1
|
Tyrna P, Procyk G, Szeleszczuk Ł, Młynarczuk-Biały I. Different Strategies to Overcome Resistance to Proteasome Inhibitors-A Summary 20 Years after Their Introduction. Int J Mol Sci 2024; 25:8949. [PMID: 39201634 PMCID: PMC11354503 DOI: 10.3390/ijms25168949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Proteasome inhibitors (PIs), bortezomib, carfilzomib, and ixazomib, are the first-line treatment for multiple myeloma (MM). They inhibit cytosolic protein degradation in cells, which leads to the accumulation of misfolded and malfunctioned proteins in the cytosol and endoplasmic reticulum, resulting in cell death. Despite being a breakthrough in MM therapy, malignant cells develop resistance to PIs via different mechanisms. Understanding these mechanisms drives research toward new anticancer agents to overcome PI resistance. In this review, we summarize the mechanism of action of PIs and how MM cells adapt to these drugs to develop resistance. Finally, we explore these mechanisms to present strategies to interfere with PI resistance. The strategies include new inhibitors of the ubiquitin-proteasome system, drug efflux inhibitors, autophagy disruption, targeting stress response mechanisms, affecting survival and cell cycle regulators, bone marrow microenvironment modulation, and immunotherapy. We list potential pharmacological targets examined in in vitro, in vivo, and clinical studies. Some of these strategies have already provided clinicians with new anti-MM medications, such as panobinostat and selinexor. We hope that further exploration of the subject will broaden the range of therapeutic options and improve patient outcomes.
Collapse
Affiliation(s)
- Paweł Tyrna
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| | - Izabela Młynarczuk-Biały
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Yang J, Yu YC, Wang ZX, Li QQ, Ding N, Leng XJ, Cai J, Zhang MY, Wang JJ, Zhou Y, Wei TH, Xue X, Dai WC, Sun SL, Yang Y, Li NG, Shi ZH. Research strategies of small molecules as chemotherapeutics to overcome multiple myeloma resistance. Eur J Med Chem 2024; 271:116435. [PMID: 38648728 DOI: 10.1016/j.ejmech.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.
Collapse
Affiliation(s)
- Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
3
|
Tang G, Huang S, Luo J, Wu Y, Zheng S, Tong R, Zhong L, Shi J. Advances in research on potential inhibitors of multiple myeloma. Eur J Med Chem 2023; 262:115875. [PMID: 37879169 DOI: 10.1016/j.ejmech.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.
Collapse
Affiliation(s)
- Guoyuan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Ji Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yingmiao Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Shuai Zheng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Rongsheng Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610044, China.
| | - Jianyou Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
4
|
Alimardan Z, Abbasi M, Hasanzadeh F, Aghaei M, Khodarahmi G, Kashfi K. Heat shock proteins and cancer: The FoxM1 connection. Biochem Pharmacol 2023; 211:115505. [PMID: 36931349 PMCID: PMC10134075 DOI: 10.1016/j.bcp.2023.115505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Heat shock proteins (Hsp) and FoxM1 have significant roles in carcinogenesis. According to their relative molecular weight, Hsps are divided into Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps. Hsp70 can play essential functions in cancer initiation and is overexpressed in several human cancers. Hsp70, in combination with cochaperones HIP and HOP, refolds partially denatured proteins and acts as a cochaperone for Hsp90. Also, Hsp70, in combination with BAG3, regulates the FoxM1 signaling pathway. FoxM1 protein is a transcription factor of the Forkhead family that is overexpressed in most human cancers and is involved in many cancers' development features, including proliferation, migration, invasion, angiogenesis, metastasis, and resistance to apoptosis. This review discusses the Hsp70, Hsp90, and FoxM1 structure and function, the known Hsp70 cochaperones, and Hsp70, Hsp90, and FoxM1 inhibitors.
Collapse
Affiliation(s)
- Zahra Alimardan
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmacology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshid Hasanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmud Aghaei
- Department of Biochemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
5
|
Shi X, Wei Y, Yao X, Du B, Wu X, Kong X, Du X. In vivo antitumor efficacy of 17-AAG loaded PMMA in a human multiple myeloma xenograft mouse model. Clin Exp Med 2023; 23:45-54. [PMID: 34989932 DOI: 10.1007/s10238-021-00786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
Multiple myeloma (MM) is a monoclonal malignancy characterized by abnormal proliferation of plasma cells. The disease clinically manifests as anemia, hypercalcemia, renal insufficiencies, and osteolytic damage. Osteolytic damage goes with severe bone pain, spinal instability, and pathological fracture, symptoms that are collectively referred to as multiple myeloma bone disease (MMBD). Polymethylmethacrylate (PMMA) bone cement is widely used for bone repair after MMBD surgery, owing to its excellent biomechanical properties and fast curing. To date, however, efficacy of drug-loading PMMA in inhibition of tumor growth and angiogenesis remains unknown. Here, we report that 17-AAG-loaded PMMA bone cement inhibits MM growth in vivo and suppresses tumor diffusion to peripheral tissues. In addition, 17-AAG-loaded PMMA promotes MM apoptosis by downregulating Bax and active Caspase-3.
Collapse
Affiliation(s)
- Xiangjun Shi
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100022, China
| | - Yanzhe Wei
- Department of Orthopedics, Shenzhen University General Hospital, Shenzhen, 518055, China
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100022, China
| | - Xingchen Yao
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100022, China
| | - Boran Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiaoguang Wu
- Department of Anatomy, Chengde Medical University, Hebei, 067000, China
| | - Xiangyu Kong
- Department of Anatomy, Chengde Medical University, Hebei, 067000, China
| | - Xinru Du
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100022, China.
| |
Collapse
|
6
|
Yang S, Xiao H, Cao L. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacother 2021; 142:112074. [PMID: 34426258 DOI: 10.1016/j.biopha.2021.112074] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. Previous studies have revealed that HSPs play important roles in oncogenesis and malignant progression because they can modulate all six hallmark traits of cancer. Because of this, HSPs have been propelled into the spotlight as biomarkers for cancer diagnosis and prognosis, as well as an exciting anticancer drug target. However, the relationship between the expression level of HSPs and their activity and cancer diagnosis, prognosis, metabolism and treatment is not clear and has not been completely established. Herein, this review summarizes and discusses recent advances and perspectives in major HSPs as biomarkers for cancer diagnosis, as regulators for cancer metabolism or as therapeutic targets for cancer therapy, which may provide new directions to improve the accuracy of cancer diagnosis and develop more effective and safer anticancer therapeutics.
Collapse
Affiliation(s)
- Shuxian Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Haiyan Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
7
|
Fernando RC, de Carvalho F, Leme AFP, Colleoni GWB. Tumor Microenvironment Proteomics: Lessons From Multiple Myeloma. Front Oncol 2021; 11:563384. [PMID: 33833982 PMCID: PMC8021918 DOI: 10.3389/fonc.2021.563384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Although the "seed and soil" hypothesis was proposed by Stephen Paget at the end of the 19th century, where he postulated that tumor cells (seeds) need a propitious medium (soil) to be able to establish metastases, only recently the tumor microenvironment started to be more studied in the field of Oncology. Multiple myeloma (MM), a malignancy of plasma cells, can be considered one of the types of cancers where there is more evidence in the literature of the central role that the bone marrow (BM) microenvironment plays, contributing to proliferation, survival, migration, and drug resistance of tumor cells. Despite all advances in the therapeutic arsenal for MM treatment in the last years, the disease remains incurable. Thus, studies aiming a better understanding of the pathophysiology of the disease, as well as searching for new therapeutic targets are necessary and welcome. Therefore, the present study aimed to evaluate the protein expression profiling of mononuclear cells derived from BM of MM patients in comparison with these same cell types derived from healthy individuals, in order to fill this gap in MM treatment. Proteomic analysis was performed using the mass spectrometry technique and further analyses were done using bioinformatics tools, to identify dysregulated biological pathways and/or processes in the BM microenvironment of patients with MM as a result of the disease. Among the pathways identified in this study, we can highlight an upregulation of proteins related to protein biosynthesis, especially chaperone proteins, in patients with MM. Additionally, we also found an upregulation of several proteins involved in energy metabolism, which is one of the cancer hallmarks. Finally, with regard to the downregulated proteins, we can highlight mainly those involved in different pathways of the immune response, corroborating the data that has demonstrated that the immune system of MM is impaired and, therefore, the immunotherapies that have been studied recently for the treatment of the disease are extremely necessary in the search for a control and a cure for these patients who live with the disease.
Collapse
Affiliation(s)
- Rodrigo Carlini Fernando
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Fabrício de Carvalho
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Adriana Franco Paes Leme
- Laboratory of Mass Spectrometry, Laboratory of National Biosciences, LNBio, National Council for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gisele Wally Braga Colleoni
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
8
|
Njemini R, Verhaeghen K, Mets T, Weets I, Bautmans I. A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70. Pathogens 2020; 9:pathogens9110863. [PMID: 33105839 PMCID: PMC7690633 DOI: 10.3390/pathogens9110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (HSPs) play an essential role in protecting proteins from denaturation and are implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, infections, and neurodegenerative diseases. Scientific evidence indicates that if HSP expression falls below a certain level, cells become sensitive to oxidative damage that accelerates protein aggregation diseases. On the other hand, persistently enhanced levels of HSP can lead to inflammatory and oncogenic changes. To date, although techniques for measuring HSPs exist, these assays are limited for use in specific sample types or are time consuming. Therefore, in the present study, we developed a single-molecule assay digital ELISA technology (Single Molecule Array—SIMOA) for the measurement of HSPs, which is time effective and can be adapted to measure multiple analytes simultaneously from a single sample. This technique combines two distinct HSP-specific antibodies that recognize different epitopes on the HSP molecule. A recombinant human HSP protein was used as the standard material. The assay performance characteristics were evaluated by repeated testing of samples spiked with HSP peptide at different levels. The limit of detection was 0.16 and 2 ng/mL for HSP27 and HSP70, respectively. The inter- and intra-assay coefficients of variation were less than 20% in all tested conditions for both HSPs. The HSP levels assayed after serial dilution of samples portrayed dilutional linearity (on average 109%, R2 = 0.998, p < 0.001, for HSP27 and 93%, R2 = 0.994, p < 0.001, for HSP70). A high linear response was also demonstrated with admixtures of plasma exhibiting relatively very low and high levels of HSP70 (R2 = 0.982, p < 0.001). Analyte spike recovery varied between 57% and 95%. Moreover, the relative HSP values obtained using Western blotting correlated significantly with HSP values obtained with the newly developed SIMOA assay (r = 0.815, p < 0.001 and r = 0.895, p < 0.001 for HSP70 and HSP27, respectively), indicating that our method is reliable. In conclusion, the assay demonstrates analytical performance for the accurate assessment of HSPs in various sample types and offers the advantage of a huge range of dilution linearity, indicating that samples with HSP concentration highly above the calibration range can be diluted into range without affecting the precision of the assay.
Collapse
Affiliation(s)
- Rose Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-477-42-41; Fax: +32-2-477-63-64
| | - Katrijn Verhaeghen
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Tony Mets
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| | - Ilse Weets
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Ivan Bautmans
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| |
Collapse
|
9
|
Wang Q, Liu X. The dual functions of α-tubulin acetylation in cellular apoptosis and autophage induced by tanespimycin in lung cancer cells. Cancer Cell Int 2020; 20:369. [PMID: 32774163 PMCID: PMC7409415 DOI: 10.1186/s12935-020-01453-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background Reversible acetylation of α-tubulin has been implicated in modulating microtuble structures and functions, which may subsequently involve in cellular apoptosis and autophage. But how to trigger apoptosis or autophage at what level of acetylated α-tubulin (Ac-α-tubulin) are not known. This study aims to demonstrate the dual functions and molecular mechanisms of α-tubulin acetylation in cellular apoptosis and autophage induced by tanespimycin in Calu-1 cells simultaneously. Methods Calu-1 cells were treated with tanespimycin alone or combined administrations of different agents (including TSA, Docetaxel, Rapamycin, 3-MA and Z-vad) respectively and cell lysates were prepared to detect the given proteins by Western Blot. The cell survival was observed by inverted phase contrast microscope and estimated by SRB assay. HDAC6, TAT1 and Hsp90α/β proteins were knocked down by siRNA technique. Results By combination administration of tanespimycin with TSA or Docetaxel, the expression of Ac-α-tubulin and cellular apoptosis were enhanced markedly. While combination of tanespimycin and Rapamycin, α-tubulin acetylation and apoptosis were inhibited, but LC3B-II expression was facilitated substantially. When tanespimycin was combined with autophage inhibitor 3-MA, α-tubulin acetylation elevation was apparently, but LC3B-II was attenuated. Apoptosis inhibitor Z-vad blocked partially Caspases activation induced by tanespimycin, but failed to hinder α-tubulin acetylation elevation. According to results of RNA interference, acetyltransferase TAT1, deacetylase HDAC6 and Hsp90 modulated the expression level of α-tubulin acetylation. Conclusion We have elucidated that acetylation of α-tubulin induced by tanespimycin has dual functions in cellular apoptosis and autophage and the level of α-tubulin acetylation reaches a degree Calu-1 cells undergo cell apoptosis rather than autophage, implying that the level of acetylated α-tubulin may determine cell fate for survival or apoptosis.
Collapse
Affiliation(s)
- Qilin Wang
- Liaocheng University School of Life Sciences, No. 1, Hunan Road, Dongchangfu District, Liaocheng, 252059 People's Republic of China
| | - Xiangguo Liu
- Shandong University School of Life Sciences, 72 Binhai RD, Qingdao, 266237 People's Republic of China
| |
Collapse
|