1
|
Drapkina OM, Kontsevaya AV, Kalinina AM, Avdeev SN, Agaltsov MV, Alekseeva LI, Almazova II, Andreenko EY, Antipushina DN, Balanova YA, Berns SA, Budnevsky AV, Gainitdinova VV, Garanin AA, Gorbunov VM, Gorshkov AY, Grigorenko EA, Jonova BY, Drozdova LY, Druk IV, Eliashevich SO, Eliseev MS, Zharylkasynova GZ, Zabrovskaya SA, Imaeva AE, Kamilova UK, Kaprin AD, Kobalava ZD, Korsunsky DV, Kulikova OV, Kurekhyan AS, Kutishenko NP, Lavrenova EA, Lopatina MV, Lukina YV, Lukyanov MM, Lyusina EO, Mamedov MN, Mardanov BU, Mareev YV, Martsevich SY, Mitkovskaya NP, Myasnikov RP, Nebieridze DV, Orlov SA, Pereverzeva KG, Popovkina OE, Potievskaya VI, Skripnikova IA, Smirnova MI, Sooronbaev TM, Toroptsova NV, Khailova ZV, Khoronenko VE, Chashchin MG, Chernik TA, Shalnova SA, Shapovalova MM, Shepel RN, Sheptulina AF, Shishkova VN, Yuldashova RU, Yavelov IS, Yakushin SS. Comorbidity of patients with noncommunicable diseases in general practice. Eurasian guidelines. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2024; 23:3696. [DOI: 10.15829/1728-8800-2024-3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Создание руководства поддержано Советом по терапевтическим наукам отделения клинической медицины Российской академии наук.
Collapse
|
2
|
Bartziokas K, Papaioannou AI, Drakopanagiotakis F, Gouveri E, Papanas N, Steiropoulos P. Unraveling the Link between Ιnsulin Resistance and Bronchial Asthma. Biomedicines 2024; 12:437. [PMID: 38398039 PMCID: PMC10887139 DOI: 10.3390/biomedicines12020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Evidence from large epidemiological studies has shown that obesity may predispose to increased Th2 inflammation and increase the odds of developing asthma. On the other hand, there is growing evidence suggesting that metabolic dysregulation that occurs with obesity, and more specifically hyperglycemia and insulin resistance, may modify immune cell function and in some degree systemic inflammation. Insulin resistance seldom occurs on its own, and in most cases constitutes a clinical component of metabolic syndrome, along with central obesity and dyslipidemia. Despite that, in some cases, hyperinsulinemia associated with insulin resistance has proven to be a stronger risk factor than body mass in developing asthma. This finding has been supported by recent experimental studies showing that insulin resistance may contribute to airway remodeling, promotion of airway smooth muscle (ASM) contractility and proliferation, increase of airway hyper-responsiveness and release of pro-inflammatory mediators from adipose tissue. All these effects indicate the potential impact of hyperinsulinemia on airway structure and function, suggesting the presence of a specific asthma phenotype with insulin resistance. Epidemiologic studies have found that individuals with severe and uncontrolled asthma have a higher prevalence of glycemic dysfunction, whereas longitudinal studies have linked glycemic dysfunction to an increased risk of asthma exacerbations. Since the components of metabolic syndrome interact with one another so much, it is challenging to identify each one's specific role in asthma. This is why, over the last decade, additional studies have been conducted to determine whether treatment of type 2 diabetes mellitus affects comorbid asthma as shown by the incidence of asthma, asthma control and asthma-related exacerbations. The purpose of this review is to present the mechanism of action, and existing preclinical and clinical data, regarding the effect of insulin resistance in asthma.
Collapse
Affiliation(s)
| | - Andriana I. Papaioannou
- 1st University Department of Respiratory Medicine, “Sotiria” Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Fotios Drakopanagiotakis
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Evanthia Gouveri
- Diabetes Centre, 2nd Department of Internal Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.G.); (N.P.)
| | - Nikolaos Papanas
- Diabetes Centre, 2nd Department of Internal Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.G.); (N.P.)
| | - Paschalis Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Disorders of glucose metabolism, including insulin resistance, prediabetes, and diabetes, have been identified as risk factors for worsened asthma. This review summarizes emerging evidence for their role as modifiable risk factors in asthma, including the potential benefit of diabetes medications on asthma outcomes. RECENT FINDINGS Experimental studies show that hyperinsulinemia associated with insulin resistance is associated with airway smooth muscle proliferation and promotes contractility. Epidemiologic studies have identified a higher prevalence of glycemic dysfunction among those with severe and uncontrolled asthma, and longitudinal studies have associated prediabetes and diabetes with higher risk of asthma exacerbations. The potential benefits of thiazolidinediones (TZDs), glucagon-like peptide-1 agonists, and metformin being investigated in asthma, but thus far interventional studies of TZDs have reported null results. On the contrary, observational studies have inconsistently controlled for relevant confounders which leaves conclusions vulnerable to misattribution of relationships due to corelated metabolic disorders, including dyslipidemia. SUMMARY Developing evidence suggests that disorders of glucose metabolism may be associated with worsening asthma. However, these conditions arise within a network of obesity-related metabolic diseases that may themselves worsen asthma. Few interventional trials have not identified a benefit, but data have been limited. Additional research is needed to define the potential independent impact of disorders of glucose metabolism in asthma.
Collapse
|
4
|
Cao Q, Yang N, Wang Y, Xu C, Zhang X, Fan K, Chen F, Liang H, Zhang Y, Deng X, Feng Y, Yang CG, Wu M, Bae T, Lan L. Mutation-induced remodeling of the BfmRS two-component system in Pseudomonas aeruginosa clinical isolates. Sci Signal 2020; 13:13/656/eaaz1529. [PMID: 33144518 DOI: 10.1126/scisignal.aaz1529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic mutations are a primary driving force behind the adaptive evolution of bacterial pathogens. Multiple clinical isolates of Pseudomonas aeruginosa, an important human pathogen, have naturally evolved one or more missense mutations in bfmS, which encodes the sensor histidine kinase of the BfmRS two-component system (TCS). A mutant BfmS protein containing both the L181P and E376Q substitutions increased the phosphorylation and thus the transcriptional regulatory activity of its cognate downstream response regulator, BfmR. This reduced acute virulence and enhanced biofilm formation, both of which are phenotypic changes associated with a chronic infection state. The increased phosphorylation of BfmR was due, at least in part, to the cross-phosphorylation of BfmR by GtrS, a noncognate sensor kinase. Other spontaneous missense mutations in bfmS, such as A42E/G347D, T242R, and R393H, also caused a similar remodeling of the BfmRS TCS in P. aeruginosa This study highlights the plasticity of TCSs mediated by spontaneous mutations and suggests that mutation-induced activation of BfmRS may contribute to host adaptation by P. aeruginosa during chronic infections.
Collapse
Affiliation(s)
- Qiao Cao
- College of Life Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nana Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenchen Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feifei Chen
- College of Life Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi'an 710127, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Youjun Feng
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | - Lefu Lan
- College of Life Science, Northwest University, Xi'an 710127, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| |
Collapse
|
5
|
Cafferkey J, Coultas JA, Mallia P. Human rhinovirus infection and COPD: role in exacerbations and potential for therapeutic targets. Expert Rev Respir Med 2020; 14:777-789. [PMID: 32498634 DOI: 10.1080/17476348.2020.1764354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Respiratory virus infections (predominantly rhinoviruses) are the commonly identified in COPD exacerbations but debate about their role as a trigger of exacerbations continues. Experimental infection studies have provided significant new evidence establishing a causal relationship between virus infection and COPD exacerbations and contributed to a better understanding of the mechanisms of virus-induced exacerbations. However as yet no anti-viral treatments have undergone clinical trials in COPD patients. AREAS COVERED This review discusses the evidence for and against respiratory viruses being the main trigger of COPD exacerbations from both epidemiological studies and experimental infection studies. The host immune response to rhinovirus infection and how abnormalities in host immunity may underlie increased susceptibility to virus infection in COPD are discussed and the role of dual viral-bacterial infection in COPD exacerbations. Finally the current state of anti-viral therapy is discussed and how these may be used in the future treatment of COPD exacerbations. EXPERT OPINION Respiratory virus infections are the trigger of a substantial proportion of COPD exacerbations and rhinoviruses are the most common virus type. Clinical trials of anti-viral agents are needed in COPD patients to determine whether they are effective in virus-induced COPD exacerbations.
Collapse
Affiliation(s)
- John Cafferkey
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust , London, UK
| | | | - Patrick Mallia
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust , London, UK.,National Heart and Lung Institute, Imperial College London , London, UK
| |
Collapse
|