- Mario Bonato
- Department of General Psychology & Padova Neuroscience Center, University of Padova, Italy; Department of Experimental Psychology, Ghent University, Belgium.
| | - Umberto D'Ovidio
- Department of General Psychology & Padova Neuroscience Center, University of Padova, Italy; Department of Experimental Psychology, Ghent University, Belgium
| | - Wim Fias
- Department of Experimental Psychology, Ghent University, Belgium
| | - Marco Zorzi
- Department of General Psychology & Padova Neuroscience Center, University of Padova, Italy; IRCCS San Camillo Hospital, Lido Venice, Italy.
| |
Collapse
|
11
|
Haman M, Lipowska K. Moving attention along the mental number line in preschool age: Study of the operational momentum in 3- to 5-year-old children's non-symbolic arithmetic. Dev Sci 2020; 24:e13007. [PMID: 32567767 DOI: 10.1111/desc.13007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/03/2020] [Accepted: 06/02/2020] [Indexed: 01/29/2023]
Abstract
People tend to underestimate subtraction and overestimate addition outcomes and to associate subtraction with the left side and addition with the right side. These two phenomena are collectively labeled 'operational momentum' (OM) and thought to have their origins in the same mechanism of 'moving attention along the mental number line'. OM in arithmetic has never been tested in children at the preschool age, which is critical for numerical development. In this study, 3-5 years old were tested with non-symbolic addition and subtraction tasks. Their level of understanding of counting principles (CP) was assessed using the give-a-number task. When the second operand's cardinality was 5 or 6 (Experiment 1), the child's reaction time was shorter in addition/subtraction tasks after cuing attention appropriately to the right/left. Adding/subtracting one element (Experiment 2) revealed a more complex developmental pattern. Before acquiring CP, the children showed generalized overestimation bias. Underestimation in addition and overestimation in subtraction emerged only after mastering CP. No clear spatial-directional OM pattern was found, however, the response time to rightward/leftward cues in addition/subtraction again depended on stage of mastering CP. Although the results support the hypothesis about engagement of spatial attention in early numerical processing, they point to at least partial independence of the spatial-directional and magnitude OM. This undermines the canonical version of the number line-based hypothesis. Mapping numerical magnitudes to space may be a complex process that undergoes reorganization during the period of acquisition of symbolic representations of numbers. Some hypotheses concerning the role of spatial-numerical associations in numerical development are proposed.
Collapse
Affiliation(s)
- Maciej Haman
- Faculty of Psychology, University of Warsaw, Warszawa, Poland
| | | |
Collapse
|
12
|
Jang S, Hyde DC. Hemispheric asymmetries in processing numerical meaning in arithmetic. Neuropsychologia 2020; 146:107524. [PMID: 32535131 DOI: 10.1016/j.neuropsychologia.2020.107524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/29/2023]
Abstract
Hemispheric asymmetries in arithmetic have been hypothesized based on neuropsychological, developmental, and neuroimaging work. However, it has been challenging to separate asymmetries related to arithmetic specifically, from those associated general cognitive or linguistic processes. Here we attempt to experimentally isolate the processing of numerical meaning in arithmetic problems from language and memory retrieval by employing novel non-symbolic addition problems, where participants estimated the sum of two dot arrays and judged whether a probe dot array was the correct sum of the first two arrays. Furthermore, we experimentally manipulated which hemisphere receive the probe array first using a visual half-field paradigm while recording event-related potentials (ERP). We find that neural sensitivity to numerical meaning in arithmetic arises under left but not right visual field presentation during early and middle portions of the late positive complex (LPC, 400-800 ms). Furthermore, we find that subsequent accuracy for judgements of whether the probe is the correct sum is better under right visual field presentation than left, suggesting a left hemisphere advantage for integrating information for categorization or decision making related to arithmetic. Finally, neural signatures of operational momentum, or differential sensitivity to whether the probe was greater or less than the sum, occurred at a later portion of the LPC (800-1000 ms) and regardless of visual field of presentation, suggesting a temporal and functional dissociation between magnitude and ordinal processing in arithmetic. Together these results provide novel evidence for differences in timing and hemispheric lateralization for several cognitive processes involved in arithmetic thinking.
Collapse
Affiliation(s)
- Selim Jang
- Department of Psychology, University of Illinois at Urbana-Champaign, USA.
| | - Daniel C Hyde
- Department of Psychology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
13
|
Artemenko C, Sitnikova MA, Soltanlou M, Dresler T, Nuerk HC. Functional lateralization of arithmetic processing in the intraparietal sulcus is associated with handedness. Sci Rep 2020; 10:1775. [PMID: 32020021 PMCID: PMC7000739 DOI: 10.1038/s41598-020-58477-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
Functional lateralization is established for various cognitive functions, but was hardly ever investigated for arithmetic processing. Most neurocognitive models assume a central role of the bilateral intraparietal sulcus (IPS) in arithmetic processing and there is some evidence for more pronounced left-hemispheric activation for symbolic arithmetic. However, evidence was mainly obtained by studies in right-handers. Therefore, we conducted a functional near-infrared spectroscopy (fNIRS) study, in which IPS activation of left-handed adults was compared to right-handed adults in a symbolic approximate calculation task. The results showed that left-handers had a stronger functional right-lateralization in the IPS than right-handers. This finding has important consequences, as the bilateral IPS activation pattern for arithmetic processing seems to be shaped by functional lateralization and thus differs between left- and right-handers. We propose three possible accounts for the observed functional lateralization of arithmetic processing.
Collapse
Affiliation(s)
- Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany.
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany.
| | - Maria A Sitnikova
- Department of Psychology, Pedagogical Institute, Belgorod National Research University, Belgorod, Russia
- Research and Project Centre for Cognitive Neuroscience and Neurotechnologies, Belgorod National Research University, Belgorod, Russia
| | - Mojtaba Soltanlou
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Thomas Dresler
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Research and Project Centre for Cognitive Neuroscience and Neurotechnologies, Belgorod National Research University, Belgorod, Russia
| |
Collapse
|
14
|
Hartmann M, Singer S, Savic B, Müri RM, Mast FW. Anodal High-definition Transcranial Direct Current Stimulation over the Posterior Parietal Cortex Modulates Approximate Mental Arithmetic. J Cogn Neurosci 2019; 32:862-876. [PMID: 31851594 DOI: 10.1162/jocn_a_01514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The representation and processing of numerosity is a crucial cognitive capacity. Converging evidence points to the posterior parietal cortex (PPC) as primary "number" region. However, the exact role of the left and right PPC for different types of numerical and arithmetic tasks remains controversial. In this study, we used high-definition transcranial direct current stimulation (HD-tDCS) to further investigate the causal involvement of the PPC during approximative, nonsymbolic mental arithmetic. Eighteen healthy participants received three sessions of anodal HD-tDCS at 1-week intervals in counterbalanced order: left PPC, right PPC, and sham stimulation. Results showed an improved performance during online parietal HD-tDCS (vs. sham) for subtraction problems. Specifically, the general tendency to underestimate the results of subtraction problems (i.e., the "operational momentum effect") was reduced during online parietal HD-tDCS. There was no difference between left and right stimulation. This study thus provides new evidence for a causal involvement of the left and right PPC for approximate nonsymbolic arithmetic and advances the promising use of noninvasive brain stimulation in increasing cognitive functions.
Collapse
|
15
|
Spatial Attention Shifts in Addition and Subtraction Arithmetic: Evidence of Eye Movement. Perception 2019; 48:835-849. [DOI: 10.1177/0301006619865156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, it has been proposed that solving addition and subtraction problems can evoke horizontal shifts of spatial attention. However, prior to this study, it remained unclear whether orienting shifts of spatial attention relied on actual arithmetic processes (i.e., the activated magnitude) or the semantic spatial association of the operator. In this study, spatial–arithmetic associations were explored through three experiments using an eye tracker, which attempted to investigate the mechanism of those associations. Experiment 1 replicated spatial–arithmetic associations in addition and subtraction problems. Experiments 2 and 3 selected zero as the operand to investigate whether these arithmetic problems could induce shifts of spatial attention. Experiment 2 indicated that addition and subtraction problems (zero as the second operand, i.e., 2 + 0) do not induce shifts of spatial attention. Experiment 3 showed that addition and subtraction arithmetic (zero as the first operand, i.e., 0 + 2) do facilitate rightward and leftward eye movement, respectively. This indicates that the operator alone does not induce horizontal eye movement. However, our findings support the idea that solving addition and subtraction problems is associated with horizontal shifts of spatial attention.
Collapse
|
16
|
Guillaume M, Van Rinsveld A. Comparing Numerical Comparison Tasks: A Meta-Analysis of the Variability of the Weber Fraction Relative to the Generation Algorithm. Front Psychol 2018; 9:1694. [PMID: 30271363 PMCID: PMC6142874 DOI: 10.3389/fpsyg.2018.01694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
Since more than 15 years, researchers have been expressing their interest in evaluating the Approximate Number System (ANS) and its potential influence on cognitive skills involving number processing, such as arithmetic. Although many studies reported significant and predictive relations between ANS and arithmetic abilities, there has recently been an increasing amount of published data that failed to replicate such relationship. Inconsistencies lead many researchers to question the validity of the assessment of the ANS itself. In the current meta-analysis of over 68 experimental studies published between 2004 and 2017, we show that the mean value of the Weber fraction (w), the minimal amount of change in magnitude to detect a difference, is very heterogeneous across the literature. Within young adults, w might range from < 10 to more than 60, which is critical for its validity for research and diagnostic purposes. We illustrate here the concern that different methods controlling for non-numerical dimensions lead to substantially variable performance. Nevertheless, studies that referred to the exact same method (e.g., Panamath) showed high consistency among them, which is reassuring. We are thus encouraging researchers only to compare what is comparable and to avoid considering the Weber fraction as an abstract parameter independent from the context. Eventually, we observed that all reported correlation coefficients between the value of w and general accuracy were very high. Such result calls into question the relevance of computing and reporting at all the Weber fraction. We are thus in disfavor of the systematic use of the Weber fraction, to discourage any temptation to compare given data to some values of w reported from different tasks and generation algorithms.
Collapse
Affiliation(s)
- Mathieu Guillaume
- Cognitive Science and Assessment Institute (COSA), University of Luxembourg, Luxembourg, Luxembourg
| | - Amandine Van Rinsveld
- Centre for Research in Cognitive Neuroscience (CRCN), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
17
|
Spatial grounding of symbolic arithmetic: an investigation with optokinetic stimulation. PSYCHOLOGICAL RESEARCH 2018; 83:64-83. [PMID: 30022242 PMCID: PMC6373542 DOI: 10.1007/s00426-018-1053-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
Abstract
Growing evidence suggests that mental calculation might involve movements of attention along a spatial representation of numerical magnitude. Addition and subtraction on nonsymbolic numbers (numerosities) seem to induce a “momentum” effect, and have been linked to distinct patterns of neural activity in cortical regions subserving attention and eye movements. We investigated whether mental arithmetic on symbolic numbers, a cornerstone of abstract mathematical reasoning, can be affected by the manipulation of overt spatial attention induced by optokinetic stimulation (OKS). Participants performed additions or subtractions of auditory two-digit numbers during horizontal (experiment 1) or vertical OKS (experiment 2), and eye movements were concurrently recorded. In both experiments, the results of addition problems were underestimated, whereas results of subtractions were overestimated (a pattern that is opposite to the classic Operational Momentum effect). While this tendency was unaffected by OKS, vertical OKS modulated the occurrence of decade errors during subtractions (i.e., fewer during downward OKS and more frequent during upward OKS). Eye movements, on top of the classic effect induced by OKS, were affected by the type of operation during the calculation phase, with subtraction consistently leading to a downward shift of gaze position and addition leading to an upward shift. These results highlight the pervasive nature of spatial processing in mental arithmetic. Furthermore, the preeminent effect of vertical OKS is in line with the hypothesis that the vertical dimension of space–number associations is grounded in universal (physical) constraints and, thereby, more robust than situated and culture-dependent associations with the horizontal dimension.
Collapse
|
18
|
Pinheiro-Chagas P, Didino D, Haase VG, Wood G, Knops A. The Developmental Trajectory of the Operational Momentum Effect. Front Psychol 2018; 9:1062. [PMID: 30065673 PMCID: PMC6056750 DOI: 10.3389/fpsyg.2018.01062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/06/2018] [Indexed: 11/20/2022] Open
Abstract
Mental calculation is thought to be tightly related to visuospatial abilities. One of the strongest evidence for this link is the widely replicated operational momentum (OM) effect: the tendency to overestimate the result of additions and to underestimate the result of subtractions. Although the OM effect has been found in both infants and adults, no study has directly investigated its developmental trajectory until now. However, to fully understand the cognitive mechanisms lying at the core of the OM effect it is important to investigate its developmental dynamics. In the present study, we investigated the development of the OM effect in a group of 162 children from 8 to 12 years old. Participants had to select among five response alternatives the correct result of approximate addition and subtraction problems. Response alternatives were simultaneously presented on the screen at different locations. While no effect was observed for the youngest age group, children aged 9 and older showed a clear OM effect. Interestingly, the OM effect monotonically increased with age. The increase of the OM effect was accompanied by an increase in overall accuracy. That is, while younger children made more and non-systematic errors, older children made less but systematic errors. This monotonous increase of the OM effect with age is not predicted by the compression account (i.e., linear calculation performed on a compressed code). The attentional shift account, however, provides a possible explanation of these results based on the functional relationship between visuospatial attention and mental calculation and on the influence of formal schooling. We propose that the acquisition of arithmetical skills could reinforce the systematic reliance on the spatial mental number line and attentional mechanisms that control the displacement along this metric. Our results provide a step in the understanding of the mechanisms underlying approximate calculation and an important empirical constraint for current accounts on the origin of the OM effect.
Collapse
Affiliation(s)
- Pedro Pinheiro-Chagas
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Orsay, France
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Daniele Didino
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vitor G. Haase
- Developmental Neuropsychology Laboratory (LND), Department of Psychology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Psychology, Graduate Program in Psychology, Cognition and Behavior – Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Guilherme Wood
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, University of Graz, Graz, Austria
| | - André Knops
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Masson N, Letesson C, Pesenti M. Time course of overt attentional shifts in mental arithmetic: Evidence from gaze metrics. Q J Exp Psychol (Hove) 2018; 71:1009-1019. [PMID: 28399712 DOI: 10.1080/17470218.2017.1318931] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Processing numbers induces shifts of spatial attention in probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. This has been interpreted as supporting the concept of a mental number line with number magnitudes ranging from left to right, from small to large numbers. Recently, the investigation of this spatial-numerical link has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems might induce attentional displacements, rightward or leftward, respectively. At the neurofunctional level, the activations elicited by the solving of additions have been shown to resemble those induced by rightward eye movements. However, the possible behavioural counterpart of these activations has not yet been observed. Here, we investigated overt attentional shifts with a target detection task primed by addition and subtraction problems (2-digit ± 1-digit operands) in participants whose gaze orientation was recorded during the presentation of the problems and while calculating. No evidence of early overt attentional shifts was observed while participants were hearing the first operand, the operator or the second operand, but they shifted their gaze towards the right during the solving step of addition problems. These results show that gaze shifts related to arithmetic problem solving are elicited during the solving procedure and suggest that their functional role is to access, from the first operand, the representation of the result.
Collapse
Affiliation(s)
- Nicolas Masson
- Institut de Recherche en Sciences Psychologiques and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Clément Letesson
- Institut de Recherche en Sciences Psychologiques and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mauro Pesenti
- Institut de Recherche en Sciences Psychologiques and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Zhu R, Luo Y, You X, Wang Z. Spatial Bias Induced by Simple Addition and Subtraction: From Eye Movement Evidence. Perception 2017; 47:143-157. [DOI: 10.1177/0301006617738718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The associations between number and space have been intensively investigated. Recent studies indicated that this association could extend to more complex tasks, such as mental arithmetic. However, the mechanism of arithmetic-space associations in mental arithmetic was still a topic of debate. Thus, in the current study, we adopted an eye-tracking technology to investigate whether spatial bias induced by mental arithmetic was related with spatial attention shifts on the mental number line or with semantic link between the operator and space. In Experiment 1, participants moved their eyes to the corresponding response area according to the cues after solving addition and subtraction problems. The results showed that the participants moved their eyes faster to the leftward space after solving subtraction problems and faster to the right after solving addition problems. However, there was no spatial bias observed when the second operand was zero in the same time window, which indicated that the emergence of spatial bias may be associated with spatial attention shifts on the mental number line. In Experiment 2, participants responded to the operator (operation plus and operation minus) with their eyes. The results showed that mere presentation of operator did not cause spatial bias. Therefore, the arithmetic–space associations might be related with the movement along the mental number line.
Collapse
Affiliation(s)
- Rongjuan Zhu
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Yangmei Luo
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Xuqun You
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Ziyu Wang
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
21
|
Ninaus M, Moeller K, Kaufmann L, Fischer MH, Nuerk HC, Wood G. Cognitive Mechanisms Underlying Directional and Non-directional Spatial-Numerical Associations across the Lifespan. Front Psychol 2017; 8:1421. [PMID: 28878716 PMCID: PMC5572383 DOI: 10.3389/fpsyg.2017.01421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/07/2017] [Indexed: 11/19/2022] Open
Abstract
There is accumulating evidence suggesting an association of numbers with physical space. However, the origin of such spatial-numerical associations (SNAs) is still debated. In the present study we investigated the development of two SNAs in a cross-sectional study involving children, young and middle-aged adults as well as the elderly: (1) the SNARC (spatial-numerical association of response codes) effect, reflecting a directional SNA; and (2) the numerical bisection bias in a line bisection task with numerical flankers. Results revealed a consistent SNARC effect in all age groups that continuously increased with age. In contrast, a numerical bisection bias was only observed for children and elderly participants, implying an U-shaped distribution of this bias across age groups. Additionally, individual SNARC effects and numerical bisection biases did not correlate significantly. We argue that the SNARC effect seems to be influenced by longer-lasting experiences of cultural constraints such as reading and writing direction and may thus reflect embodied representations. Contrarily, the numerical bisection bias may originate from insufficient inhibition of the semantic influence of irrelevant numerical flankers, which should be more pronounced in children and elderly people due to development and decline of cognitive control, respectively. As there is an ongoing debate on the origins of SNAs in general and the SNARC effect in particular, the present results are discussed in light of these differing accounts in an integrative approach. However, taken together, the present pattern of results suggests that different cognitive mechanisms underlie the SNARC effect and the numerical bisection bias.
Collapse
Affiliation(s)
- Manuel Ninaus
- Leibniz-Institut für WissensmedienTübingen, Germany.,Department of Psychology, University of GrazGraz, Austria.,LEAD Graduate School and Research Network, Eberhard Karls University of TübingenTübingen, Germany
| | - Korbinian Moeller
- Leibniz-Institut für WissensmedienTübingen, Germany.,Department of Psychology, University of GrazGraz, Austria.,LEAD Graduate School and Research Network, Eberhard Karls University of TübingenTübingen, Germany
| | - Liane Kaufmann
- Department of Psychiatry and Psychotherapy A, General HospitalHall, Austria
| | - Martin H Fischer
- Division of Cognitive Sciences, Department of Psychology, University of PotsdamPotsdam, Germany
| | - Hans-Christoph Nuerk
- LEAD Graduate School and Research Network, Eberhard Karls University of TübingenTübingen, Germany.,Department of Psychology, Eberhard Karls University TübingenTübingen, Germany
| | | |
Collapse
|
22
|
Shaki S, Pinhas M, Fischer MH. Heuristics and biases in mental arithmetic: revisiting and reversing operational momentum. THINKING & REASONING 2017. [DOI: 10.1080/13546783.2017.1348987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samuel Shaki
- Department of Behavioral Sciences, Ariel University, Ariel, Israel
| | - Michal Pinhas
- Department of Behavioral Sciences, Ariel University, Ariel, Israel
| | - Martin H. Fischer
- Division of Cognitive Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
23
|
Shaki S, Fischer MH. Competing Biases in Mental Arithmetic: When Division Is More and Multiplication Is Less. Front Hum Neurosci 2017; 11:37. [PMID: 28203152 PMCID: PMC5285382 DOI: 10.3389/fnhum.2017.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Mental arithmetic exhibits various biases. Among those is a tendency to overestimate addition and to underestimate subtraction outcomes. Does such "operational momentum" (OM) also affect multiplication and division? Twenty-six adults produced lines whose lengths corresponded to the correct outcomes of multiplication and division problems shown in symbolic format. We found a reliable tendency to over-estimate division outcomes, i.e., reverse OM. We suggest that anchoring on the first operand (a tendency to use this number as a reference for further quantitative reasoning) contributes to cognitive biases in mental arithmetic.
Collapse
Affiliation(s)
- Samuel Shaki
- Department of Behavioral Sciences, Ariel University Ariel, Israel
| | - Martin H Fischer
- Division of Cognitive Science, University of Potsdam Potsdam, Germany
| |
Collapse
|
24
|
Masson N, Pesenti M, Dormal V. Impact of optokinetic stimulation on mental arithmetic. PSYCHOLOGICAL RESEARCH 2016; 81:840-849. [DOI: 10.1007/s00426-016-0784-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/19/2016] [Indexed: 11/29/2022]
|
25
|
Abstract
The cognitive and neural mechanisms that enable humans to encode and manipulate numerical information have been subject to an increasing number of experimental studies over the past 25 years or so. Here, I highlight recent findings about how numerical information is neurally coded, focusing on the theoretical implications derived from the most influential theoretical framework in numerical cognition—the Triple Code Model. At the core of this model is the assumption that bilateral parietal cortex hosts an approximate number system that codes for the cardinal value of perceived numerals. I will review studies that ask whether or not the numerical coding within this system is invariant to varying input notation, format, or modality, and whether or not the observed parietal activity is number-specific over and above the parietal involvement in response-related processes. Extant computational models of numerosity (the number of objects in a set) perception are summarized and related to empirical data from human neuroimaging and monkey neurophysiology.
Collapse
Affiliation(s)
- André Knops
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Gamble on gaze: Eye movements reflect the numerical value of blackjack hands. Psychon Bull Rev 2016; 23:1974-1981. [DOI: 10.3758/s13423-016-1055-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
McCrink K, Spelke ES. Non-symbolic division in childhood. J Exp Child Psychol 2016; 142:66-82. [PMID: 26513326 PMCID: PMC5333996 DOI: 10.1016/j.jecp.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/25/2015] [Accepted: 09/17/2015] [Indexed: 01/29/2023]
Abstract
The approximate number system (ANS) underlies representations of large numbers of objects as well as the additive, subtractive, and multiplicative relationships between them. In this set of studies, 5- and 6-year-old children were shown a series of video-based events that conveyed a transformation of a large number of objects into one-half or one-quarter of the original number. Children were able to estimate correctly the outcomes to these halving and quartering problems, and they based their responses on scaling by number, not on continuous quantities or guessing strategies. Children's performance exhibited the ratio signature of the ANS. Moreover, children performed above chance on relatively early trials, suggesting that this scaling operation is easily conveyed and readily performed. The results support the existence of a flexible and substantially untrained capacity to scale numerical amounts.
Collapse
Affiliation(s)
- Koleen McCrink
- Department of Psychology, Barnard College, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
28
|
Mathieu R, Gourjon A, Couderc A, Thevenot C, Prado J. Running the number line: Rapid shifts of attention in single-digit arithmetic. Cognition 2016; 146:229-39. [DOI: 10.1016/j.cognition.2015.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/30/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022]
|
29
|
Dynamic mental number line in simple arithmetic. PSYCHOLOGICAL RESEARCH 2015; 80:410-21. [DOI: 10.1007/s00426-015-0730-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022]
|
30
|
Hartmann M, Mast FW, Fischer MH. Counting is a spatial process: evidence from eye movements. PSYCHOLOGICAL RESEARCH 2015; 80:399-409. [DOI: 10.1007/s00426-015-0722-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/28/2015] [Indexed: 12/16/2022]
|
31
|
Mental Summation of Temporal Duration within and across Senses. PLoS One 2015; 10:e0141466. [PMID: 26506613 PMCID: PMC4623520 DOI: 10.1371/journal.pone.0141466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Perceiving, memorizing, and estimating temporal durations are key cognitive functions in everyday life. In this study, a duration summation paradigm was used to examine whether summation of temporal durations introduces an underestimation or overestimation bias, and whether this bias is common to visual and auditory modalities. Two within- or across-modality stimuli were presented sequentially for variable durations. Participants were asked to reproduce the sum of the two durations (0.6-1.1 s). We found that the sum of two durations was overestimated regardless of stimulus modalities. A subsequent control experiment indicated that the overestimation bias arose from the summation process, not perceptual or memory processes. Furthermore, we observed strong positive correlations between the overestimation bias for different sensory modalities within participants. These results suggest that the sum of two durations is overestimated, and that supra-modal processes may be responsible for this overestimation bias.
Collapse
|
32
|
Winter B, Matlock T, Shaki S, Fischer MH. Mental number space in three dimensions. Neurosci Biobehav Rev 2015; 57:209-19. [DOI: 10.1016/j.neubiorev.2015.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/27/2022]
|
33
|
Masson N, Pesenti M. Interference of lateralized distractors on arithmetic problem solving: a functional role for attention shifts in mental calculation. PSYCHOLOGICAL RESEARCH 2015; 80:640-51. [DOI: 10.1007/s00426-015-0668-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
34
|
Dietrich JF, Huber S, Nuerk HC. Methodological aspects to be considered when measuring the approximate number system (ANS) - a research review. Front Psychol 2015; 6:295. [PMID: 25852612 PMCID: PMC4362052 DOI: 10.3389/fpsyg.2015.00295] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/02/2015] [Indexed: 01/29/2023] Open
Abstract
According to a dominant view, the approximate number system (ANS) is the foundation of symbolic math abilities. Due to the importance of math abilities for education and career, a lot of research focuses on the investigation of the ANS and its relationship with math performance. However, the results are inconsistent. This might be caused by studies differing greatly regarding the operationalization of the ANS (i.e., tasks, dependent variables). Moreover, many methodological aspects vary from one study to the next. In the present review, we discuss commonly used ANS tasks and dependent variables regarding their theoretical foundation and psychometric features. We argue that the inconsistent findings concerning the relationship between ANS acuity and math performance may be partially explained by differences in reliability. Furthermore, this review summarizes methodological aspects of ANS tasks having important impacts on the results, including stimulus range, visual controls, presentation duration of the stimuli and feedback. Based on this review, we give methodological recommendations on how to assess the ANS most reliably and most validly. All important methodological aspects to be considered when designing an ANS task or comparing results of different studies are summarized in two practical checklists.
Collapse
Affiliation(s)
- Julia F Dietrich
- Knowledge Media Research Center Tübingen, Germany ; Department of Psychology, Eberhard Karls University Tübingen, Germany
| | - Stefan Huber
- Knowledge Media Research Center Tübingen, Germany
| | - Hans-Christoph Nuerk
- Knowledge Media Research Center Tübingen, Germany ; Department of Psychology, Eberhard Karls University Tübingen, Germany ; LEAD Graduate School, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
35
|
Berteletti I, Booth JR. Perceiving fingers in single-digit arithmetic problems. Front Psychol 2015; 6:226. [PMID: 25852582 PMCID: PMC4360562 DOI: 10.3389/fpsyg.2015.00226] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/13/2015] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.
Collapse
Affiliation(s)
- Ilaria Berteletti
- Department of Communication Sciences and Disorders, Northwestern University , Evanston, IL, USA ; Department of Psychology, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| | - James R Booth
- Department of Communication Sciences and Disorders, Northwestern University , Evanston, IL, USA ; Department of Communication Sciences and Disorders, The University of Texas at Austin , Austin, TX, USA
| |
Collapse
|
36
|
Hartmann M, Mast FW, Fischer MH. Spatial biases during mental arithmetic: evidence from eye movements on a blank screen. Front Psychol 2015; 6:12. [PMID: 25657635 PMCID: PMC4302709 DOI: 10.3389/fpsyg.2015.00012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 11/13/2022] Open
Abstract
While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the “mental number line”), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8–3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.
Collapse
Affiliation(s)
- Matthias Hartmann
- Division of Cognitive Sciences, University of Potsdam Potsdam, Germany ; Department of Psychology, University of Bern Bern, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern Bern, Switzerland
| | - Martin H Fischer
- Division of Cognitive Sciences, University of Potsdam Potsdam, Germany
| |
Collapse
|
37
|
Addition goes where the big numbers are: evidence for a reversed operational momentum effect. Psychon Bull Rev 2014; 22:993-1000. [DOI: 10.3758/s13423-014-0786-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
How number line estimation skills relate to neural activations in single digit subtraction problems. Neuroimage 2014; 107:198-206. [PMID: 25497398 DOI: 10.1016/j.neuroimage.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022] Open
Abstract
The Number Line (NL) task requires judging the relative numerical magnitude of a number and estimating its value spatially on a continuous line. Children's skill on this task has been shown to correlate with and predict future mathematical competence. Neurofunctionally, this task has been shown to rely on brain regions involved in numerical processing. However, there is no direct evidence that performance on the NL task is related to brain areas recruited during arithmetical processing and that these areas are domain-specific to numerical processing. In this study, we test whether 8- to 14-year-old's behavioral performance on the NL task is related to fMRI activation during small and large single-digit subtraction problems. Domain-specific areas for numerical processing were independently localized through a numerosity judgment task. Results show a direct relation between NL estimation performance and the amount of the activation in key areas for arithmetical processing. Better NL estimators showed a larger problem size effect than poorer NL estimators in numerical magnitude (i.e., intraparietal sulcus) and visuospatial areas (i.e., posterior superior parietal lobules), marked by less activation for small problems. In addition, the direction of the activation with problem size within the IPS was associated with differences in accuracies for small subtraction problems. This study is the first to show that performance in the NL task, i.e. estimating the spatial position of a number on an interval, correlates with brain activity observed during single-digit subtraction problem in regions thought to be involved in numerical magnitude and spatial processes.
Collapse
|
39
|
Shaki S, Sery N, Fischer MH. 1 + 2 is more than 2 + 1: Violations of commutativity and identity axioms in mental arithmetic. JOURNAL OF COGNITIVE PSYCHOLOGY 2014. [DOI: 10.1080/20445911.2014.973414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Affiliation(s)
| | - Samuel Shaki
- Psychology Department, Ariel
University, Ariel, Israel
| |
Collapse
|
41
|
Fischer MH, Shaki S. Spatial Associations in Numerical Cognition—From Single Digits to Arithmetic. Q J Exp Psychol (Hove) 2014; 67:1461-83. [DOI: 10.1080/17470218.2014.927515] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The literature on spatial associations during number processing is dominated by the SNARC (spatial–numerical association of response codes) effect. We describe spatial biases found for single digits and pairs of numbers, first in the “original” speeded parity task and then extending the scope to encompass different tasks, a range of measures, and various populations. Then we review theoretical accounts before surveying the emerging evidence for similar spatial associations during mental arithmetic. We conclude that the mental number line hypothesis and an embodied approach are useful frameworks for further studies.
Collapse
Affiliation(s)
- Martin H. Fischer
- Division of Cognitive Sciences, University of Potsdam, Potsdam OT Golm, Germany
| | - Samuel Shaki
- Psychology Department, Ariel University, Ariel, Israel
| |
Collapse
|