1
|
Mi R, Chen L, Wang L, Wei X. Bone marrow necrosis after treatment with blinatumomab for acute lymphoblastic leukemia: A case report. Asian J Surg 2024; 47:1449-1450. [PMID: 38065729 DOI: 10.1016/j.asjsur.2023.11.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024] Open
Affiliation(s)
- Ruihua Mi
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Lin Chen
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Lin Wang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Xudong Wei
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Kramer F, Mullally A. Antibody targeting of mutant calreticulin in myeloproliferative neoplasms. J Cell Mol Med 2024; 28:e17896. [PMID: 37551061 PMCID: PMC10902560 DOI: 10.1111/jcmm.17896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Mutations in calreticulin are one of the key disease-initiating mutations in myeloproliferative neoplasms (MPN). In MPN, mutant calreticulin translates with a novel C-terminus that leads to aberrant binding to the extracellular domain of the thrombopoietin receptor, MPL. This cell surface neoantigen has become an attractive target for immunological intervention. Here, we summarize recent advances in the development of mutant calreticulin targeting antibodies as a novel therapeutic approach in MPN.
Collapse
Affiliation(s)
- Frederike Kramer
- Division of Hematology, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Broad InstituteCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Xie J, Liu S, Zhou M, Wang Y, He H, Xiao P, Hu S, Lu J. Short-course blinatumomab for refractory/relapse precursor B acute lymphoblastic leukemia in children. Front Pediatr 2023; 11:1187607. [PMID: 37601130 PMCID: PMC10437063 DOI: 10.3389/fped.2023.1187607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To evaluate the clinical efficacy and safety of a short course of blinatumomab in children with refractory or relapsed precursor B-cell acute lymphoblastic leukemia (R/R-BCP-ALL). Methods The clinical data of 33 R/R BCP-ALL children aged 0-18 years who underwent a short course of blinatumomab (14 days) between August 2021 and November 2022 were retrospectively collected and analyzed. Results Among 33 patients with BCP-ALL, 26 achieved complete remission (CR), with a total remission rate of 78.8% (26/33). The duration of remission was approximately 14 days. Of the 7 children without CR, 5 were still in remission at 28 days. In 11 patients with refractory disease and 22 with recurrence, the remission rates were 90.9% (10/11) and 72.7% (16/22), respectively. The overall survival (OS) rates of the 26 patients with CR and seven patients without CR were 96.1% and 57.1% (p = 0.002), respectively, and the disease-free survival (DFS) rates were 96.1% and 42.9% (p < 0.001), respectively. Among the 26 patients with CR, 15 underwent bridging hematopoietic stem cell transplantation (HSCT) and 11 did not receive HSCT; with OS rates of 93.3% and 100% (p = 0.40) and DFS rates of 93.3% and 100% (p = 0.400), respectively. The OS for all patients was 87.9% (29/33) and the DFS was 84.8% (28/33). There were 18 cases (54.5%) of cytokine release syndrome (CRS), 2 cases (6.1%) of severe CRS (all grade 3), 1 case (3.0%) of immune effector cell-associated neurotoxicity syndrome (ICANS), 0 cases (0%) of ICANS ≥ grade 3, and no deaths caused by treatment. Conclusions Short-term follow-up revealed a high R/R BCP-ALL remission rate in children treated with a short course of blinatumomab. The toxicity was low and controllable. No significant short-term survival benefits were observed after bridging HSCT with blinatumomab. In developing countries, a short course of blinatumomab can achieve satisfactory outcomes, while reducing household costs and saving medical resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoyan Hu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Collignon C, Domenech C, Ducassou S, Pluchart C, Bruno B, Pasquet M, Simon P, Petit A, Rialland-Battisti F, Brethon B. Temporary contraindication to chemotherapy due to toxicity: blinatumomab's effectiveness in paediatric patients with B‐acute lymphoblastic leukaemia. Br J Haematol 2023; 201:e42-e45. [PMID: 36971071 DOI: 10.1111/bjh.18759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Affiliation(s)
- C Collignon
- Pediatric Intensive Care Unit, APHP University Hospital Necker-Enfants Malades, Paris, France
| | - C Domenech
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon, Université Lyon 1, Lyon, France
| | - S Ducassou
- Pediatrics Oncology Department, Children's Hospital of Bordeaux University Hospital, Bordeaux, France
| | - C Pluchart
- Pediatric Hematology-Oncology Unit, CHU Reims, Reims, France
| | - B Bruno
- Pediatric Hematology Unit, CHU Lille, Lille, France
| | - M Pasquet
- Pediatric Hematology-Oncology Unit, CHU Toulouse, Toulouse, France
| | - P Simon
- Pediatric Hematology-Oncology Unit, CHU Besançon, Besançon, France
| | - A Petit
- Sorbonne Université, Hôpital Armand Trousseau, AP-HP, Paris, France
| | | | - B Brethon
- Hematology and Immunology Pediatric Unit, Robert Debré Hospital, Paris, France
| |
Collapse
|
5
|
Liu D, Bao L, Zhu H, Yue Y, Tian J, Gao X, Yin J. Microenvironment-responsive anti-PD-L1 × CD3 bispecific T-cell engager for solid tumor immunotherapy. J Control Release 2023; 354:606-614. [PMID: 36669532 DOI: 10.1016/j.jconrel.2023.01.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Bispecific T-cell Engager (BiTE) antibodies can redirect T-cells to tumor cells, and turn on the targeted lysis of tumor cells. However, BiTE has been challenging in solid tumors due to short plasma half-life, "off-target" effect, and immunosuppression via PD-1/PD-L1 axis. This study designed a safe, long-acting, and highly effective Protease-Activated PSTAGylated BiTE, named PAPB, which includes a shielding polypeptide domain (PSTAG), a protease-activated linker, and a BiTE core. The BiTE core consists of two scFvs targeting PD-L1 and CD3. BiTE core bound PD-L1 and CD3 in a dose-dependent manner, and PAPB can release BiTE core in response to MMP2 in the tumor microenvironment to exert antitumor activity. The plasma half-life of PAPB in mice was significantly prolonged from 2.46 h to 6.34 h of the BiTE core. In mice bearing melanoma (A375) xenografts, PAPB significantly increased infiltration of T lymphocytes in tumor tissue, and inhibited tumor proliferation without activating T-cells in the peripheral blood. Overall, the engineering protein PAPB could be a promising drug candidate for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210029, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Yue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Ghosh K, Ghosh K. Monoclonal antibodies used for the management of haematological disorders. Expert Rev Hematol 2022; 15:443-455. [PMID: 35504000 DOI: 10.1080/17474086.2022.2073213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Monoclonal antibodies Ab (MoAb) are increasingly becoming part of therapeutic armamentarium for haematologists and haemato-oncologists. This review brings together commonly used antibodies in one place for brevity and novel understanding. AREAS COVERED Pubmed and Scopus databases were explored focusing on MoAb in clinical haematological practice. Emphasis was given to current review articles. The data base was searched from 1997 till present. 24 different antibodies, most of which are in use were discussed. Antibodies are used for diverse conditions i.e. malignant and benign haematological conditions, treatment at various phases of stem cell transplantation. These antibodies were used both alone or in combination with various chemotherapy, targeted small molecules or as immunoconjugates. Some of the side effect profiles of these antibodies were common and some were unique. Unusual infections or organ dysfunctions were noted. Improved function of antibodies by protein engineering is also advancing rapidly. Dosage, frequency and route of administration depended on the convenience and condition for which the antibody is used. EXPERT OPINION : MoAbs are increasingly used in haematology practice either alone or in combination with other types of therapy for improved out come in various haematological conditions.
Collapse
Affiliation(s)
- Kanjaksha Ghosh
- National Institute of Immunohaematology. 13th fl. KEM Hospital MS Building, Parel, Mumbai 400012. India
| | - Kinjalka Ghosh
- Department of Clinical Biochemistry , Tata Memorial Hospital. & Homi Bhaba National Institute. Parel, Mumbai 400012.India
| |
Collapse
|
7
|
Pericardial Relapse of Acute Lymphoblastic Leukemia (ALL). Case Rep Oncol Med 2021; 2021:9953230. [PMID: 34868692 PMCID: PMC8639275 DOI: 10.1155/2021/9953230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a neoplasm of the B cell or T cell. Diagnosis is made by peripheral blood smear and bone marrow biopsy. Those with relapse/measurable residual disease (MRD) present with fever, weakness, fatigue, and easy bruising due to bone marrow infiltration (Kantarjian et al., 2017). A 59-year-old male with history of relapsed acute lymphoblastic leukemia and allogeneic stem cell transplant presented to the Emergency Department (ED) multiple times with shortness of breath. 2D Echo revealed recurrent pericardial effusion. His MRD was discovered in the pericardium. He underwent the creation of a pericardial window with cytology and culture which confirmed B cell lymphoblastic leukemia/lymphoma, consistent with relapsed disease. We present a case of a patient with B-ALL and MRD who presented with symptoms of shortness of breath. His MRD was discovered not in the bone marrow, but in the pericardium.
Collapse
|
8
|
Woodchuck Hepatitis Virus Post-Transcriptional Regulation Element (WPRE) Promotes Anti-CD19 BiTE Expression in Expi293 Cells. IRANIAN BIOMEDICAL JOURNAL 2021; 25:275-83. [PMID: 34217158 PMCID: PMC8334396 DOI: 10.52547/ibj.25.4.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Bispecific antibodies represent an important class of mAbs, with great therapeutic potentials due to their ability to target simultaneously two distinct epitopes. The generation of functional bispecific antibodies with the highest possible yields is particularly critical for the production of these compounds on industrial scales. Anti- CD3 × CD19 bsAb is a bispecific T-cell engager (BiTE) currently used for treating ALL. Herein, we have tried to optimize the expression level of this antibody in mammalian hosts. Methods: WPRE sequence was incorporated at the 3’ end of the expression cassette. This modification resulted in a notable about two-fold increase in the expression of the bsAb in the Expi293 cell line. Results & Conclusion: Follow-up flow cytometry analysis demonstrated the binding properties of the produced antibody at acceptable levels, and in vitro bioactivity assays showed that this product is potent enough for targeting and destroying CD19-positive cells. Our findings show that WPRE enhances the expression of this type of bispecific mAbs in HEK-293 family cell lines. This approach can be used in biopharma industry for the mass production of anti-CD3 × CD19 bispecific antibody.
Collapse
|
9
|
Halford Z, Coalter C, Gresham V, Brown T. A Systematic Review of Blinatumomab in the Treatment of Acute Lymphoblastic Leukemia: Engaging an Old Problem With New Solutions. Ann Pharmacother 2021; 55:1236-1253. [PMID: 33435716 DOI: 10.1177/1060028020988411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the current literature for blinatumomab in the treatment of adult and pediatric B-cell acute lymphoblastic leukemia (ALL). DATA SOURCES We conducted a PubMed (inception to December 11, 2020) and ClinicalTrials.gov systematic literature search using the following terms: blinatumomab, Blincyto, lymphoblastic leukemia, and bispecific T-cell engager. STUDY SELECTION AND DATA EXTRACTION All relevant published articles, package inserts, and meeting abstracts evaluating the use of blinatumomab in ALL were considered for inclusion. DATA SYNTHESIS Blinatumomab, a first-in-class bispecific T-cell engager monoclonal antibody, facilitates cytotoxic T-cell activation and subsequent eradication of CD19-positive B cells. The confirmatory phase III TOWER trial demonstrated superior overall survival (OS) with blinatumomab compared with standard chemotherapy (7.7 months vs 4.0 months) in relapsed and refractory (R/R) B-cell ALL. In the phase II BLAST trial, blinatumomab achieved a complete measurable residual disease (MRD) response in 78% of evaluable patients, with a median OS of 36.5 months. Potentially life-threatening cytokine release syndrome and neurotoxicity occurred in approximately 15% and 65% of patients, respectively. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Following initial Food and Drug Administration approval in 2014, blinatumomab gained expanded approval in pediatric patients and in Philadelphia chromosome-positive R/R ALL. In 2018, blinatumomab became the first and only drug approved for the treatment of persistent MRD in any hematologic malignancy. Emerging data demonstrate promising efficacy with blinatumomab in specific ALL settings, including frontline therapy, as a bridge to transplantation, and in "chemotherapy-free" combination regimens. CONCLUSIONS Blinatumomab provides a paradigm-shifting treatment option; however, many questions surrounding optimal patient selection, sequencing, and cost-effectiveness remain.
Collapse
Affiliation(s)
| | - Carli Coalter
- Union University College of Pharmacy, Jackson, TN, USA
| | | | - Tabitha Brown
- Erlanger Health System/Children's Hospital at Erlanger, Chattanooga, TN, USA
| |
Collapse
|
10
|
Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 2020; 80:100870. [PMID: 32800530 DOI: 10.1016/j.mam.2020.100870] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Daniela Pende
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
11
|
Ribera JM, Genescà E, Ribera J. Bispecific T-cell engaging antibodies in B-cell precursor acute lymphoblastic leukemias: focus on blinatumomab. Ther Adv Hematol 2020; 11:2040620720919632. [PMID: 32523659 PMCID: PMC7236391 DOI: 10.1177/2040620720919632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 11/28/2022] Open
Abstract
Bispecific T-cell engaging antibodies are constructs engineered to bind to two different antigens, one to a tumor-specific target and the other to CD3-positive T cells or natural killer (NK) cells. Blinatumomab engages CD19 and CD3, performing effective serial lysis. The clinical development program in acute lymphoblastic leukemia (ALL) includes clinical trials in relapsed or refractory (R/R) patients and in B-cell precursor (BCP) ALL patients with measurable residual disease. Several trials are currently being conducted in de novo BCP-ALL, either in induction, consolidation, or before or after hematopoietic stem cell transplant. Combination with other targeted therapies or with other immunotherapeutic approaches are also underway. Several strategies are aimed to optimize the use of blinatumomab either by overcoming the mechanisms of resistance (e.g. inhibition of PD-1/PD-L1) or by improvements in the route of application, among others.
Collapse
Affiliation(s)
- Jose-Maria Ribera
- Clinical Hematology Department, ICO-Hospital Germans Trias I Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, C/ Canyet, s/n, Badalona, 08916, Spain
| | - Eulalia Genescà
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jordi Ribera
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
12
|
Yarali N, Isik M, Arman-Bilir O, Guzelkucuk Z, Oguz-Erdogan AS. Bone Marrow Necrosis in a Patient Following Blinatumomab Therapy. J Pediatr Hematol Oncol 2020; 42:e167-e169. [PMID: 31219910 DOI: 10.1097/mph.0000000000001532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bone marrow necrosis (BMN) is an extremely rare condition characterized by necrosis of the myeloid tissue and medullary stroma leaving an amorphous eosinophilic background and ill-defined necrotic cells in the hematopoietic bone marrow. Several conditions are associated with BMN, including sickle cell disease, metastatic carcinoma, and hematologic malignancies. It is also associated with the use of antineoplastic drugs, such as fludarabine, interferon alpha, and imatinib. Blinatumomab is a CD19/CD3 bispecific T-cell engager antibody which redirects autologous CD3-positive T cells to CD19-positive lymphoblasts creating a cytolytic synapse leading to blastic cells. Cytokine release syndrome, cerebral nervous system toxicities, and febrile neutropenia are the most frequent adverse effects of blinatumomab. Here, we report an adolescent boy with relapse/resistant acute lymphoblastic leukemia developing BMN following blinatumomab therapy. To our knowledge, this is the first case report on BMN following blinatumomab treatment.
Collapse
Affiliation(s)
- Nese Yarali
- Departments of Pediatric Hematology/Oncology
| | - Melek Isik
- Departments of Pediatric Hematology/Oncology
| | | | | | - Ayse Selcen Oguz-Erdogan
- Pathology, University of Health Sciences, Ankara Child Health and Diseases Hematology Oncology Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Soekojo CY, Ooi M, de Mel S, Chng WJ. Immunotherapy in Multiple Myeloma. Cells 2020; 9:E601. [PMID: 32138182 PMCID: PMC7140529 DOI: 10.3390/cells9030601] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is a complex disease and immune dysfunction has been known to play an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts in drug development have been focused on immunotherapies to modify the MM disease process. Here, we summarize the emerging immunotherapies in the MM treatment landscape.
Collapse
Affiliation(s)
| | | | | | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore; (C.Y.S.); (M.O.); (S.d.M.)
| |
Collapse
|
14
|
Deak D, Pop C, Zimta AA, Jurj A, Ghiaur A, Pasca S, Teodorescu P, Dascalescu A, Antohe I, Ionescu B, Constantinescu C, Onaciu A, Munteanu R, Berindan-Neagoe I, Petrushev B, Turcas C, Iluta S, Selicean C, Zdrenghea M, Tanase A, Danaila C, Colita A, Colita A, Dima D, Coriu D, Einsele H, Tomuleasa C. Let's Talk About BiTEs and Other Drugs in the Real-Life Setting for B-Cell Acute Lymphoblastic Leukemia. Front Immunol 2020; 10:2856. [PMID: 31921126 PMCID: PMC6934055 DOI: 10.3389/fimmu.2019.02856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Therapy for acute lymphoblastic leukemia (ALL) are currently initially efficient, but even if a high percentage of patients have an initial complete remission (CR), most of them relapse. Recent data shows that immunotherapy with either bispecific T-cell engagers (BiTEs) of chimeric antigen receptor (CAR) T cells can eliminate residual chemotherapy-resistant B-ALL cells. Objective: The objective of the manuscript is to present improvements in the clinical outcome for chemotherapy-resistant ALL in the real-life setting, by describing Romania's experience with bispecific antibodies for B-cell ALL. Methods: We present the role of novel therapies for relapsed B-cell ALL, including the drugs under investigation in phase I-III clinical trials, as a potential bridge to transplant. Blinatumomab is presented in a critical review, presenting both the advantages of this drug, as well as its limitations. Results: Bispecific antibodies are discussed, describing the clinical trials that resulted in its approval by the FDA and EMA. The real-life setting for relapsed B-cell ALL is described and we present the patients treated with blinatumomab in Romania. Conclusion: In the current manuscript, we present blinatumomab as a therapeutic alternative in the bridge-to-transplant setting for refractory or relapsed ALL, to gain a better understanding of the available therapies and evidence-based data for these patients in 2019.
Collapse
Affiliation(s)
- Dalma Deak
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Ghiaur
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Angela Dascalescu
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Ion Antohe
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Bogdan Ionescu
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Onaciu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Munteanu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Selicean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalin Danaila
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Anca Colita
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Colita
- Department of Hematology, Coltea Hospital, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Coriu
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wurzburg, Würzburg, Germany
| | - Ciprian Tomuleasa
- Department of Hematology/Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Majeed A, Harris Z, Brucks E, Hinchman A, Farooqui AA, Tariq MJ, Tamizhmani K, Riaz IB, McBride A, Latif A, Kapoor V, Iftikhar R, Mossad S, Anwer F. Revisiting Role of Vaccinations in Donors, Transplant Recipients, Immunocompromised Hosts, Travelers, and Household Contacts of Stem Cell Transplant Recipients. Biol Blood Marrow Transplant 2019; 26:e38-e50. [PMID: 31682981 DOI: 10.1016/j.bbmt.2019.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Vaccination is an effective strategy to prevent infections in immunocompromised hematopoietic stem cell transplant recipients. Pretransplant vaccination of influenza, pneumococcus, Haemophilus influenza type b, diphtheria, tetanus, and hepatitis B, both in donors and transplant recipients, produces high antibody titers in patients compared with recipient vaccination only. Because transplant recipients are immunocompromised, live vaccines should be avoided with few exceptions. Transplant recipients should get inactive vaccinations when possible to prevent infection. This includes vaccination against influenza, pneumococcus, H. influenza type b, diphtheria, tetanus, pertussis, meningococcus, measles, mumps, rubella, polio, hepatitis A, human papillomavirus, and hepatitis B. Close contacts of transplant recipients can safely get vaccinations (inactive and few live vaccines) as per their need and schedule. Transplant recipients who wish to travel may need to get vaccinated against endemic diseases that are prevalent in such areas. There is paucity of data on the role of vaccinations for patients receiving novel immunotherapy such as bispecific antibodies and chimeric antigen receptor T cells despite data on prolonged B cell depletion and higher risk of opportunistic infections.
Collapse
Affiliation(s)
- Aneela Majeed
- Department of Infectious Disease, Cleveland Clinic, Cleveland, Ohio
| | - Zoey Harris
- College of Medicine, Department of Medicine, University of Arizona, Tucson Arizona
| | - Eric Brucks
- College of Medicine, Department of Medicine, University of Arizona, Tucson Arizona
| | - Alyssa Hinchman
- Department of Pharmacy, University of Arizona, Tucson, Arizona
| | - Arafat Ali Farooqui
- Department of Internal Medicine, King Edward Medical University, Lahore, Pakistan
| | - Muhammad Junaid Tariq
- Department of Internal Medicine, John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois
| | - Kavin Tamizhmani
- College of Medicine, Department of Medicine, University of Arizona, Tucson Arizona
| | - Irbaz Bin Riaz
- Department of Hematology and Oncology, Mayo Clinic, Rochester, Minnesota
| | - Ali McBride
- Department of Pharmacy, University of Arizona Cancer Center, Tucson, Arizona
| | - Azka Latif
- Department of Internal Medicine, Creighton University, Omaha, Nebraska
| | - Vikas Kapoor
- Department of Internal Medicine, Creighton University, Omaha, Nebraska
| | - Raheel Iftikhar
- Department of Bone Marrow Transplantation, Armed Forces Bone Marrow Transplant Centre, National Institute of Blood and Marrow Transplant, Rawalpindi, Pakistan
| | - Sherif Mossad
- Department of Infectious Disease, Cleveland Clinic, Cleveland, Ohio
| | - Faiz Anwer
- Department of Hematology, Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
16
|
Simioni C, Bergamini F, Ferioli M, Rimondi E, Caruso L, Neri LM. New biomarkers and therapeutic strategies in acute lymphoblastic leukemias: Recent advances. Hematol Oncol 2019; 38:22-33. [PMID: 31487068 DOI: 10.1002/hon.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) represents a heterogeneous group of hematologic malignancies, and it is normally characterized by an aberrant proliferation of immature lymphoid cells. Moreover, dysregulation of multiple signaling pathways that normally regulate cellular transcription, growth, translation, and proliferation is frequently encountered in this malignancy. ALL is the most frequent tumor in childhood, and adult ALL patients still correlate with poor survival. This review focuses on modern therapies in ALL that move beyond standard chemotherapy, with a particular emphasis on immunotherapeutic approaches as new treatment strategies. Bi-specific T-cell Engagers (BiTE) antibodies, the chimeric antigen receptor (CAR)-T cells, or CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats [CRISPR]-associated nuclease 9) represent other new innovative approaches for this disease. Target and tailored therapy could make the difference in previously untreatable cases, i.e., precision and personalized medicine. Clinical trials will help to select the most efficient novel therapies in ALL management and to integrate them with existing treatments to achieve durable cures.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Bergamini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Sivori S, Meazza R, Quintarelli C, Carlomagno S, Della Chiesa M, Falco M, Moretta L, Locatelli F, Pende D. NK Cell-Based Immunotherapy for Hematological Malignancies. J Clin Med 2019; 8:E1702. [PMID: 31623224 PMCID: PMC6832127 DOI: 10.3390/jcm8101702] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an "off-the-shelf" NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
- Centre of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Raffaella Meazza
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Concetta Quintarelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy; (C.Q.); (F.L.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
- Centre of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Michela Falco
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy; (C.Q.); (F.L.)
- Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, 00185 Rome, Italy
| | - Daniela Pende
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
18
|
Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, Schulenburg A, Rabitsch W, Sperr WR, Wolf D. Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML. Int J Mol Sci 2019; 20:E4233. [PMID: 31470642 PMCID: PMC6747233 DOI: 10.3390/ijms20174233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
The concept of leukemic stem cells (LSC) has been developed with the idea to explain the clonal hierarchies and architectures in leukemia, and the more or less curative anti-neoplastic effects of various targeted drugs. It is now widely accepted that curative therapies must have the potential to eliminate or completely suppress LSC, as only these cells can restore and propagate the malignancy for unlimited time periods. Since LSC represent a minor cell fraction in the leukemic clone, little is known about their properties and target expression profiles. Over the past few years, several cell-specific immunotherapy concepts have been developed, including new generations of cell-targeting antibodies, antibody-toxin conjugates, bispecific antibodies, and CAR-T cell-based strategies. Whereas such concepts have been translated and may improve outcomes of therapy in certain lymphoid neoplasms and a few other malignancies, only little is known about immunological targets that are clinically relevant and can be employed to establish such therapies in myeloid neoplasms. In the current article, we provide an overview of the immunologically relevant molecular targets expressed on LSC in patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). In addition, we discuss the current status of antibody-based therapies in these malignancies, their mode of action, and successful examples from the field.
Collapse
MESH Headings
- Acute Disease
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- Humans
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Immunotherapy/trends
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/therapy
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Herrmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Axel Schulenburg
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, 1090 Innsbruck, Austria
- Medical Clinic 3, Oncology, Hematology, Immunoncology & Rheumatology, University Clinic Bonn (UKB), 53127 Bonn, Germany
| |
Collapse
|
19
|
Approach to the Adult Acute Lymphoblastic Leukemia Patient. J Clin Med 2019; 8:jcm8081175. [PMID: 31390838 PMCID: PMC6722778 DOI: 10.3390/jcm8081175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
During recent decades, understanding of the molecular mechanisms of acute lymphoblastic leukemia (ALL) has improved considerably, resulting in better risk stratification of patients and increased survival rates. Age, white blood cell count (WBC), and specific genetic abnormalities are the most important factors that define risk groups for ALL. State-of-the-art diagnosis of ALL requires cytological and cytogenetical analyses, as well as flow cytometry and high-throughput sequencing assays. An important aspect in the diagnostic characterization of patients with ALL is the identification of the Philadelphia (Ph) chromosome, which warrants the addition of tyrosine kinase inhibitors (TKI) to the chemotherapy backbone. Data that support the benefit of hematopoietic stem cell transplantation (HSCT) in high risk patient subsets or in late relapse patients are still questioned and have yet to be determined conclusive. This article presents the newly published data in ALL workup and treatment, putting it into perspective for the attending physician in hematology and oncology.
Collapse
|
20
|
Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, Salek-Ardakani S, Kraynov E. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer 2019; 7:105. [PMID: 30992085 PMCID: PMC6466770 DOI: 10.1186/s40425-019-0586-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing use of multiple immunomodulatory (IMD) agents for cancer therapies (e.g. antibodies targeting immune checkpoints, bispecific antibodies, and chimeric antigen receptor [CAR]-T cells), is raising questions on their potential immunogenicity and effects on treatment. In this review, we outline the mechanisms of action (MOA) of approved, antibody-based IMD agents, potentially related to their immunogenicity, and discuss the reported incidence of anti-drug antibodies (ADA) as well as their clinical relevance in patients with cancer. In addition, we discuss the impact of the administration route and potential strategies to reduce the incidence of ADA and manage treated patients. Analysis of published reports indicated that the risk of immunogenicity did not appear to correlate with the MOA of anti-programmed death 1 (PD-1)/PD-ligand 1 monoclonal antibodies nor to substantially affect treatment with most of these agents in the majority of patients evaluated to date. Treatment with B-cell depleting agents appears associated with a low risk of immunogenicity. No significant difference in ADA incidence was found between the intravenous and subcutaneous administration routes for a panel of non-oncology IMD antibodies. Additionally, while the data suggest a higher likelihood of immunogenicity for antibodies with T-cell or antigen-presenting cell (APC) targets versus B-cell targets, it is possible to have targets expressed on APCs or T cells and still have a low incidence of immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Ira A Jacobs
- Pfizer, 219 East 42nd Street, New York, NY, 10017-5755, USA.
| | | | | | | |
Collapse
|
21
|
Wiernik PH. Adult hypodiploid B-acute lymphoblastic leukaemia and stem cell transplantation. Br J Haematol 2019; 186:205-206. [PMID: 30924127 DOI: 10.1111/bjh.15882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
23
|
Herrmann AC, Im JS, Pareek S, Ruiz-Vasquez W, Lu S, Sergeeva A, Mehrens J, He H, Alatrash G, Sukhumalchandra P, St John L, Clise-Dwyer K, Zha D, Molldrem JJ. A Novel T-Cell Engaging Bi-specific Antibody Targeting the Leukemia Antigen PR1/HLA-A2. Front Immunol 2019; 9:3153. [PMID: 30713535 PMCID: PMC6345694 DOI: 10.3389/fimmu.2018.03153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Despite substantial advances in the treatment of acute myeloid leukemia (AML), only 30% of patients survive more than 5 years. Therefore, new therapeutics are much needed. Here, we present a novel therapeutic strategy targeting PR1, an HLA-A2 restricted myeloid leukemia antigen. Previously, we have developed and characterized a novel T-cell receptor-like monoclonal antibody (8F4) that targets PR1/HLA-A2 and eliminates AML xenografts by antibody-dependent cellular cytotoxicity (ADCC). To improve the potency of 8F4, we adopted a strategy to link T-cell cytotoxicity with a bi-specific T-cell-engaging antibody that binds PR1/HLA-A2 on leukemia and CD3 on neighboring T-cells. The 8F4 bi-specific antibody maintained high affinity and specific binding to PR1/HLA-A2 comparable to parent 8F4 antibody, shown by flow cytometry and Bio-Layer Interferometry. In addition, 8F4 bi-specific antibody activated donor T-cells in the presence of HLA-A2+ primary AML blasts and cell lines in a dose dependent manner. Importantly, activated T-cells lysed HLA-A2+ primary AML blasts and cell lines after addition of 8F4 bi-specific antibody. In conclusion, our studies demonstrate the therapeutic potential of a novel bi-specific antibody targeting the PR1/HLA-A2 leukemia-associated antigen, justifying further clinical development of this strategy.
Collapse
Affiliation(s)
- Amanda C Herrmann
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jin S Im
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sumedha Pareek
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wilfredo Ruiz-Vasquez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sijie Lu
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anna Sergeeva
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer Mehrens
- Oncology Research for Biologics and Immunotherapy Translation Platform, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong He
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa St John
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dongxing Zha
- Oncology Research for Biologics and Immunotherapy Translation Platform, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
24
|
Feasibility of the Combination of Venetoclax and Asparaginase-based Chemotherapy for Adult Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:e441-e444. [DOI: 10.1016/j.clml.2018.07.289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 01/30/2023]
|