1
|
Tian H, Ge Y, Yu J, Chen X, Wang H, Cai X, Shan Z, Zuo L, Liu Y. CPT1A mediates succinylation of LDHA at K318 site promoteing metabolic reprogramming in NK/T-cell lymphoma nasal type. Cell Biol Toxicol 2025; 41:42. [PMID: 39934546 DOI: 10.1007/s10565-025-09994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Carnitine palmitoyltransferase 1A (CPT1A), a succinylating enzyme, is highly expressed in various malignant tumors and promotes tumor progression. Succinylation is a posttranslational modification that has been reported in various diseases, but its role in NK/T-Cell lymphoma nasal type (ENKTL-NT) remains underexplored. In this study, bioinformatics analysis showed that glycolytic is a major metabolic pathway in ENKTL-NT as the expression of many glycolytic related kinases are increased. CPT1A probably mediates glycolytic process, as indicated by GO-enrichment analysis. Studies showed that CPT1A was upregulated in ENKTL-NT tissues, and that high CPT1A expression was associated with poor prognosis of ENKTL-NT. CPT1A promoted the proliferation, colony formation, invasion and glycolytic process of ENKTL-NT cells and suppresses apoptosis. Mechanistically, CPT1A promotes succinylation of LDHA at lysine 318 (K318), which increase the protein stability and the final protein level of LDHA. Both knockdown and mutation (K318R) of LDHA abolished the cancer-promoting effects of CPT1A in ENKTL-NT. In all, this study reveals the mechanism underlying the cancer-promoting effects of CPT1A via inducing LDHA succinylation and metabolic reprogramming in ENKTL-NT. These findings might provide potential targets for the diagnosis or therapy of ENKTL-NT.
Collapse
Affiliation(s)
- Hao Tian
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yi Ge
- Department of Stomatology, Hengyang Central Hospital, Yanfeng District, No.12, Yancheng Road, Hengyang, 421001, Hunan, China
| | - Jianjun Yu
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xing Chen
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Honghan Wang
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xu Cai
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zhenfeng Shan
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Liang Zuo
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yan Liu
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
2
|
Wu C, Shi L, Shi K, Wang Z, Zhang Y. A Case Report of Extranodal NK/T-Cell Lymphoma Misdiagnosed as Meibomitis. Ocul Immunol Inflamm 2024; 32:1124-1127. [PMID: 37186811 DOI: 10.1080/09273948.2023.2201326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Extranodal natural killer/T-cell lymphoma (ENKTL) is a rare type of non-Hodgkin's lymphoma. This report presents a patient with the right lower eyelid ENKTL misdiagnosed as meibomitis repeatedly. CASE PRESENTATION A 48-year-old woman developed recurrent redness and swelling in right eyelid for 2 years. Three eyelid mass removal operations were performed in local hospitals, and the pathological examination suggested meibomitis. Physical examination showed an induration in the lateral lower eyelid of the right eye, local defect of the eyelid margin, mild entropion, redness and swelling of the surrounding tissues, and temporal bulbar conjunctiva hyperemia. The eyelid lesion was resected and ENKTL was diagnosed by specific immunohistochemical staining and in situ hybridization. The lymphoma resolved with chemotherapy and radiotherapy. The patient was still alive forty-one months after the last operation. CONCLUSION Our report demonstrates that recurrent eyelid redness and swelling might be a malignant tumor, and clinicians should be vigilant.
Collapse
Affiliation(s)
- Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lu Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ke Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhiqiang Wang
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yulan Zhang
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Chang YC, Tsai HJ, Huang TY, Su NW, Su YW, Chang YF, Chen CGS, Lin J, Chang MC, Chen SJ, Chen HC, Lim KH, Chang KC, Kuo SH. Analysis of mutation profiles in extranodal NK/T-cell lymphoma: clinical and prognostic correlations. Ann Hematol 2024; 103:2917-2930. [PMID: 38671297 DOI: 10.1007/s00277-024-05698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/03/2024] [Indexed: 04/28/2024]
Abstract
The molecular pathogenesis of extranodal NK/T-cell lymphoma (NKTCL) remains obscured despite the next-generation sequencing (NGS) studies explored on ever larger cohorts in the last decade. We addressed the highly variable mutation frequencies reported among previous studies with comprehensive amplicon coverage and enhanced sequencing depth to achieve higher genomic resolution for novel genetic discovery and comparative mutational profiling of the oncogenesis of NKTCL. Targeted exome sequencing was conducted to interrogate 415 cancer-related genes in a cohort of 36 patients with NKTCL, and a total of 548 single nucleotide variants (SNVs) and 600 Copy number variances (CNVs) were identified. Recurrent amplification of the MCL1 (67%) and PIM1 (56%) genes was detected in a dominant majority of patients in our cohort. Functional mapping of genetic aberrations revealed that an enrichment of mutations in the JAK-STAT signaling pathway, including the cytokine receptor LIFR (copy number loss) upstream of JAK3, STAT3 (activating SNVs), and downstream effectors of MYC, PIM1 and MCL1 (copy number gains). RNA in situ hybridization showed the significant consistence of MCL1 RNA level and copy number of MCL1 gene. We further correlated molecular and clinical parameters with overall survival (OS) of these patients. When correlations were analyzed by univariate followed by multivariate modelling, only copy number loss of LIFR gene and stage (III-IV) were independent prognostic factors of reduced OS. Our findings identified that novel loss of LIFR gene significantly correlated with the adverse clinical outcome of NKTCL patients and provided therapeutic opportunities for this disease through manipulating LIFR.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - To-Yu Huang
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Nai-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ying-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Johnson Lin
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
| | - Ming-Chih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | | | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| | - Sung-Hsin Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Geng H, Li J, Zhang W. Comparison of 18F-FDG PET/CT and conventional methods in diagnosing extranodal natural killer/T-cell lymphoma. Heliyon 2024; 10:e23922. [PMID: 38226231 PMCID: PMC10788511 DOI: 10.1016/j.heliyon.2023.e23922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Background The utility of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in natural killer (NK)/T-cell lymphoma patients is yet to be established. The aim of this study was to investigate the role of PET/CT scanning in detecting NK/T-cell lymphoma. Methods We analyzed the PET/CT imaging characteristics of 38 patients with a primary diagnosis of NK/T-cell lymphoma and also compared the ability of PET/CT to detect tumor lesions with conventional methods (CMs) (physical examination, computed tomography (CT) with intravenous contrast, magnetic resonance imaging (MRI), biopsies from primary sites, and bone marrow examinations)and their impact on staging and treatment options. Biopsy and clinical follow-up (including imaging) are the gold standard for diagnosis. Results We analyzed PET/CT images of NK/T-cell lymphomas. We found that most of the primary lesions were located in the nasal cavity, with the sinuses and the posterior pharyngeal wall being the most common sites of adjacent invasion. The majority of cases involved cervical lymph nodes, and the distribution of affected lymph nodes between the cervical and extra-cervical regions was random. There was no discernible pattern to the locations of affected tissues and organs across the body. In total, 219 lesions (including 81 nodal lesions and 138 extranodal lesions) tested positive for malignancy. The number of positive lymph node lesions detected by PET/CT and CMs was 79 (97.5 %) and 62 (76.5 %), respectively (P = 0.004). There were 53 (96.4 %) and 46 (83.6 %) cervical lymph nodes detected (P = 0.008), 26 (100 %) and 16 (61.5 %) other lymph nodes detected (P = 0.041)), respectively. The number of positive extranodal lesions detected by PET/CT and CMs was 137 (99.3 %) and 98 (71.0 %), respectively (P = 0.01), and there were no discernible differences in the upper respiratory tract. PET/CT outperformed CMs in the detection of malignant lesions by a significant margin, detecting 79 (98.8 %) extranodal lesions compared to 45 (56.3 %) by CMs (P = 0.034). PET/CT results changed the initial staging in 15.8 % of cases and the treatment plan in 10.5 % of patients. Conclusion Our findings indicate that 18F-FDG PET/CT scanning is crucial in identifying tumor lesions, determining staging, and devising treatment strategies for individuals diagnosed with NK/T-cell lymphoma.
Collapse
Affiliation(s)
- Huixia Geng
- .Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinhao Li
- .Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wanchun Zhang
- .Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Rivera-Francia VM, Failoc-Rojas VE, Villacorta-Carranza R, Leon Garrido-Lecca A, Calle-Villavicencio A, Torres-Mera A, Valladares-Garido MJ, Huerta-Collado Y, Motta-Guerrero R, Casanova Marquez L. Use of PD-1 blockade in refractory/relapsed natural killer T-cell lymphomas: a systematic review and synthesis of case reports. Leuk Lymphoma 2024; 65:37-47. [PMID: 37794819 DOI: 10.1080/10428194.2023.2264431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Natural killer/T-cell lymphoma (NK/T-cellL) is an aggressive non-Hodgkin's lymphoma with limited treatment options for patients who experience disease progression or recurrence after second-line treatment. The use of new therapies, such as pembrolizumab, which involves immune checkpoint blockade mechanisms, is proposed. This systematic review followed the MOSE guidelines and searched PUBMED/MEDLINE, EMBASE, and Scopus databases. Fourteen articles were found, reporting on the use of pembrolizumab anti PD-1 in NK/T-cellL patients. The objective response rate was 84.50%, with disease-free survival ranging from two to 48 months. The complete response rate was 61.6%, and the quality of the reported studies was evaluated to be of high and moderate confidence bias levels in case reports and high bias in clinical trials. Pembrolizumab and others anti PD-1 are treatment options for refractory/recurrent NK/T-cellL, regardless of PD-L1 expression, with good short- and long-term results and low adverse events.
Collapse
|
6
|
Li C, Hu X. Primary Extranodal Nasal-Type Natural Killer/T-Cell Lymphoma of Lower Limb Muscles on 18 F-FDG PET/CT. Clin Nucl Med 2024; 49:e45-e46. [PMID: 37976527 DOI: 10.1097/rlu.0000000000004959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
ABSTRACT Extranodal nasal-type natural killer/T-cell lymphoma may arise anywhere outside the lymph nodes, predominantly including the nasal cavity, nasopharynx, oropharynx, upper respiratory tract, gastrointestinal tract, skin, testes, and salivary glands, whereas primary tumor arising in muscle is rarely documented. We report FDG PET/CT findings of primary extranodal nasal-type natural killer/T-cell lymphoma in the muscles of the right lower limb in an 82-year-old man.
Collapse
Affiliation(s)
- Chuan Li
- From the Department of Radiology, Chongqing Kanghua Zhonglian Cardiovascular Hospital, Chongqing
| | - Xianwen Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
7
|
Liu S, Xu M, Zhong L, Tong X, Qian S. Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin's Lymphoma. Mini Rev Med Chem 2024; 24:895-907. [PMID: 37724679 DOI: 10.2174/1389557523666230915103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Shuxian Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minghao Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lei Zhong
- Tongxiang Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xiangmin Tong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Suying Qian
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, China
| |
Collapse
|
8
|
Zhou J, Toh SHM, Tan TK, Balan K, Lim JQ, Tan TZ, Xiong S, Jia Y, Ng SB, Peng Y, Jeyasekharan AD, Fan S, Lim ST, Ong CAJ, Ong CK, Sanda T, Chng WJ. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol Cancer 2023; 22:69. [PMID: 37032358 PMCID: PMC10084643 DOI: 10.1186/s12943-023-01767-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jing Quan Lim
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tuan Zea Tan
- Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Jia
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Soon Thye Lim
- Director's office, National Cancer Centre, Singapore, 168583, Singapore
- Office of Education, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore, 168583, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, 168583, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
9
|
Mao S, Diao C, Cao L. Primary small intestinal extranodal NK/T cell lymphoma, nasal type with kidney involvement: a rare case report and literature review. Diagn Pathol 2022; 17:75. [PMID: 36199094 PMCID: PMC9533626 DOI: 10.1186/s13000-022-01254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/22/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Extranodal NK/T cell lymphoma, nasal type (EN-NK/T-NT) is a rare and aggressive type of non-Hodgkin’s lymphoma. EN-NK/T-NT seldom occurs in the gastrointestinal tract, and renal involvement is relatively rare. Case presentation Here we report a case of primary small intestinal EN-NK/T-NT with kidney involvement. We present the case of a 71-year-old female who was admitted to our hospital for coronary heart disease with a fever of unknown origin. Laboratory examination showed renal impairment and PET/CT showed a locally thickened wall of the small intestine, abnormally increased FDG metabolism in the right lower abdomen, and multiple slightly high-density masses with abnormal increased FDG metabolism in the right kidney. The gross specimen showed a grayish-white lump located in the ileum approximately 15 cm away from the ileocecum, and two grayish-white lumps located in the upper and lower poles of the right kidney, respectively. The pathological diagnosis was EN-NK/T-NT. The patient died approximately 10 months after the operation. Conclusion EN-NK/T-NT is a rare type of non-Hodgkin’s lymphoma and may develop insidiously, with fever as the only clinical manifestation. The disease was found to be difficult to diagnose in the early stage, resulting in a highly aggressive clinical course and short survival time.
Collapse
Affiliation(s)
- Shuyan Mao
- Department of Pathology, Shanghai Pudong New Area People's Hospital, No.490, Chuanhuan South Road, Chuansha town, 200120, Shanghai, China
| | - Changying Diao
- Department of Pathology, Xuzhou Central Hospital, No.199, Jiefang South Road, 221009, Xuzhou, Jiangsu, China.
| | - Lei Cao
- Department of Pathology, Shanghai Pudong New Area People's Hospital, No.490, Chuanhuan South Road, Chuansha town, 200120, Shanghai, China
| |
Collapse
|
10
|
Tse E, Fox CP, Glover A, Yoon SE, Kim WS, Kwong YL. Extranodal natural killer/T-cell lymphoma: An overview on pathology and clinical management. Semin Hematol 2022; 59:198-209. [PMID: 36805888 DOI: 10.1053/j.seminhematol.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Natural killer (NK)/T-cell lymphomas arise mainly from NK-cells and occasionally T-cells, and are universally infected with Epstein Barr virus (EBV). They are uncommon lymphomas more prevalent in Asian and Central/South American populations. NK/T-cell lymphomas are clinically aggressive and predominantly extranodal. The most commonly involved sites are the nasal cavity, followed by non-nasal sites including the skin, gastrointestinal tract and testis. The diagnosis of extranodal NK/T-cell lymphoma is established with histological and immunohistochemical examination, together with the demonstration of EBV in the tumour cells. Staging by positron emission tomography computed tomography is essential to inform the optimal management. Plasma EBV DNA quantification should be performed as it serves as a marker for prognostication and treatment response. Survival outcomes of patients with early-stage disease are good following treatment with nonanthracycline based chemotherapy, together with sequential/concurrent radiotherapy. For advanced-stage disease, asparaginase-containing regimens are mostly used and allogeneic haematopoietic stem cell transplantation should be considered for those at high risk of relapse. Salvage chemotherapy is largely ineffective for relapsed/refractory disease, which has a grave prognosis. Novel therapeutic approaches including immune check-point blockade, EBV-specific cytotoxic T-cells, and monoclonal antibodies are being investigated to improve outcomes for those with high risk and relapsed/refractory disease.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | - Alexander Glover
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Herek TA, Bouska A, Lone W, Sharma S, Amador C, Heavican TB, Li Y, Wei Q, Jochum D, Greiner TC, Smith L, Pileri S, Feldman AL, Rosenwald A, Ott G, Lim ST, Ong CK, Song J, Jaffe ES, Wang GG, Staudt L, Rimsza LM, Vose J, d'Amore F, Weisenburger DD, Chan WC, Iqbal J. DNMT3A mutations define a unique biological and prognostic subgroup associated with cytotoxic T cells in PTCL-NOS. Blood 2022; 140:1278-1290. [PMID: 35639959 PMCID: PMC9479030 DOI: 10.1182/blood.2021015019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are heterogenous T-cell neoplasms often associated with epigenetic dysregulation. We investigated de novo DNA methyltransferase 3A (DNMT3A) mutations in common PTCL entities, including angioimmunoblastic T-cell lymphoma and novel molecular subtypes identified within PTCL-not otherwise specified (PTCL-NOS) designated as PTCL-GATA3 and PTCL-TBX21. DNMT3A-mutated PTCL-TBX21 cases showed inferior overall survival (OS), with DNMT3A-mutated residues skewed toward the methyltransferase domain and dimerization motif (S881-R887). Transcriptional profiling demonstrated significant enrichment of activated CD8+ T-cell cytotoxic gene signatures in the DNMT3A-mutant PTCL-TBX21 cases, which was further validated using immunohistochemistry. Genomewide methylation analysis of DNMT3A-mutant vs wild-type (WT) PTCL-TBX21 cases demonstrated hypomethylation in target genes regulating interferon-γ (IFN-γ), T-cell receptor signaling, and EOMES (eomesodermin), a master transcriptional regulator of cytotoxic effector cells. Similar findings were observed in a murine model of PTCL with Dnmt3a loss (in vivo) and further validated in vitro by ectopic expression of DNMT3A mutants (DNMT3A-R882, -Q886, and -V716, vs WT) in CD8+ T-cell line, resulting in T-cell activation and EOMES upregulation. Furthermore, stable, ectopic expression of the DNMT3A mutants in primary CD3+ T-cell cultures resulted in the preferential outgrowth of CD8+ T cells with DNMT3AR882H mutation. Single-cell RNA sequencing(RNA-seq) analysis of CD3+ T cells revealed differential CD8+ T-cell subset polarization, mirroring findings in DNMT3A-mutated PTCL-TBX21 and validating the cytotoxic and T-cell memory transcriptional programs associated with the DNMT3AR882H mutation. Our findings indicate that DNMT3A mutations define a cytotoxic subset in PTCL-TBX21 with prognostic significance and thus may further refine pathological heterogeneity in PTCL-NOS and suggest alternative treatment strategies for this subset.
Collapse
Affiliation(s)
- Tyler A Herek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Tayla B Heavican
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Qi Wei
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Dylan Jochum
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE
| | - Stefano Pileri
- Division of Diagnostic Hematopathology, European Institute of Oncology-IEO IRCCS, Milan, Italy
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Joo Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Elaine S Jaffe
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Louis Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ
| | - Julie Vose
- Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE; and
| | - Francesco d'Amore
- Department of Haematology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
12
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36:1720-1748. [PMID: 35732829 PMCID: PMC9214472 DOI: 10.1038/s41375-022-01620-2] [Citation(s) in RCA: 1738] [Impact Index Per Article: 579.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.
Collapse
|
13
|
Abstract
Natural killer (NK)/T-cell lymphomas are aggressive malignancies with a predilection for Asian and South American populations. Epstein-Barr virus (EBV) infection in lymphoma cells is universal. Predominantly extranodal, NK/T-cell lymphomas are divided clinically into nasal (involving the nose and upper aerodigestive tract), non-nasal (involving the skin, gastrointestinal tract, testes, and other organs), and aggressive leukaemia/lymphoma (involving the marrow and multiple organs) subtypes. Initial assessment should include imaging with positron emission tomography computed tomography (PET/CT), quantification of plasma EBV DNA as a surrogate marker of lymphoma load, and bone marrow examination with in situ hybridization for EBV-encoded small RNA. Prognostication can be based on presentation parameters (age, stage, lymph node involvement, clinical subtypes, and EBV DNA), which represent patient factors and lymphoma load; and dynamic parameters during treatment (serial plasma EBV DNA and interim/end-of-treatment PET/CT), which reflect response to therapy. Therapeutic goals are to achieve undetectable plasma EBV DNA and normal PET/CT (Deauville score ≤ 3). NK/T-cell lymphomas express the multidrug resistance phenotype, rendering anthracycline-containing regimens ineffective. Stage I/II nasal cases are treated with non-anthracycline asparaginase-based regimens plus sequential/concurrent radiotherapy. Stage III/IV nasal, and non-nasal and aggressive leukaemia/lymphoma cases are treated with asparaginase-containing regimens and consolidated by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable patients. Autologous HSCT does not improve outcome. In relapsed/refractory cases, novel approaches comprise immune checkpoint blockade of PD1/PD-L1, EBV-specific cytotoxic T-cells, monoclonal antibodies, and histone deacetylase inhibitors. Future strategies may include inhibition of signalling pathways and driver mutations, and immunotherapy targeting the lymphoma and its microenvironment.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yok-Lam Kwong
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
14
|
Chen B, Yang S, Su W. First observation of intraocular extranodal natural killer/T-cell lymphoma secondary to a retroperitoneal tumour: a case report and comparative review. BMC Ophthalmol 2022; 22:141. [PMID: 35346113 PMCID: PMC8962092 DOI: 10.1186/s12886-022-02362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Vitreoretinal lymphomas are difficult to diagnose due to their insidious onset and inaccessible focal points. Natural killer/T-cell derived malignancies are rare as intraocular lymphomas and usually have a rapid progression and a poor prognosis. Therefore, it is essential to make a definite diagnosis, especially differentially with B-cell-derived lymphomas, which account for most cases of vitreoretinal lymphomas. Case presentation This case report describes a 55-year-old female reporting a 10-month history of painless decline in her vision of the right eye. Optical coherence tomography of the patient revealed hyperreflective nodules and irregular humps in the retinal pigment epithelium layer. The right vitreous was aspirated for diagnostic assessment, revealing an interleukin-10 level of 39.4 pg/mL and an interleukin-10/interleukin-6 ratio of 1.05. The right vitreous humor was positive for Epstein–Barr virus DNA. Upon a systemic examination, a high metabolic nodule was found in the retroperitoneal area and proven to be positive for Epstein–Barr virus-encoded mRNA, CD2, CD3ε, TIA-1, and Ki-67. Considering the homology of the two lesions, the patient was diagnosed with metastatic vitreoretinal lymphoma secondary to retroperitoneal extranodal natural killer/T-cell derived lymphoma. The patient received systemic chemotherapy and regular intravitreal injections of methotrexate. Her visual acuity of the right eye had improved from 20/125 to 20/32 at the latest follow-up. No new lesions were found. Conclusions A definitive diagnosis of vitreoretinal lymphoma is challenging. On some occasions in which pathological evidence is missing, the available examination results and clinical observations must be comprehensively considered. This study herein summarized pertinent pieces of literature and reports and reviewed available practicable methods to make a definitive diagnosis of intraocular extranodal natural killer/T-cell lymphoma, which was particularly distinct from the common diffuse large B-cell lymphomas.
Collapse
Affiliation(s)
- Binyao Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.,Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shizhao Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.,Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China. .,Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| |
Collapse
|
15
|
Tse E, Kwong YL. Recent Advances in the Diagnosis and Treatment of Natural Killer Cell Malignancies. Cancers (Basel) 2022; 14:cancers14030597. [PMID: 35158865 PMCID: PMC8833626 DOI: 10.3390/cancers14030597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Natural killer (NK)/T-cell lymphomas are aggressive extranodal Epstein–Barr virus (EBV)-positive malignancies. They can be divided into three subtypes: nasal (involving the nose and upper aerodigestive tract), non-nasal (involving skin, gastrointestinal tract, testis and other organs) and disseminated (involving multiple organs). Lymphoma cells are positive for CD3ε, CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asians. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial at diagnosis and follow-up. Stage I/II patients receive non-athracycline asparaginse-containing regimens, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients receive asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT). Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches include PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial. Abstract Natural killer (NK)/T-cell lymphomas are aggressive malignancies. Epstein–Barr virus (EBV) infection in lymphoma cells is invariable. NK/T-cell lymphomas are divided into nasal, non-nasal, and disseminated subtypes. Nasal NK/T-cell lymphomas involve the nasal cavity and the upper aerodigestive tract. Non-nasal NK/T-cell lymphomas involve the skin, gastrointestinal tract, testis and other extranodal sites. Disseminated NK/T-cell lymphoma involves multiple organs, rarely presenting with a leukaemic phase. Lymphoma cells are positive for CD3ε (not surface CD3), CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asian patients. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial evaluations at diagnosis and follow-up. Stage I/II patients typically receive non-athracycline regimens containing asparaginse, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients are treated with asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable cases. Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches are needed, involving PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial in selected patients. Future strategies may include targeting of signalling pathways and driver mutations.
Collapse
|
16
|
Zhu Y, Tian S, Xu L, Ma Y, Zhang W, Wang L, Jin L, Liu C, Zhu C, Li Z, Hao S, Zhong H, Ding H, Tao R. GELAD chemotherapy with sandwiched radiotherapy for patients with newly diagnosed stage IE/IIE natural killer/T-cell lymphoma: a prospective multicentre study. Br J Haematol 2021; 196:939-946. [PMID: 34806163 DOI: 10.1111/bjh.17960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/02/2023]
Abstract
Early-stage natural killer/T-cell lymphoma (NK/TCL) patients usually receive a combination of chemotherapy and radiotherapy, but the optimal treatment approach has not yet been established. This study aimed to investigate the efficacy and safety profile of a novel chemotherapy regimen and sandwiched radiotherapy in early-stage NK/TCL. Patients with newly diagnosed stage IE/IIE disease were eligible. Patients were initially treated with two courses of the GELAD regimen (gemcitabine 1·0 g/m2 day 1, etoposide 60 mg/m2 days 1-3, pegaspargase 2000 units/m2 day 4, and dexamethasone 40 mg days 1-4), followed by intensity-modulated radiotherapy (IMRT; 50-56 Gy in 25-28 fractions) and two additional courses of GELAD chemotherapy. A total of 52 patients were enrolled. The overall response rate and complete response rate per Lugano 2014 criteria were 94·2% and 92·3% respectively. With a median follow-up of 32 months, the estimated four-year overall survival rate and progression-free survival rate were 94·2% [95% confidence interval (CI), 83·2% to 93·1%] and 90·4% (95% CI, 78·4% to 95·9%) respectively. The most common adverse events were related to pegaspargase. Haematological toxicities were mild, with grade 3/4 neutropenia in 15·4% of patients. Our study provides a new approach with high activity and improved safety for the treatment of early-stage NK/TCL patients. This study was registered at www.clinicaltrials.gov as NCT02733458.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Tian
- Department of Radiation Oncology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Lan Xu
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Ma
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhao Zhang
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Jin
- Department of Hematology, Dongfang Hospital, Tongji University, Shanghai, China
| | - Chuanxu Liu
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanying Zhu
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichao Li
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Ding
- Department of Radiation Oncology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Rong Tao
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
He X, Gao Y, Li Z, Huang H. Review on natural killer /T-cell lymphoma. Hematol Oncol 2021; 41:221-229. [PMID: 34731509 DOI: 10.1002/hon.2944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022]
Abstract
Extranodal natural killer (NK)/T-cell lymphoma (ENKTL) is strongly associated with Epstein-Barr virus (EBV) and has a high prevalence in Asian and in Central and South America. About 85% of ENKTLs derive from NK cells and 15% from T-cells. Various factors have been implicated in the development of ENKTL. Molecular pathogenesis of NK/T-cell lymphomas include mutations of genes, involving in the Janus Kinase (JAK)/ signal transducer and activator of transcription (STAT) pathway, RNA helicase family, epigenetic regulation, and tumor suppression. The relationship between ENKTL and human leukocyte antigen (HLA) has been demonstrated. Radiotherapy (RT) plays a key role in the first-line treatment of early-stage. In stage III/IV diseases, non-anthracycline-regimens-containing L-asparaginase are recommended. Although clinical remission after L-asparaginase-based combination therapy has been achieved in the majority of patients with advanced-stage or relapsed/refractory(r/r) ENKL, the long-term overall survival is still poor. Recently, immunotherapy and new therapeutic targets have gained much attention. In this article, we discuss the pathogenesis, diagnosis, prognostic models and management options of ENKTL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaohua He
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yan Gao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhiming Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Huiqiang Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
18
|
Shi Z, Li X, Wang X, Zhang L, Li L, Fu X, Sun Z, Li Z, Zhang X, Zhang M. Characteristics and Clinical Implications of the Nasal Microbiota in Extranodal NK/T-Cell Lymphoma, Nasal Type. Front Cell Infect Microbiol 2021; 11:686595. [PMID: 34568086 PMCID: PMC8461088 DOI: 10.3389/fcimb.2021.686595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/25/2021] [Indexed: 01/22/2023] Open
Abstract
Natural killer/T cell lymphoma (NKTCL) most frequently affects the nasal cavity and upper aerodigestive tract (UAT) and is often mistaken for reactive disease processes, such as chronic rhinosinusitis (CRS). Recently, alterations of the nasal resident microbiota have been found in CRS. However, nasal microbial features in NKTCL have never been reported. This case-control study collected 46 NKTCL patients, 25 CRS patients and 24 matched healthy controls (HCs) to analyze nasal microbial profiles via 16S rRNA sequencing technology to improve our understanding of changes in the nasal microbiota in NKTCL. We found that alpha diversity was significantly decreased, while beta diversity was significantly increased in NKTCL compared with those in CRS and HCs. The genus Corynebacterium was significantly depleted in CRS and NKTCL versus that in HCs, while genus Staphylococcus was the most abundant in the NKTCL compared to that in the other two groups. The nasal microbial community was significantly different between UAT-NKTCL and non-UAT NKTCL patients. Importantly, based on a panel of taxa, excellent classification power with an AUC of 0.875 between UAT-NKTCL and CRS was achieved. Furthermore, the alpha diversity of the nasal microbiota was associated with several clinical covariates of NKTCL. Finally, PICRUSt analysis implicated an array of distinct functions in NKTCL that might be involved in the pathogenesis of the disease. In conclusion, the nasal microbial profile was unique in NKTCL. The nose-microbiota-UAT NKTCL axis represents a panel of promising biomarkers for clinical practice and contributes to revealing the potential pathogenesis of this malignancy.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| |
Collapse
|
19
|
A composite single-nucleotide polymorphism prediction signature for extranodal natural killer/T-cell lymphoma. Blood 2021; 138:452-463. [PMID: 33728448 DOI: 10.1182/blood.2020010637] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Current prognostic scoring systems based on clinicopathologic variables are inadequate in predicting the survival and treatment response of extranodal natural killer/T-cell lymphoma (ENKTL) patients undergoing non-anthracyline-based treatment. We aimed to construct a classifier based on single-nucleotide polymorphisms (SNPs) for improving predictive accuracy and guiding clinical decision-making. The data of 722 patients with ENKTL from international multicenters were analyzed. A 7-SNP-based classifier was constructed using LASSO Cox regression in the training cohort (n=336) and further validated in the internal testing (n=144) and two external validation cohorts (n=142; n=100). The 7-SNP-based classifier showed good prognostic predictive efficacy in the training cohort and the three validation cohorts. Patients with high and low risk scores calculated by the classifier exhibited significantly different progression-free survival (PFS) and overall survival (OS) (all p<0.001). The 7-SNP-based classifier was further proved to be an independent prognostic factor by multivariate analysis, and its predictive accuracy was significantly better than clinicopathological risk variables. The application of the 7-SNP-based classifier was not affected by sample types. Notably, chemotherapy combined with radiotherapy significnalty improved PFS and OS versus radiotherapy alone in high risk Ann Anbor stage I patients, while there was no statistical difference between the two therapeutic modalities among low risk patients. A nomogram was constructed comprised of the classifier and clinicopathological variables, and showed remarkably better predictive accuracy than that of each variable alone. The 7-SNP-based classifier is a complement to existing risk stratification systems in ENKTL, which could have significant implications for clinical decision-making for ENKTL patients.
Collapse
|
20
|
CD3+/CD56+ EBV+ neoplasms in the nose and upper aerodigestive tract: potential misdiagnosis of plasma cell malignancies as NK/T cell lymphoma. Ann Hematol 2020; 100:1101-1104. [PMID: 32862284 DOI: 10.1007/s00277-020-04228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
|
21
|
Nasopharyngeal Lymphoma: A 22-Year Review of 35 Cases. J Clin Med 2019; 8:jcm8101604. [PMID: 31623372 PMCID: PMC6833098 DOI: 10.3390/jcm8101604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal (NP) lymphoma is a rare primary malignancy of the head and neck and represents a minority of malignancies originating from the nasopharynx. For this reason, there are limited data regarding epidemiologic and treatment outcomes. This is a retrospective review of patients diagnosed with NP lymphoma from 1995 to 2017 at a tertiary medical center. The patients’ demographic data, clinical presentations, treatment modalities, Epstein–Barr virus (EBV)-encoded small RNA (EBER) staining, and outcomes were investigated. We considered a total of 35 patients, including 20 males and 15 females, diagnosed with NP lymphoma. The age ranged from 17 to 88 years (mean = 59.6). The common presentations were nasal obstruction, epistaxis, and neck mass. In our study, the most common pathological diagnosis of NP lymphoma was diffuse large B cell lymphoma (DLBCL) (n = 17), followed by NK/T cell lymphoma (NKTCL) (n = 9). Other pathologic diagnoses included extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALToma), small lymphocytic lymphoma, mantle cell lymphoma. There were 13 cases showing EBER positivity, including 7 cases of NKTCL, 5 cases of DLBCL, and 1 case of post-transplant lymphoproliferative disorder (PTLD). Most patients received chemotherapy alone, while some patients received both chemotherapy and radiotherapy. Seven patients had local recurrence, and fewer than half of the patients (n = 16) were alive at the time of the study (mean follow-up duration: 54.4 months). The five-year overall survival was 50.4%. NP lymphoma is very rare, and the most common pathologic type is DLBCL. EBER positivity is found in both NKTCL and DLBCL. Identifying more effective therapeutic agents is extremely important to improve patients’ survival.
Collapse
|