1
|
Valencia O, López C, Vanegas-Duarte E, Fillizola C, Bejarano Ramírez DF, Cortés Mejía NA, Vera Torres A. Risk Factors Related to the Development of Nonalcoholic Fatty Liver: A Systematic Review. Can J Gastroenterol Hepatol 2025; 2025:9964486. [PMID: 40264655 PMCID: PMC12014263 DOI: 10.1155/cjgh/9964486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 04/24/2025] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) has a major impact on public health owing to its high morbidity and mortality due to its close relationship with several conditions, including metabolic syndrome, cirrhosis, and cancer. Therefore, this review aimed to systematically compile and summarize the scientific literature on early risk factors for NAFLD development. Methods: A systematic review of population-based cohort studies was conducted. Studies reporting the risk factors associated with nonalcoholic steatohepatitis (NASH) and NAFLD were screened. Results: The search yielded 987 unique records, of which 196 articles were selected after title and abstract screening. A total of 39 articles were read in full text after quality analysis using Downs and Black criteria; 10 of the studies were excluded due to heterogeneity or inconclusive results. Finally, 30 publications were included in this systematic review. The review revealed that clinical conditions such as obesity, weight change, psoriasis, polycystic ovary syndrome, diabetes, thyroid disorders, and elevated serum uric acid levels increase the risk of developing nonalcoholic fatty liver. In addition, lifestyle factors such as sedentary behavior, active or passive smoking, poor sleep quality, and consumption of carbonated beverages are associated with this condition. Conclusions: Evidence was found on the association between different clinical and lifestyle risk factors and NAFLD. This supports the need for preventive, diagnostic, and therapeutic strategies to improve the metabolic, hepatic, and oncological outcomes related to this condition.
Collapse
Affiliation(s)
- Omaira Valencia
- Population Health, Fundación Santa Fe de Bogota, Bogota, Colombia
| | - Carolina López
- Population Health, Fundación Santa Fe de Bogota, Bogota, Colombia
| | | | | | - Diana Fernanda Bejarano Ramírez
- Transplant and Hepatobiliary Surgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Epidemiology and Biostatistics Group, Graduate School of Epidemiology and Biostatistics, CES University, Medellín, Colombia
| | - Nicolás Andrés Cortés Mejía
- Division of Anesthesiology, Critical Care Medicine and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alonso Vera Torres
- Transplant and Hepatobiliary Surgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
2
|
Shuai R, He Y, Yang D, Zhang Y, Zhang L. Association between the atherogenic index of plasma and non-alcoholic fatty liver disease in Korean pregnant women: secondary analysis of a prospective cohort study. Front Nutr 2025; 12:1511952. [PMID: 39957769 PMCID: PMC11825326 DOI: 10.3389/fnut.2025.1511952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Background Recent studies have shown an association between atherogenic index of plasma (AIP) and nonalcoholic fatty liver disease (NAFLD), but the association in a population of pregnant women remains unclear. Objectives Our study aimed to examine the association between AIP and NAFLD in pregnant Korean women. Methods Our study used publicly available data from Korea, which recruited singleton pregnant women between November 2014 and September 2016 who were at 10-14 weeks of gestation. The presence of NAFLD was diagnosed by liver ultrasound. AIP was calculated as log10 (TG/HDL). Participants were grouped according to AIP tertile: T1 (< 0.16, n = 195), T2 (0.16-0.32, n = 195), and T3 (>0.32, n = 196). Logistic regression models were used to estimate the relationship between AIP and NAFLD. Subgroup and sensitivity analyses were conducted to explore the stability of this relationship. Restricted cubic spline (RCS) curve fitting was employed to investigate potential non-linear associations. Results After excluding data on missing variables, 586 singleton pregnant women were finally included. The subjects included in the study had an average AIP of 0.22 (0.11, 0.37), and NAFLD occurred in 110 (18.8%) pregnant women. We observed a positive linear association between AIP and NAFLD (OR = 1.33, 95% CI: 1.19-1.48), which persisted after adjusting for potential confounders (OR = 1.2, 95% CI: 1.06-1.37). When AIP was used as a categorical variable, after adjusting for covariates, the NAFLD risk was significantly higher in the highest tertile of AIP than in the lowest group (OR = 2.02, 95% CI: 1.11-3.68). Their correlations were stable across subgroups and sensitivity analyses. Conclusion In this secondary analysis of a prospective cohort study of pregnant Korean women, AIP was found to be positively associated with NAFLD. These outcomes might be used to screen for NAFLD in pregnant women.
Collapse
Affiliation(s)
- Rong Shuai
- Department of Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Yuxing He
- Department of Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Dongqian Yang
- Department of Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Yingying Zhang
- Department of Laboratory Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, China
| | - Li Zhang
- Department of Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| |
Collapse
|
3
|
Leca BM, Lagojda L, Kite C, Karteris E, Kassi E, Randeva HS, Kyrou I. Maternal obesity and metabolic (dysfunction) associated fatty liver disease in pregnancy: a comprehensive narrative review. Expert Rev Endocrinol Metab 2024; 19:335-348. [PMID: 38860684 DOI: 10.1080/17446651.2024.2365791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Obesity and metabolic-associated fatty liver disease (MAFLD) during pregnancy constitute significant problems for routine antenatal care, with increasing prevalence globally. Similar to obesity, MAFLD is associated with a higher risk for maternal complications (e.g. pre-eclampsia and gestational diabetes) and long-term adverse health outcomes for the offspring. However, MAFLD during pregnancy is often under-recognized, with limited management/treatment options. AREAS COVERED PubMed/MEDLINE, EMBASE, and Scopus were searched based on a search strategy for obesity and/or MAFLD in pregnancy to identify relevant papers up to 2024. This review summarizes the pertinent evidence on the relationship between maternal obesity and MAFLD during pregnancy. Key mechanisms implicated in the underlying pathophysiology linking obesity and MAFLD during pregnancy (e.g. insulin resistance and dysregulated adipokine secretion) are highlighted. Moreover, a diagnostic approach for MAFLD diagnosis during pregnancy and its complications are presented. Finally, promising relevant areas for future research are covered. EXPERT OPINION Research progress regarding maternal obesity, MAFLD, and their impact on maternal and fetal/offspring health is expected to improve the relevant diagnostic methods and lead to novel treatments. Thus, routine practice could apply more personalized management strategies, incorporating individualized algorithms with genetic and/or multi-biomarker profiling to guide prevention, early diagnosis, and treatment.
Collapse
Affiliation(s)
- Bianca M Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Lukasz Lagojda
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Clinical Evidence-Based Information Service (CEBIS), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Chris Kite
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Chester Medical School, University of Chester, Shrewsbury, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
4
|
Bulatova IA, Shevlyukova TP. Features of the course of non-alcoholic fatty liver disease in women at different age periods: literature review. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:90-95. [DOI: 10.21518/ms2024-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review examines the epidemiology and risk factors of non-alcoholic fatty liver disease (NAFLD) for women. According to various sources, the global prevalence of NAFLD ranges from 20 to 40% of the adult population in the world. In Russia, 37.3% of polyclinic patients have NAFLD. NAFLD can occur at any age and has differences in prevalence and severity depending on ethnicity and gender. Over the past 10 years, there has been a trend towards an increase in the prevalence of NAFLD among women, as well as a sharper increase in mortality compared to men. Regardless of gender, prognostically significant risk factors for NAFLD include age, obesity, type 2 diabetes mellitus, insulin resistance, dyslipidemia. The clinical course and prognosis of NAFLD in women depends on age, reproductive stage and use of synthetic hormones. Premenopausal women have less pronounced liver fibrosis and a better life prognosis compared to postmenopausal men and women. The article describes the features of the course of NAFLD in the reproductive period, pre- and postmenopausal period, characterizes the effect of liver steatosis on the course and outcome of pregnancy, the perinatal condition of the mother and fetus. Thus, there are gender differences in the prevalence, risk factors, fibrosis, and clinical outcomes of NAFLD. The prevalence and severity of NAFLD in reproductive age is higher in men, but after menopause, there is an increase in this pathology in women, especially those with metabolic disorders. Liver steatosis can affect the course of pregnancy, labor and postpartum periods.
Collapse
|
5
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
6
|
Huang L, Li Y, Tang R, Yang P, Zhuo Y, Jiang X, Che L, Lin Y, Xu S, Li J, Fang Z, Zhao X, Li H, Yang M, Feng B, Wu D, Hua L. Bile acids metabolism in the gut-liver axis mediates liver injury during lactation. Life Sci 2024; 338:122380. [PMID: 38142738 DOI: 10.1016/j.lfs.2023.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
AIMS The obesity epidemic, especially in pregnant women, linked to a higher risk of liver diseases. Bile acids (BAs) are known to participate in liver metabolism, but this function during obesogenic reproductive process remains largely uncertain. The study aims to identify whether a high-fat diet (HFD) during pregnancy negatively disturbs liver metabolism and the potential role of BAs and gut microbiota (GM)in a sow model. MAIN METHODS Reproductive (RP) or non-reproductive (NRP) sows were fed a 15 % HFD containing compound oil. Body condition, blood parameters, and BAs levels/profile during gestation and lactation were monitored. The tissues and colonic GM were collected after euthanasia at the end of lactation. HepG2 hepatocytes were used to test the effects of BAs on liver damage and the mechanism. KEY FINDINGS Reproductive sows fed an HFD (HF-RP) experienced increased weight loss, and elevated plasma non-esterified fatty acid (NEFA) during lactation, consistent with exacerbated lipolysis, aggravating the risk of liver damage. HF-RP sows exhibited an enlarged BAs pool size and alterations in composition (higher levels of CDCA and LCA species) along with a drastic change in the GM (increased Firmicutes/Bacteroidetes ratio and declined Lactobacillus abundance). Furthermore, the liver FXR-SHP pathway, BAs synthesis and transport underwent adaptive regulation to sustain the BAs homeostasis and hepatic lipid metabolism. CDCA alleviated endoplasmic reticulum (ER) stress induced by palmitic acid via FXR pathway, in HepG2 cells. SIGNIFICANCE Lactation BAs metabolism signal in gut-liver axis coordinated the risk of liver damage induced by exacerbated lipolysis in obesogenic pregnancy.
Collapse
Affiliation(s)
- Long Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yingjie Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Rui Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Pu Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xilun Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
7
|
Dajti E, Bruni A, Barbara G, Azzaroli F. Diagnostic Approach to Elevated Liver Function Tests during Pregnancy: A Pragmatic Narrative Review. J Pers Med 2023; 13:1388. [PMID: 37763154 PMCID: PMC10532949 DOI: 10.3390/jpm13091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Liver disease is not uncommon during pregnancy and is associated with increased maternal and fetal/neonatal morbidity and mortality. Physiological changes during pregnancy, including a hyperestrogenic state, increase in circulating plasma volume and/or reduction in splanchnic vascular resistance, and hemostatic imbalance, may mimic or worsen liver disease. For the clinician, it is important to distinguish among the first presentation or exacerbation of chronic liver disease, acute liver disease non-specific to pregnancy, and pregnancy-specific liver disease. This last group classically includes conditions such as hyperemesis gravidarum, intrahepatic cholestasis of pregnancy, liver disorders associated with the pre-eclampsia spectrum, and an acute fatty liver of pregnancy. All of these disorders often share pathophysiological mechanisms, symptoms, and laboratory findings (such as elevated liver enzymes), but a prompt and correct diagnosis is fundamental to guide obstetric conduct, reduce morbidity and mortality, and inform upon the risk of recurrence or development of other chronic diseases later on in life. Finally, the cause of elevated liver enzymes during pregnancy is unclear in up to 30-40% of the cases, and yet, little is known on the causes and mechanisms underlying these alterations, or whether these findings are associated with worse maternal/fetal outcomes. In this narrative review, we aimed to summarize pragmatically the diagnostic work-up and the management of subjects with elevated liver enzymes during pregnancy.
Collapse
Affiliation(s)
- Elton Dajti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 40138 Bologna, Italy; (A.B.); (G.B.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Angelo Bruni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 40138 Bologna, Italy; (A.B.); (G.B.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 40138 Bologna, Italy; (A.B.); (G.B.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Francesco Azzaroli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 40138 Bologna, Italy; (A.B.); (G.B.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
8
|
Shan D, Dai S, Chen Q, Xie Y, Hu Y. Hepatoprotective agents in the management of intrahepatic cholestasis of pregnancy: current knowledge and prospects. Front Pharmacol 2023; 14:1218432. [PMID: 37719856 PMCID: PMC10500604 DOI: 10.3389/fphar.2023.1218432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by unexplained distressing pruritus in the mother and poses significant risk to the fetus of perinatal mortality. Occurring in the second and third trimester, the serum bile acid and aminotransferase are usually elevated in ICP patients. Ursodeoxycholic acid (UDCA) is the first line drug for ICP but the effectiveness for hepatoprotection is to a certain extent. In ICP patients with severe liver damage, combination use of hepatoprotective agents with UDCA is not uncommon. Herein, we reviewed the current clinical evidence on application of hepatoprotective agents in ICP patients. The underlying physiological mechanisms and their therapeutic effect in clinical practice are summarized. The basic pharmacologic functions of these hepatoprotective medications include detoxification, anti-inflammation, antioxidation and hepatocyte membrane protection. These hepatoprotective agents have versatile therapeutic effects including anti-inflammation, antioxidative stress, elimination of free radicals, anti-steatohepatitis, anti-fibrosis and anti-cirrhosis. They are widely used in hepatitis, non-alcoholic fatty liver disease, drug induced liver injury and cholestasis. Evidence from limited clinical data in ICP patients demonstrate reliable effectiveness and safety of these medications. Currently there is still no consensus on the application of hepatoprotective agents in ICP pregnancies. Dynamic monitoring of liver biochemical parameters and fetal condition is still the key recommendation in the management of ICP pregnancies.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yupei Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Utility of Doppler-Ultrasound and Liver Elastography in the Evaluation of Patients with Suspected Pregnancy-Related Liver Disease. J Clin Med 2023; 12:jcm12041653. [PMID: 36836188 PMCID: PMC9962049 DOI: 10.3390/jcm12041653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Grayscale abdomen ultrasound (US) is routinely performed in pregnant women with suspected pregnancy-related liver dysfunction, but its diagnostic yield is very low. We aimed to investigate the association between Doppler-US findings, liver stiffness measurement (LSM) and different causes of pregnancy-related liver dysfunction. This is a prospective cohort study of pregnant women referred to our tertiary center for any suspected gastrointestinal disease between 2017 and 2019 and undergoing Doppler-US and liver elastography. Patients with previous liver disease were excluded from the analysis. For group comparisons of categorical and continuous variables, the chi-square test or Mann-Whitney test, and the McNemar test were used, as appropriate. A total of 112 patients were included in the final analysis, of whom 41 (36.6%) presented with suspected liver disease: 23 intrahepatic cholestasis of pregnancy (ICP), six with gestational hypertensive disorders and 12 cases with undetermined causes of elevated liver enzymes. Values of LSM were higher and significantly associated with a diagnosis of gestational hypertensive disorder (AUROC = 0.815). No significant differences at Doppler-US or LSM were found between ICP patients and controls. Patients with undetermined causes of hypertransaminasemia showed higher hepatic and splenic resistive indexes than controls, suggesting splanchnic congestion. The evaluation of Doppler-US and liver elastography is clinically useful in patients with suspected liver dysfunction during pregnancy. Liver stiffness represents a promising non-invasive tool for the assessment of patients with gestational hypertensive disorders.
Collapse
|
10
|
Nakanishi A, Henry L, Nguyen MH. MAFLD and Pregnancy: What are the Consequences? Clin Gastroenterol Hepatol 2022; 20:2653. [PMID: 35051647 DOI: 10.1016/j.cgh.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Akiko Nakanishi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Linda Henry
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, and Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California
| |
Collapse
|
11
|
Lean SC, Candia AA, Gulacsi E, Lee GCL, Sferruzzi-Perri AN. Obesogenic diet in mice compromises maternal metabolic physiology and lactation ability leading to reductions in neonatal viability. Acta Physiol (Oxf) 2022; 236:e13861. [PMID: 35880402 PMCID: PMC9787084 DOI: 10.1111/apha.13861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 01/29/2023]
Abstract
AIMS Diets containing high-fat and high sugar (HFHS) lead to overweight/obesity. Overweight/obesity increases the risk of infertility, and of the pregnant mother and her child for developing metabolic conditions. Overweight/obesity has been recreated in mice, but most studies focus on the effects of chronic, long-term HFHS diet exposure. Here, we exposed mice to HFHS from 3 weeks prior to pregnancy with the aim of determining impacts on fertility, and gestational and neonatal outcomes. METHODS Time-domain NMR scanning was used to assess adiposity, glucose, and insulin tolerance tests were employed to examine metabolic physiology, and morphological and proteomic analyses conducted to assess structure and nutrient levels of maternal organs and placenta. RESULTS Fertility measures of HFHS dams were largely the same as controls. HFHS dams had increased adiposity pre-pregnancy, however, exhibited exacerbated lipolysis/hyper-mobilization of adipose stores in late pregnancy. While there were no differences in glucose or insulin tolerance, HFHS dams were hyperglycemic and hyperinsulinemic in pregnancy. HFHS dams had fatty livers and altered pancreatic islet morphology. Although fetuses were hyperglycemic and hyperinsulinemic, there was no change in fetal growth in HFHS dams. There were also reductions in placenta formation. Moreover, there was increased offspring loss during lactation, which was related to aberrant mammary gland development and milk protein composition in HFHS dams. CONCLUSIONS These findings are relevant given current dietary habits and the development of maternal and offspring alterations in the absence of an increase in maternal weight and adiposity during pregnancy, which are the current clinical markers to determine risk across gestation.
Collapse
Affiliation(s)
- Samantha C Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alejandro A Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department for the Woman and Newborn Health Promotion, Universidad de Chile, Santiago, Chile
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Giselle C L Lee
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Sudden and unexpected deaths due to non-traumatic abdominal disorders: A forensic perspective. J Forensic Leg Med 2022; 89:102355. [PMID: 35512523 DOI: 10.1016/j.jflm.2022.102355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 12/22/2022]
|
13
|
Huang J, Wang C, Li X, Jing Y. Application of CEEMD noise reduction algorithm in ultrasound imaging in evaluating fetuses with abnormal glucose metabolism in late pregnancy. Pak J Med Sci 2021; 37:1590-1594. [PMID: 34712288 PMCID: PMC8520375 DOI: 10.12669/pjms.37.6-wit.4844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: To explore the predictive effect of abnormal glucose metabolism and fetal hemodynamic parameters on adverse pregnancy outcome. Methods: One hundred and nine pregnant women with abnormal glucose metabolism during pregnancy from June 2016 to October 2018 were selected and divided into poor prognosis group (34 cases) and good prognosis group (75 cases). The hemodynamic parameters of fetal cerebral artery (MCA), umbilical artery (UA) and uterine artery of pregnancy (UT-A), including peak systolic velocity (s / D), resistance index (RI) and plasticity index (PI), were measured by color Doppler ultrasound. The receiver operating characteristic (ROC) curve of adverse pregnancy outcomes was drawn and the best threshold index was determined. Results: MCA-PI poor prognosis group, MCA-RI, RI ratio (MCA/UA) are lower than the good prognosis group, Ut-A-PI is higher than the good prognosis group (P<0.05,). ROC curve analysis results show that when the MCA-PI 1.56, the sensitivity of the predicted adverse outcomes of pregnancy, the highest specificity<, was 91.18%, 80.00%, respectively. Logistic regression analysis of risk factors shows poor pregnancy outcomes include: pregnant women, older age, body mass index ≥24.0kg/m2 and a family history of diabetes. Protective factors include exercise during pregnancy, MCA-PI≥1.56, MCA-RI≥0.63 and RI The ratio (MCA/UA) ≥0.84. Conclusion: Color Doppler ultrasound measured MCA-PI<1.56 the most important indicators of poor pregnancy outcomes as abnormal glucose metabolism during pregnancy and predict the exact cutoff. Pregnant women, older age, body mass index ≥24.0kg/m2 and a family history of diabetes and abnormal glucose metabolism during pregnancy risk factors for adverse outcomes of pregnancy.
Collapse
Affiliation(s)
- Junfeng Huang
- Junfeng Huang, Deputy Chief Nurse. Department of Nursing, Maternal and Child Health Hospital of Jinan City, Jinan City 250001, Shandong Province, China
| | - Cuiting Wang
- Cuiting Wang, Bachelor's Degrees. Department of Obstetrical, Maternal and Child Health Hospital of Jinan City, Jinan City 250001, Shandong Province, China
| | - Xianxia Li
- Xianxia Li, Supervisor nurse. Department of Obstetrical, Maternal and Child Health Hospital of Jinan City, Jinan City 250001, Shandong Province, China
| | - Yuqin Jing
- Yuqin Jing, Supervisor nurse. Department of Surgical, Maternal and Child Health Hospital of Jinan City, Jinan City 250001, Shandong Province, China
| |
Collapse
|
14
|
Provenzano A, Farina A, Seidenari A, Azzaroli F, Serra C, Della Gatta A, Zuffardi O, Giglio SR. Prenatal Noninvasive Trio-WES in a Case of Pregnancy-Related Liver Disorder. Diagnostics (Basel) 2021; 11:diagnostics11101904. [PMID: 34679599 PMCID: PMC8534548 DOI: 10.3390/diagnostics11101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/16/2023] Open
Abstract
Liver disease in pregnancy may present as an acute condition related to the gestational period, characterized by pruritus, jaundice, and abnormal liver function. The disease may be misdiagnosed with other liver diseases, some of which may have consequences for fetal health. It is therefore advisable to implement rapid diagnostic strategies to provide information for the management of pregnancy in these conditions. We report the case of a healthy woman with a twin pregnancy from homologous in vitro fertilization (IVF), who in the third trimester presented jaundice and malaise. Biochemical investigations and liver hyperechogenicity raised the suspicion of acute fatty liver disease of pregnancy (AFLP). Non-invasive prenatal whole-exome sequencing (WES) in the trio identified the Phe305Ile heterozygous variant in the ATP8B1 gene. Considering the twin pregnancy, the percentage of the variant versus the wild allele was of 31%, suggesting heterozygosity present in the mother alone. This analysis showed that the mother was affected by benign recurrent intrahepatic cholestasis of pregnancy (ICP1: # 147480) and indicated the opportunity to anticipate childbirth to avoid worsening of the mother’s health. WES after the birth of the twins confirmed the molecular data.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Medical Genetics Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Correspondence:
| | - Antonio Farina
- Division of Obstetrics and Prenatal Medicine, IRCCS Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (A.F.); (A.S.); (A.D.G.)
| | - Anna Seidenari
- Division of Obstetrics and Prenatal Medicine, IRCCS Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (A.F.); (A.S.); (A.D.G.)
| | - Francesco Azzaroli
- Division of Internal Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Carla Serra
- Department of Organ Failure and Transplantation, Sant’Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy;
| | - Anna Della Gatta
- Division of Obstetrics and Prenatal Medicine, IRCCS Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (A.F.); (A.S.); (A.D.G.)
| | - Orsetta Zuffardi
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sabrina Rita Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09126 Cagliari, Italy;
| |
Collapse
|
15
|
Francque SM, Marchesini G, Kautz A, Walmsley M, Dorner R, Lazarus JV, Zelber-Sagi S, Hallsworth K, Busetto L, Frühbeck G, Dicker D, Woodward E, Korenjak M, Willemse J, Koek GH, Vinker S, Ungan M, Mendive JM, Lionis C. Non-alcoholic fatty liver disease: A patient guideline. JHEP Rep 2021; 3:100322. [PMID: 34693236 PMCID: PMC8514420 DOI: 10.1016/j.jhepr.2021.100322] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
This patient guideline is intended for all patients at risk of or living with non-alcoholic fatty liver disease (NAFLD). NAFLD is the most frequent chronic liver disease worldwide and comes with a high disease burden. Yet, there is a lot of unawareness. Furthermore, many aspects of the disease are still to be unravelled, which has an important impact on the information that is given (or not) to patients. Its management requires a close interaction between patients and their many healthcare providers. It is important for patients to develop a full understanding of NAFLD in order to enable them to take an active role in their disease management. This guide summarises the current knowledge relevant to NAFLD and its management. It has been developed by patients, patient representatives, clinicians and scientists and is based on current scientific recommendations, intended to support patients in making informed decisions.
Collapse
Key Words
- ALD, alcohol-related or alcoholic liver disease
- ASH, alcoholic steatohepatitis
- BMI, body mass index
- CAP, controlled attenuation parameter
- CT, computed tomography
- CVD, cardiovascular disease
- EASD, European Association for the Study of Diabetes
- EASL, European Association for the Study of the Liver
- EASO, European Association for the Study of Obesity
- FIB-4, fibrosis-4 index
- FXR, farnesoid X receptor
- GLP-1 RAs, glucagon-like receptor 1 agonists
- GP, general practitioner
- HCC, hepatocellular carcinoma
- HDL, high-density lipoprotein
- LDL, low-density lipoproteins
- MRE, magnetic resonance elastography
- MRI, magnetic resonance imaging
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NASH CRN, NASH Clinical Research Network
- NASH, non-alcoholic steatohepatitis
- NIT, non-invasive test
- SMART, specific, measurable, achievable, relevant, timely
- T1D, type 1 diabetes
- T2D, type 2 diabetes
Collapse
Affiliation(s)
- Sven M. Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Translational Sciences in Inflammation and Immunology, University of Antwerp, Antwerp, Belgium
| | - Giulio Marchesini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
- Department of Medical and Surgical Sciences, “Alma Mater” University, Bologna, Italy
| | | | | | | | - Jeffrey V. Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Spain
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology and Hepatology, The Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Kate Hallsworth
- Newcastle NIHR Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Luca Busetto
- Department of Medicine, University of Padova, Italy
- European Association for the Study of Obesity
| | - Gema Frühbeck
- Department of Endocrinology & Nutrition, University of Navarra Clinic, IdiSNA, CIBEROBN, Pamplona, Spain
- European Association for the Study of Obesity
| | - Dror Dicker
- Department of Internal Medicine, Rabin Medical Center Hasharon Hospital, Tikva, Israel
- European Association for the Study of Obesity
| | | | | | | | - Gerardus H. Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Shlomo Vinker
- Department of Family Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- World Organization of Family Doctors (WONCA)
- European General Practice Research Network (EGPRN)
- Israel Association of Family Physicians, Israel
- Leumit Health Services, Tel Aviv, Israel
| | | | - Juan M. Mendive
- Training Unit of Family Medicine, Catalan Institute of Health, Barcelona, Spain
- European Society for Primary Care Gastroenterology
| | - Christos Lionis
- European Society for Primary Care Gastroenterology
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
16
|
Álvarez D, Muñoz Y, Ortiz M, Maliqueo M, Chouinard-Watkins R, Valenzuela R. Impact of Maternal Obesity on the Metabolism and Bioavailability of Polyunsaturated Fatty Acids during Pregnancy and Breastfeeding. Nutrients 2020; 13:nu13010019. [PMID: 33374585 PMCID: PMC7822469 DOI: 10.3390/nu13010019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Prenatal and postnatal development are closely related to healthy maternal conditions that allow for the provision of all nutritional requirements to the offspring. In this regard, an appropriate supply of fatty acids (FA), mainly n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA), is crucial to ensure a normal development, because they are an integral part of cell membranes and participate in the synthesis of bioactive molecules that regulate multiple signaling pathways. On the other hand, maternal obesity and excessive gestational weight gain affect FA supply to the fetus and neonate, altering placental nutrient transfer, as well as the production and composition of breast milk during lactation. In this regard, maternal obesity modifies FA profile, resulting in low n-3 and elevated n-6 PUFA levels in maternal and fetal circulation during pregnancy, as well as in breast milk during lactation. These modifications are associated with a pro-inflammatory state and oxidative stress with short and long-term consequences in different organs of the fetus and neonate, including in the liver, brain, skeletal muscle, and adipose tissue. Altogether, these changes confer to the offspring a higher risk of developing obesity and its complications, as well as neuropsychiatric disorders, asthma, and cancer. Considering the consequences of an abnormal FA supply to offspring induced by maternal obesity, we aimed to review the effects of obesity on the metabolism and bioavailability of FA during pregnancy and breastfeeding, with an emphasis on LCPUFA homeostasis.
Collapse
Affiliation(s)
- Daniela Álvarez
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Yasna Muñoz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Macarena Ortiz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: or ; Tel.: +56-2-9786746
| |
Collapse
|