1
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
2
|
Elmeliegy M, Chen J, Dontabhaktuni A, Gaudy A, Kapitanov GI, Li J, Mim SR, Sharma S, Sun Q, Ait-Oudhia S. Dosing Strategies and Quantitative Clinical Pharmacology for Bispecific T-Cell Engagers Development in Oncology. Clin Pharmacol Ther 2024; 116:637-646. [PMID: 38962850 DOI: 10.1002/cpt.3361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
Bispecific T-cell Engagers (TCEs) are promising anti-cancer treatments that bind to both the CD3 receptors on T cells and an antigen on the surface of tumor cells, creating an immune synapse, leading to killing of malignant tumor cells. These novel therapies have unique development challenges, with specific safety risks of cytokine release syndrome. These on-target adverse events fortunately can be mitigated and deconvoluted from efficacy via innovative dosing strategies, making clinical pharmacology key in the development of these therapies. This review assesses dose selection and the role of quantitative clinical pharmacology in the development of the first eight approved TCEs. Model informed drug development (MIDD) strategies can be used at every stage to guide TCE development. Mechanistic modeling approaches allow for (1) efficacious yet safe first-in-human dose selection as compared with in vitro minimum anticipated biological effect level (MABEL) approach; (2) rapid escalation and reducing number of patients with subtherapeutic doses through model-based adaptive design; (3) virtual testing of different step-up dosing regimens that may not be feasible to be evaluated in the clinic; and (4) selection and justification of the optimal clinical step-up and full treatment doses. As the knowledge base around TCEs continues to grow, the relevance and utilization of MIDD strategies for supporting the development and dose optimization of these molecules are expected to advance, optimizing the benefit-risk profile for cancer patients.
Collapse
Affiliation(s)
- Mohamed Elmeliegy
- Oncology Research and Development, Pfizer Inc, San Diego, California, USA
| | - Joseph Chen
- Genentech Inc, South San Francisco, California, USA
| | | | | | | | - Junyi Li
- Genentech Inc, South San Francisco, California, USA
| | - Sabiha R Mim
- PharmaPro Consulting Inc, Hillsborough, New Jersey, USA
| | - Sharad Sharma
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Qin Sun
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co., Rahway, New Jersey, USA
| |
Collapse
|
3
|
Szijj PA, Gray MA, Ribi MK, Bahou C, Nogueira JCF, Bertozzi CR, Chudasama V. Chemical generation of checkpoint inhibitory T cell engagers for the treatment of cancer. Nat Chem 2023; 15:1636-1647. [PMID: 37488375 PMCID: PMC10624612 DOI: 10.1038/s41557-023-01280-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/21/2023] [Indexed: 07/26/2023]
Abstract
Bispecific T cell engagers (BiTEs), a subset of bispecific antibodies (bsAbs), can promote a targeted cancer cell's death by bringing it close to a cytotoxic T cell. Checkpoint inhibitory T cell engagers (CiTEs) comprise a BiTE core with an added immunomodulatory protein, which serves to reverse cancer-cell immune-dampening strategies, improving efficacy. So far, protein engineering has been the main approach to generate bsAbs and CiTEs, but improved chemical methods for their generation have recently been developed. Homogeneous fragment-based bsAbs constructed from fragment antigen-binding regions (Fabs) can be generated using click chemistry. Here we describe a chemical method to generate biotin-functionalized three-protein conjugates, which include two CiTE molecules, one containing an anti-PD-1 Fab and the other containing an immunomodulatory enzyme, Salmonella typhimurium sialidase. The CiTEs' efficacy was shown to be superior to that of the simpler BiTE scaffold, with the sialidase-containing CiTE inducing substantially enhanced T cell-mediated cytotoxicity in vitro. The chemical method described here, more generally, enables the generation of multi-protein constructs with further biological applications.
Collapse
Affiliation(s)
- Peter A Szijj
- Department of Chemistry, University College London, London, UK
| | - Melissa A Gray
- Department of Chemistry, Sarafan ChEM-H, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Mikaela K Ribi
- Department of Chemistry, Sarafan ChEM-H, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Calise Bahou
- Department of Chemistry, University College London, London, UK
| | | | - Carolyn R Bertozzi
- Department of Chemistry, Sarafan ChEM-H, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
4
|
Câmara AB, Brandão IA. The Non-Hodgkin Lymphoma Treatment and Side Effects: A Systematic Review and Meta-Analysis. Recent Pat Anticancer Drug Discov 2023; 19:PRA-EPUB-128894. [PMID: 36650656 DOI: 10.2174/1574892818666230117151757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This paper aims to review studies regarding side effects found during Non-Hodgkin Lymphoma treatment, to suggest the drug class most associated with these effects, as well as the most prevalent side effect grade. METHODS This review is registered in PROSPERO (IDCRD42022295774) and followed the PICOS strategy and PRISMA guidelines. The search was carried out in the databases PubMed/MEDLINE, Scientific Electronic Library Online, and DOAJ. Medical Subject Headings Terms were used and quantitative studies with conclusive results regarding side effects during the non-Hodgkin lymphoma treatment were selected. Patent information was obtained from google patents. RESULTS Monoclonal antibodies were the main drug class associated with side effects during NHL therapy. The combination of Rituximab (Rituxan®; patent EP1616572B) and iInotuzumab (Besponsa®; patent EP1504035B3) was associated with a higher incidence of thrombocytopenia (p<0.05), while the combination of Rituximab and Venetoclax (Venclexta®; patent CN107089981A) was associated with a higher incidence of neutropenia (p<0.05) when compared to Bendamustine combinations (Treanda ™; patent US20130253025A1). Meta-analysis revealed a high prevalence of grade 3-4 neutropenia and thrombocytopenia in men. Finally, Americans and Canadians experienced a higher prevalence of these side effects, when compared to others nationalities (p<0.05). CONCLUSION Patents regarding the use of monoclonal antibodies in NHL treatment were published in the last year. Monoclonal antibodies associated with neutropenia (grade 3-4) and thrombocytopenia, especially in North American men treated for NHL, and with an average age of 62 years demonstrated importance in this study.
Collapse
Affiliation(s)
- Alice Barros Câmara
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte
| | - Igor Augusto Brandão
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte
| |
Collapse
|
5
|
Lei W, Ye Q, Hao Y, Chen J, Huang Y, Yang L, Wang S, Qian W. CD19-targeted BiTE expression by an oncolytic vaccinia virus significantly augments therapeutic efficacy against B-cell lymphoma. Blood Cancer J 2022; 12:35. [PMID: 35228544 PMCID: PMC8885649 DOI: 10.1038/s41408-022-00634-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy with CD19-targeting bispecific T-cell engagers (CD19BiTEs) has demonstrated highly effective killing of cancer cells in patients with precursor acute lymphoblastic leukemia and non-Hodgkin's lymphomas. However, there are some drawbacks to this therapy, such as toxicity, short half-life in the serum, and immunosuppressive tumor microenvironment that could limit the use of CD19BiTEs in the clinic. Here, we generate an oncolytic vaccinia virus (OVV) encoding a CD19-specific BiTE (OVV-CD19BiTE). We demonstrate that OVV-CD19BiTE's ability to replicate and induce oncolysis was similar to that of its parental counterpart. Supernatants from OVV-CD19BiTE-infected cells could induce activation and proliferation of human T cells, and the bystander effect of the virus was also demonstrated. In vivo study showed that OVV-CD19BiTE selectively replicated within tumor tissue, and contributed to a more significantly increased percentage of CD3, CD8, and naïve CD8 T subpopulations within tumors in contrast to blinatumomab. More importantly, treatment with OVV-CD19BiTE both in vitro and in vivo resulted in potent antitumor activity in comparison with control OVV or blinatumomab, a first-in-class BiTE, thereby resulting in long-term tumor remissions without relapse. The study provides strong evidence for the therapeutic benefits of CD19-targeting BiTE expression by OVV, and suggests the feasibility of testing the approach in clinical trials.
Collapse
Affiliation(s)
- Wen Lei
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China.,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Qian Ye
- Hangzhou RongGu Biotechnology Limited Company, 310056, Hangzhou, Zhejiang, P. R. China
| | - Yuanyuan Hao
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China.,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Jie Chen
- Hangzhou RongGu Biotechnology Limited Company, 310056, Hangzhou, Zhejiang, P. R. China
| | - Yu Huang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, P. R. China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, P. R. China
| | - Shibing Wang
- Cancer Center, Molecular Diagnosis Laboratory, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, P. R. China.
| | - Wenbin Qian
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China. .,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Hao S, Inamdar VV, Sigmund EC, Zhang F, Stephan SB, Watson C, Weaver SJ, Nielsen UB, Stephan MT. BiTE secretion from in situ-programmed myeloid cells results in tumor-retained pharmacology. J Control Release 2022; 342:14-25. [PMID: 34953983 PMCID: PMC8840964 DOI: 10.1016/j.jconrel.2021.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Bispecific T-Cell Engagers (BiTEs) are effective at inducing remission in hematologic cancers, but their use in solid tumors has been challenging due to their extreme potency and on-target, off-tumor toxicities in healthy tissue. Their deployment against solid tumors is further complicated by insufficient drug penetration, a hostile tumor microenvironment, and immune escape. To address these challenges, we developed targeted nanocarriers that can deliver in vitro-transcribed mRNA encoding BiTEs to host myeloid cells – a cell type that is actively recruited into the tumor microenvironment. We demonstrate in an immunocompetent mouse model of ovarian cancer, that infusion of these nanoparticles directs BiTE expression to tumor sites, which reshapes the microenvironment from suppressive to permissive and triggers disease regression without systemic toxicity. In contrast, conventional injections of recombinant BiTE protein at doses required to achieve anti-tumor activity, induced systemic inflammatory responses and severe tissue damage in all treated animals. Implemented in the clinic, this in situ gene therapy could enable physicians – with a single therapeutic – to safely target tumor antigen that would otherwise not be druggable due to the risks of on-target toxicity and, at the same time, reset the tumor milieu to boost key mediators of antitumor immune responses.
Collapse
Affiliation(s)
- S Hao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - V V Inamdar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - E C Sigmund
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - F Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - S B Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - C Watson
- Comparative Pathology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - S J Weaver
- Experimental Histopathology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - U B Nielsen
- Tidal Therapeutics (A Sanofi Company), 270 Albany St, Cambridge, MA 02139, USA
| | - M T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle 98195, WA, USA.
| |
Collapse
|
7
|
Michot JM, Buet-Elfassy A, Annereau M, Lazarovici J, Danu A, Sarkozy C, Chahine C, Bigenwald C, Bosq J, Rossignol J, Romano-Martin P, Baldini C, Ghez D, Dartigues P, Massard C, Ribrag V. Clinical significance of the loss of CD20 antigen on tumor cells in patients with relapsed or refractory follicular lymphoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:710-718. [PMID: 35582306 PMCID: PMC9094080 DOI: 10.20517/cdr.2020.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/14/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Aim: Anti-CD20 monoclonal antibody is a cornerstone therapy for follicular lymphoma. Following anti-CD20 therapy, a potential decrease in CD20 antigen, and therefore a loss of the tumor target might be expected. However, the incidence and clinical significance of CD20 loss on tumor cells in patients with relapsed or refractory follicular lymphoma are unknown. This study aims to investigate the incidence and outcome of patients with relapsed or refractory follicular lymphoma patients harboring the loss of the tumor target, CD20. Methods: All consecutive adult patients with relapsed or refractory follicular lymphoma referred to the Early Drug Department at Gustave Roussy were included. The main objectives were to assess the incidence and prognosis of the loss in expression of CD20 antigen on the surface of tumor cells on patient outcome. Results: Over the study period 2013-2018, 131 patients were screened for clinical trials with B-cell malignancies in the early drug department of Gustave Roussy in France. Forty-four patients presented with relapsed or refractory follicular lymphoma and 32 had tumor biopsies at the time of relapse that were retained for analysis. The median (range) age was 67.5 years (55.3-75.3) and the median number of prior anti-cancer systemic therapies was 3 (2-4). At the time of relapse, CD20 expression was positive in 84% of tumors (n = 27) and negative in 16% of tumors (n = 5). At a median follow-up of 18.3 (0.6-83.3) months, CD20 negativity was associated with a poorer prognosis with a median overall survival of 8.9 months (95%CI: 2.4-19.1) in comparison to CD20 positive patients (28.3 months, 95%CI: 25.1-75.3 months, P = 0.019). Conclusion: The loss of the tumor target antigen, CD20, occurred in 16% of patients with relapse or refractory follicular lymphoma. Due to confounding factors in patients who received anti-CD20 immunotherapy, it was not possible to formally establish the prognostic significance of CD20 negativity. However, we suggest that a check for CD20 antigen positivity nevertheless be performed to adapt subsequent therapies for patients with relapsed or refractory follicular lymphoma.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - Alice Buet-Elfassy
- Gustave Roussy, Université Paris-Saclay, Pharmacy Departement, Villejuif 94800, France
| | - Maxime Annereau
- Gustave Roussy, Université Paris-Saclay, Pharmacy Departement, Villejuif 94800, France
| | - Julien Lazarovici
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Alina Danu
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Clémentine Sarkozy
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - Claude Chahine
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Camille Bigenwald
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Jacques Bosq
- Gustave Roussy, Université Paris-Saclay, Departement of Pathology, Villejuif 94800, France
| | - Julien Rossignol
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Patricia Romano-Martin
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - Capucine Baldini
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - David Ghez
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Peggy Dartigues
- Gustave Roussy, Université Paris-Saclay, Departement of Pathology, Villejuif 94800, France
| | - Christophe Massard
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - Vincent Ribrag
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| |
Collapse
|
8
|
Malik-Chaudhry HK, Prabhakar K, Ugamraj HS, Boudreau AA, Buelow B, Dang K, Davison LM, Harris KE, Jorgensen B, Ogana H, Pham D, Schellenberger U, Van Schooten W, Buelow R, Iyer S, Trinklein ND, Rangaswamy US. TNB-486 induces potent tumor cell cytotoxicity coupled with low cytokine release in preclinical models of B-NHL. MAbs 2021; 13:1890411. [PMID: 33818299 PMCID: PMC8023237 DOI: 10.1080/19420862.2021.1890411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
The therapeutic potential of targeting CD19 in B cell malignancies has garnered attention in the past decade, resulting in the introduction of novel immunotherapy agents. Encouraging clinical data have been reported for T cell-based targeting agents, such as anti-CD19/CD3 bispecific T-cell engager blinatumomab and chimeric antigen receptor (CAR)-T therapies, for acute lymphoblastic leukemia and B cell non-Hodgkin lymphoma (B-NHL). However, clinical use of both blinatumomab and CAR-T therapies has been limited due to unfavorable pharmacokinetics (PK), significant toxicity associated with cytokine release syndrome and neurotoxicity, and manufacturing challenges. We present here a fully human CD19xCD3 bispecific antibody (TNB-486) for the treatment of B-NHL that could address the limitations of the current approved treatments. In the presence of CD19+ target cells and T cells, TNB-486 induces tumor cell lysis with minimal cytokine release, when compared to a positive control. In vivo, TNB-486 clears CD19+ tumor cells in immunocompromised mice in the presence of human peripheral blood mononuclear cells in multiple models. Additionally, the PK of TNB-486 in mice or cynomolgus monkeys is similar to conventional antibodies. This new T cell engaging bispecific antibody targeting CD19 represents a novel therapeutic that induces potent T cell-mediated tumor-cell cytotoxicity uncoupled from high levels of cytokine release, making it an attractive candidate for B-NHL therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacokinetics
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antigens, CD19/immunology
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- CD3 Complex/antagonists & inhibitors
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Coculture Techniques
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Humans
- K562 Cells
- Lymphocyte Activation/drug effects
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/immunology
- Lymphoma, Non-Hodgkin/metabolism
- Macaca fascicularis
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
| | | | | | | | | | - Kevin Dang
- Teneobio, Inc., Newark, CA, United States
| | | | | | | | - Heather Ogana
- Graduate Program in Cancer Biology and Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Duy Pham
- Teneobio, Inc., Newark, CA, United States
| | | | | | | | | | | | | |
Collapse
|