1
|
Ravizza T, Volpedo G, Riva A, Striano P, Vezzani A. Intestinal microbiome alterations in pediatric epilepsy: Implications for seizures and therapeutic approaches. Epilepsia Open 2025. [PMID: 40232107 DOI: 10.1002/epi4.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
The intestinal microbiome plays a pivotal role in maintaining host health through its involvement in gastrointestinal, immune, and central nervous system (CNS) functions. Recent evidence underscores the bidirectional communication between the microbiota, the gut, and the brain and the impact of this axis on neurological diseases, including epilepsy. In pediatric patients, alterations in gut microbiota composition-called intestinal dysbiosis-have been linked to seizure susceptibility. Preclinical models revealed that gut dysbiosis may exacerbate seizures, while microbiome-targeted therapies, including fecal microbiota transplantation, pre/pro-biotics, and ketogenic diets, show promise in reducing seizures. Focusing on clinical and preclinical studies, this review examines the role of the gut microbiota in pediatric epilepsy with the aim of exploring its implications for seizure control and management of epilepsy. We also discuss mechanisms that may underlie mutual gut-brain communication and emerging therapeutic strategies targeting the gut microbiome as a novel approach to improve outcomes in pediatric epilepsy. PLAIN LANGUAGE SUMMARY: Reciprocal communication between the brain and the gut appears to be dysfunctional in pediatric epilepsy. The composition of bacteria in the intestine -known as microbiota- and the gastrointestinal functions are altered in children with drug-resistant epilepsy and animal models of pediatric epilepsies. Microbiota-targeted interventions, such as ketogenic diets, pre-/post-biotics administration, and fecal microbiota transplantation, improve both gastrointestinal dysfunctions and seizures in pediatric epilepsy. These findings suggest that the gut and its microbiota represent potential therapeutic targets for reducing drug-resistant seizures in pediatric epilepsy.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Greta Volpedo
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
Wu H, Huang C, Xiong S. Gut microbiota as a potential therapeutic target for children with cerebral palsy and epilepsy. Brain Dev 2025; 47:104286. [PMID: 39426843 DOI: 10.1016/j.braindev.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
Gut microbiota (GM), the "second genome," exerts influence on human health by impacting brain function through the gut-brain axis. This interaction involves various mechanisms, including immune regulation, metabolites, and neuronal pathways. The application of the next-generation sequencing technology provides a revolutionary tool for the study of GM, which contributes to a deeper comprehension of the GM-host relationship. Children with cerebral palsy (CP), a common neurological disorder in children, are more likely to develop epilepsy, which can exacerbate CP symptoms, particularly those related to cognitive impairment and gastrointestinal tract, such as constipation. The current study identified specific changes in the GM of children with CP accompanied by epilepsy. Furthermore, both diet and oral microbiota have the potential to influence the composition of the GM. Interventions with probiotics and dietary fiber based on GM can improve constipation and cognition, and this approach may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Hui Wu
- Child Healthcare Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Congfu Huang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Shenghua Xiong
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Riva A, Sahin E, Volpedo G, Petretto A, Lavarello C, Di Sapia R, Barbarossa D, Zaniani NR, Craparotta I, Barbera MC, Sezerman U, Vezzani A, Striano P, Ravizza T. Identification of an epilepsy-linked gut microbiota signature in a pediatric rat model of acquired epilepsy. Neurobiol Dis 2024; 194:106469. [PMID: 38485093 DOI: 10.1016/j.nbd.2024.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
A dysfunctional gut microbiota-brain axis is emerging as a potential pathogenic mechanism in epilepsy, particularly in pediatric forms of epilepsy. To add new insights into gut-related changes in acquired epilepsy that develops early in life, we used a multi-omics approach in a rat model with a 56% incidence of epilepsy. The presence of spontaneous seizures was assessed in adult rats (n = 46) 5 months after status epilepticus induced by intra-amygdala kainate at postnatal day 13, by 2 weeks (24/7) ECoG monitoring. Twenty-six rats developed epilepsy (Epi) while the remaining 20 rats (No-Epi) did not show spontaneous seizures. At the end of ECoG monitoring, all rats and their sham controls (n = 20) were sacrificed for quantitative histopathological and immunohistochemical analyses of the gut structure, glia and macrophages, as well as RTqPCR analysis of inflammation/oxidative stress markers. By comparing Epi, No-Epi rats, and sham controls, we found structural, cellular, and molecular alterations reflecting a dysfunctional gut, which were specifically associated with epilepsy. In particular, the villus height-to-crypt depth ratio and number of Goblet cells were reduced in the duodenum of Epi rats vs both No-Epi rats and sham controls (p < 0.01). Villus height and crypt depth in the duodenum and jejunum (p < 0.01) were increased in No-Epi vs both Epi and sham controls. We also detected enhanced Iba1-positive macrophages, together with increased IL1b and NFE2L2 transcripts and TNF protein, in the small intestine of Epi vs both No-Epi and sham control rats (p < 0.01), denoting the presence of inflammation and oxidative stress. Astroglial GFAP-immunostaining was similar in all experimental groups. Metagenomic analysis in the feces collected 5 months after status epilepticus showed that the ratio of two dominant phyla (Bacteroidota-to-Firmicutes) was similarly increased in Epi and No-Epi rats vs sham control rats. Notably, the relative abundance of families, genera, and species associated with SCFA production differed in Epi vs No-Epi rats, describing a bacterial imprint associated with epilepsy. Furthermore, Epi rats showed a blood metabolic signature characterized by changes in lipid metabolism compared to both No-Epi and sham control rats. Our study provides new evidence of long-term gut alterations, along with microbiota-related metabolic changes, occurring specifically in rats that develop epilepsy after brain injury early in life.
Collapse
Affiliation(s)
- Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Eray Sahin
- Acıbadem University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Greta Volpedo
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | | | | | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Davide Barbarossa
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Nasibeh Riahi Zaniani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maria Chiara Barbera
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Uğur Sezerman
- Acıbadem University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
4
|
Wlaź P, Wiater A, Majewska M, Wyska E, Grąz M, Śliwa-Dominiak J, Gapińska N, Socała K. Effect of dietary supplementation with Lactobacillus helveticus R0052 on seizure thresholds and antiseizure potency of sodium valproate in mice. Psychopharmacology (Berl) 2024; 241:327-340. [PMID: 37966492 PMCID: PMC10805985 DOI: 10.1007/s00213-023-06489-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Both animal and human studies, though limited, showed that multi-strain probiotic supplementation may reduce the number of seizures and/or seizure severity. Here, we evaluated the effect of a single strain probiotic supplementation on seizure susceptibility, antiseizure efficacy of sodium valproate, and several behavioral parameters in mice. METHODS Lactobacillus helveticus R0052 was given orally for 28 days. Its influence on seizure thresholds was evaluated in the ivPTZ- and electrically-induced seizure tests. The effect on the antiseizure potency of valproate was assessed in the scPTZ test. We also investigated the effects of probiotic supplementation on anxiety-related behavior (in the elevated plus maze and light/dark box tests), motor coordination (in the accelerating rotarod test), neuromuscular strength (in the grip-strength test), and spontaneous locomotor activity. Serum and brain concentrations of valproate as well as cecal contents of SCFAs and lactate were determined using HPLC method. RESULTS L. helveticus R0052 significantly increased the threshold for the 6 Hz-induced psychomotor seizure. There was also a slight increase in the threshold for myoclonic and clonic seizure in the ivPTZ test. L. helveticus R0052 did not affect the threshold for tonic seizures both in the maximal electroshock- and ivPTZ-induced seizure tests. No changes in the antiseizure potency of valproate against the PTZ-induced seizures were reported. Interestingly, L. helveticus R0052 increased valproate concentration in serum, but not in the brain. Moreover, L. helveticus R0052 did not produce any significant effects on anxiety-related behavior, motor coordination, neuromuscular strength, and locomotor activity. L. helveticus R0052 supplementation resulted in increased concentrations of total SCFAs, acetate, and butyrate. CONCLUSIONS Altogether, this study shows that a single-strain probiotic - L. helveticus R0052 may decrease seizure susceptibility and this effect can be mediated, at least in part, by increased production of SCFAs. In addition, L. helveticus R0052 may affect bioavailability of valproate, which warrants further investigations.
Collapse
Affiliation(s)
- Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Joanna Śliwa-Dominiak
- R&D and Scientific Department, Sanprobi Sp. z o.o Sp.k., Quality Control and Microbiology Laboratory, Kurza Stopka 5/C, PL 70-535, Szczecin, Poland
| | - Nikola Gapińska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland.
| |
Collapse
|
5
|
Chen S, Tang L, Nie T, Fang M, Cao X. Fructo-oligofructose ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions and psychiatric comorbidities in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5004-5018. [PMID: 36987580 DOI: 10.1002/jsfa.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by pruritus and eczema lesions and psychiatric comorbidities. The gut-brain-skin axis plays a pivotal role during AD development, which might suggest a novel therapeutic strategy for AD. The present study aims to uncover the protective effects and underlying mechanisms of fructo-oligofructose (FOS), a type of prebiotic, on AD-like skin manifestations and comorbid anxiety and depression in AD mice. RESULTS Female Kunming mice were treated topically with 2,4-dinitrofluorobenzene (DNFB) to induce AD-like symptoms and FOS was administered daily for 14 days. The results showed that FOS could alleviate AD-like skin lesions markedly as evidenced by dramatic decreases in severity score, scratching bouts, the levels of immunoglobulin E (IgE) and T helper 1(Th1)/Th2-related cytokines, and the infiltration of inflammatory cells and mast cells to the dermal tissues. The comorbid anxiety and depressive-like behaviors, estimated by the forced swimming test (FST), the tail-suspension test (TST), the open-field test (OFT), and the zero maze test (ZMT) in AD mice, were significantly attenuated by FOS. Fructo-oligofructose significantly upregulated brain neurotransmitters levels of 5-hydroxytryptamine (5-HT) and dopamine (DA). Furthermore, FOS treatment increased the relative abundance of gut microbiota, such as Prevotella and Lactobacillus and the concentrations of short-chain fatty acids (SCFAs), especially acetate and iso-butyrate in the feces of AD mice. The correlation analysis indicated that the reshaped gut microbiome composition and enhanced SCFAs formation are associated with skin inflammation and behavioral alteration. CONCLUSION Collectively, these data identify FOS as a promising microbiota-targeted treatment for AD-like skin inflammation and comorbid anxiety and depressive-like behaviors. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaoze Chen
- School of Medicine, Jianghan University, Wuhan, China
| | - Liu Tang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Nie
- School of Medicine, Jianghan University, Wuhan, China
| | - Mingyu Fang
- School of Medicine, Jianghan University, Wuhan, China
| | - Xiaoqin Cao
- School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
6
|
Liu L, Wang H, Chen X, Xie P. Gut microbiota: a new insight into neurological diseases. Chin Med J (Engl) 2023; 136:1261-1277. [PMID: 35830286 PMCID: PMC10309523 DOI: 10.1097/cm9.0000000000002212] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT In the last decade, it has become increasingly recognized that a balanced gut microbiota plays an important role in maintaining the health of the host. Numerous clinical and preclinical studies have shown that changes in gut microbiota composition are associated with a variety of neurological diseases, e.g., Parkinson's disease, Alzheimer's disease, and myasthenia gravis. However, the underlying molecular mechanisms are complex and remain unclear. Behavioral phenotypes can be transmitted from humans to animals through gut microbiota transplantation, indicating that the gut microbiota may be an important regulator of neurological diseases. However, further research is required to determine whether animal-based findings can be extended to humans and to elucidate the relevant potential mechanisms by which the gut microbiota regulates neurological diseases. Such investigations may aid in the development of new microbiota-based strategies for diagnosis and treatment and improve the clinical management of neurological disorders. In this review, we describe the dysbiosis of gut microbiota and the corresponding mechanisms in common neurological diseases, and discuss the potential roles that the intestinal microbiome may play in the diagnosis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xueyi Chen
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Wang Y, Zhuo Z, Wang H. Epilepsy, gut microbiota, and circadian rhythm. Front Neurol 2023; 14:1157358. [PMID: 37273718 PMCID: PMC10232836 DOI: 10.3389/fneur.2023.1157358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
In recent years, relevant studies have found changes in gut microbiota (GM) in patients with epilepsy. In addition, impaired sleep and circadian patterns are common symptoms of epilepsy. Moreover, the types of seizures have a circadian rhythm. Numerous reports have indicated that the GM and its metabolites have circadian rhythms. This review will describe changes in the GM in clinical and animal studies under epilepsy and circadian rhythm disorder, respectively. The aim is to determine the commonalities and specificities of alterations in GM and their impact on disease occurrence in the context of epilepsy and circadian disruption. Although clinical studies are influenced by many factors, the results suggest that there are some commonalities in the changes of GM. Finally, we discuss the links among epilepsy, gut microbiome, and circadian rhythms, as well as future research that needs to be conducted.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| |
Collapse
|
8
|
Gong X, Liu L, Li X, Xiong J, Xu J, Mao D, Liu L. Neuroprotection of cannabidiol in epileptic rats: Gut microbiome and metabolome sequencing. Front Nutr 2022; 9:1028459. [PMID: 36466385 PMCID: PMC9709218 DOI: 10.3389/fnut.2022.1028459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
AIMS Epilepsy is a neurological disease occurring worldwide. Alterations in the gut microbial composition may be involved in the development of Epilepsy. The study aimed to investigate the effects of cannabidiol (CBD) on gut microbiota and the metabolic profile of epileptic rats. MATERIALS AND METHODS AND RESULTS A temporal lobe epilepsy rat model was established using Li-pilocarpine. CBD increased the incubation period and reduced the epileptic state in rats. Compared to epileptic rats, the M1/M2 ratio of microglia in the CBD group was significantly decreased. The expression of IL-1β, IL-6, and TNF-α in the CBD group decreased, while IL-10, IL-4, and TGF-β1 increased. 16S rDNA sequencing revealed that the ANOSIM index differed significantly between the groups. At the genus level, Helicobacter, Prevotellaceae_UCG-001, and Ruminococcaceae_UCG-005 were significantly reduced in the model group. CBD intervention attenuated the intervention effects of Li-pilocarpine. Roseburia, Eubacterium_xylanophilum_group, and Ruminococcus_2 were strongly positively correlated with proinflammatory cytokine levels. CBD reversed dysregulated metabolites, including glycerophosphocholine and 4-ethylbenzoic acid. CONCLUSION CBD could alleviate the dysbiosis of gut microbiota and metabolic disorders of epileptic rats. CBD attenuated Epilepsy in rats might be related to gut microbial abundance and metabolite levels. SIGNIFICANCE AND IMPACT OF STUDY The study may provide a reliable scientific clue to explore the regulatory pathway of CBD in alleviating Epilepsy.
Collapse
Affiliation(s)
- Xiaoxiang Gong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingfang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Oliveira MET, Paulino GVB, Dos Santos Júnior ED, da Silva Oliveira FA, Melo VMM, Ursulino JS, de Aquino TM, Shetty AK, Landell MF, Gitaí DLG. Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2022; 59:6429-6446. [PMID: 35962889 DOI: 10.1007/s12035-022-02984-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the β-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.
Collapse
Affiliation(s)
- Maria Eduarda T Oliveira
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Gustavo V B Paulino
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Erivaldo D Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Francisca A da Silva Oliveira
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Vânia M M Melo
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Jeferson S Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Thiago M de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Melissa Fontes Landell
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| |
Collapse
|
10
|
Riva A, Pozzati E, Grasso M, De Caro C, Russo E, Verrotti A, Striano P. Targeting the MGBA with -biotics in epilepsy: New insights from preclinical and clinical studies. Neurobiol Dis 2022; 170:105758. [PMID: 35588991 DOI: 10.1016/j.nbd.2022.105758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Data accumulation reveals that the bidirectional communication between the gut microbiota and the brain, called the microbiota-gut-brain axis (MGBA), can be modulated by different compounds including prebiotics, probiotics, symbiotic (a fair combination of both), and diet, thus exerting a beneficial impact on brain activity and behaviors. This review aims to give an overview of the possible beneficial effects of the supplementation of -biotics in epilepsy treatment. METHODS A search on PubMed and ClinicalTrials.gov databases using the terms "probiotics", OR "prebiotics", AND "gut microbiota", AND "epilepsy" was performed. The search covered the period of the last eleven years (2010-2021). CONCLUSIONS Nowadays, studies analyzing the clinical impact of gut microbiota-modulating intervention strategies on epilepsy are limited and heterogenous due either to the different experimental populations studied (i.e., genetic vs lesional mouse models) or the various primary outcomes measure evaluated. However, positive effects have invariably been noticed; particularly, there have been improvements in behavioral comorbidities and associated gastrointestinal (GI) symptoms. More studies will be needed in the next few years to strictly evaluate the feasibility to introduce these new therapeutic strategies in the clinical treatment of highly refractory epilepsies.
Collapse
Affiliation(s)
- Antonella Riva
- Paediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Elisa Pozzati
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Mattia Grasso
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Carmen De Caro
- Science of Health Department, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Alberto Verrotti
- Department of Paediatrics, University of Perugia, Perugia, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.
| |
Collapse
|
11
|
Roviello G, Iannone LF, Bersanelli M, Mini E, Catalano M. The gut microbiome and efficacy of cancer immunotherapy. Pharmacol Ther 2022; 231:107973. [PMID: 34453999 DOI: 10.1016/j.pharmthera.2021.107973] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Cancer treatment has been deeply changed by immunotherapy, achieving unprecedented improvement in overall and progression-free survival in several advanced and metastatic cancers. Currently, immune checkpoint inhibitor (ICI) antibodies against cytotoxic T-lymphocyte antigen (CTLA-4) and programmed death/ligand 1 (PD-1/PD-L1) are being tested and approved for different tumors, ranging from melanoma to lung carcinoma. However, only a subgroup of patients can reach treatment benefits and long-term responses, and reliable biomarkers that can accurately predict clinical responses to immunotherapy are still unidentified. In the last decade, accumulating evidence seems to suggest the gut microbiota as one of the modulators that can alter the efficacy and toxicity of immunotherapy drugs (as well as chemotherapeutics), mainly acting through the local and systemic immune system. Herein, we reviewed the highly dynamic and complex microbiome-immune system interface, its bidirectional relationship with cancer immunotherapies, and explored the future possibilities and risks in manipulating the gut microbiome.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | | - Melissa Bersanelli
- Medical Oncology, University Hospital of Parma and Medicine and Surgery Department, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
12
|
Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: clinical evidence and technological solutions for improvement of
in vitro
preclinical models. Bioeng Transl Med 2022; 7:e10296. [PMID: 35600638 PMCID: PMC9115712 DOI: 10.1002/btm2.10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Federica Fusco
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Simone Perottoni
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Carmen Giordano
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Antonella Riva
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| | | | - Carmen De Caro
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Emilio Russo
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| |
Collapse
|
13
|
Mu X, Zhang X, Gao H, Gao L, Li Q, Zhao C. Crosstalk between peripheral and the brain-resident immune components in epilepsy. J Integr Neurosci 2022; 21:9. [PMID: 35164445 DOI: 10.31083/j.jin2101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.
Collapse
Affiliation(s)
- Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Honghua Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Lianbo Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Stroke Center, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| |
Collapse
|
14
|
Uniyal A, Tiwari V, Rani M, Tiwari V. Immune-microbiome interplay and its implications in neurodegenerative disorders. Metab Brain Dis 2022; 37:17-37. [PMID: 34357554 DOI: 10.1007/s11011-021-00807-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022]
Abstract
The neurodegeneration and its related CNS pathologies need an urgent toolbox to minimize the global mental health burden. The neuroimmune system critically regulates the brain maturation and survival of neurons across the nervous system. The chronic manipulated immunological drive can accelerate the neuronal pathology hence promoting the burden of neurodegenerative disorders. The gut is home for trillions of microorganisms having a mutual relationship with the host system. The gut-brain axis is a unique biochemical pathway through which the gut residing microbes connects with the brain cells and regulates various physiological and pathological cascades. The gut microbiota and CNS communicate using a common language that synchronizes the tuning of immune cells. The intestinal gut microbial community has a profound role in the maturation of the immune system as well as the development of the nervous system. We have critically summarised the clinical and preclinical reports from the past a decade emphasising that the significant changes in gut microbiota can enhance the host susceptibility towards neurodegenerative disorders. In this review, we have discussed how the gut microbiota-mediated immune response inclines the host physiology towards neurodegeneration and indicated the gut microbiota as a potential future candidate for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Uniyal
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vineeta Tiwari
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Mousmi Rani
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
15
|
Russo E. The gut microbiota as a biomarker in epilepsy. Neurobiol Dis 2021; 163:105598. [PMID: 34942335 DOI: 10.1016/j.nbd.2021.105598] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarkers are defined as objectively measurable variables of a biologic process, either physiologic or pathologic, that provide reliable information on the status of that specific process in a specific moment. Validated biomarkers in epilepsy research represent an urgent unmet need being essential to improve research quality; as an example, biomarkers in epileptogenesis identifying these subjects at risk to develop epilepsy after an initial insult definitively would lead to an improvement in clinical studies to find antiepileptogenic drugs. The gut microbiota (GM) has recently encountered the interest of neuroscience which confirmed its clear involvement in several neurological disorders. GM's role in epilepsy has only recently been studied, however, interesting results are already available. Besides the interest in GM as a suitable therapeutic target and a few preclinical and clinical studies indicating the potential antiseizure effects of GM manipulation, microbiota composition has been found altered in patients with epilepsy as well as some animal models. Only few studies have tried to analyse GM composition as a suitable biomarker and, despite very promising, several drawbacks limit our understanding. On the other hand, GM composition may be useful in discriminating drug-resistant from drug-responsive patients at any stage or patients at risk of developing epilepsy after an insult. The main limitation in the area is the lack of large studies in homogeneous patients and standardization is a must for a proper understanding. Finally, considering the number of variables coming both from epilepsy and GM, big data analysis as in the case of genetics should be considered.
Collapse
Affiliation(s)
- Emilio Russo
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Via T. Campanella, 115, 88100 Catanzaro, Italy.
| |
Collapse
|
16
|
Leo A, De Caro C, Mainardi P, Tallarico M, Nesci V, Marascio N, Striano P, Russo E, Constanti A, De Sarro G, Citraro R. Increased efficacy of combining prebiotic and postbiotic in mouse models relevant to autism and depression. Neuropharmacology 2021; 198:108782. [PMID: 34492286 DOI: 10.1016/j.neuropharm.2021.108782] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022]
Abstract
The Microbiota-Gut-Brain axis (MGBA) is a bidirectional communication pathway between gut bacteria and the central nervous system (CNS) (including the intestine) that exerts a profound influence on neural development, neuroinflammation, activation of stress response and neurotransmission, in addition to modulating complex behaviours, such as sociability and anxiety. Several MGBA modulating approaches are possible, such as probiotic administration. A reasonable pharmacological approach would also be the contemporarily administration of both prebiotics and postbiotics. To test this hypothesis, we probed the effects of α-lactalbumin (ALAC; a prebiotic in the dose range of 125-500 mg/kg) and sodium butyrate (NaB; a postbiotic in the dose range of 30-300 mg/kg) alone and in combination. We used two animal behavioural models of idiopathic autism, (BTBR mice) and anxiety/depression (chronic unexpected mild stress - CUMS mice) respectively, using several standard behavioural paradigms such as Three-chamber social interaction test, Marble burying assay, depression-, anxiety- and memory-tests. In BTBR autistic mice, we found that both ALAC and NaB improve animal sociability, and memory in the passive avoidance (PA); drug combination was more effective in almost all tests also reducing immobility time in the forced swimming test (FST), which was not affected by single drug administration. Similarly, in the CUMS mice, single drug administration was effective in improving: 1) depressive-like behaviour in the FST and sucrose preference test; 2) memory and learning in the PA, novel object recognition and Morris water maze tests. Drug combination was again more effective than single drug administration in most cases; however, in the CUMS model, neither single drug or combination was effective in the elevated plus maze test for anxiety. Our results suggest that in both models, ALAC and NaB combination is more effective in improving some pathological aspects of animal behaviour than single administration and that the prebiotic/postbiotic approach should be considered a reasonable approach for the manipulation of the MGBA to improve efficacy.
Collapse
Affiliation(s)
- Antonio Leo
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Carmen De Caro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Paolo Mainardi
- People's University for Food and Health Studies, Genoa, Italy
| | - Martina Tallarico
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Valentina Nesci
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Nadia Marascio
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) 'G. Gaslini' Institute, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, Genoa, Italy
| | - Emilio Russo
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, University College London School of Pharmacy, London, UK.
| | - Giovambattista De Sarro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
17
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
18
|
Avorio F, Cerulli Irelli E, Morano A, Fanella M, Orlando B, Albini M, Basili LM, Ruffolo G, Fattouch J, Manfredi M, Russo E, Striano P, Carabotti M, Giallonardo AT, Severi C, Di Bonaventura C. Functional Gastrointestinal Disorders in Patients With Epilepsy: Reciprocal Influence and Impact on Seizure Occurrence. Front Neurol 2021; 12:705126. [PMID: 34421803 PMCID: PMC8377227 DOI: 10.3389/fneur.2021.705126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: The complex relationship between the microbiota-gut-brain axis (MGBA) and epilepsy has been increasingly investigated in preclinical studies. Conversely, evidence from clinical studies is still scarce. In recent years, the pivotal role of MGBA dysregulation in the pathophysiology of functional gastrointestinal disorders (FGID) has been recognized. With this background, we aimed to investigate the prevalence of FGID in patients with epilepsy (PWE) and the possible impact of bowel movement abnormalities on seizure recurrence. Methods: A total of 120 PWE and 113 age-, sex-, and BMI-matched healthy subjects (HS) were consecutively enrolled. A questionnaire to evaluate the presence of FGID (according to Rome III diagnostic criteria) was administrated to all participants. In a subgroup of drug-resistant patients, we administered an ad-hoc questionnaire combining Bristol stool charts and seizure diaries to evaluate seizure trends and bowel movement changes. Results: A higher prevalence of FGID in PWE (62.5%) than in HS (39.8%) was found (p < 0.001). The most frequently observed disorder was constipation, which was significantly higher in PWE than in HS (43.3 vs. 21.2%, p < 0.001), and was not associated with anti-seizure medication intake according to multivariable analysis. In drug-resistant patients, most seizures occurred during periods of altered bowel movements, especially constipation. A significant weak negative correlation between the number of days with seizures and the number of days with normal bowel movements was observed (p = 0.04). According to multivariable logistic regression analysis, FGID was significantly associated with temporal lobe epilepsy as compared with other lobar localization (p = 0.03). Conclusions: Our clinical findings shed new light on the complex relationship between epilepsy and the MGBA, suggesting a bidirectional link between bowel movement abnormalities and seizure occurrence. However, larger studies are required to better address this important topic.
Collapse
Affiliation(s)
- Federica Avorio
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Neurology Service, Therapeutic and Diagnostic Service Department, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (IRCCS-ISMETT), Palermo, Italy
| | | | - Alessandra Morano
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Martina Fanella
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Biagio Orlando
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Mariarita Albini
- Neurophysiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Luca M. Basili
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Jinane Fattouch
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Mario Manfredi
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University Magna Graecia, Calabria, Italy
| | - Pasquale Striano
- Institute for Research, Hospitalization, and Health Care (IRCCS) “G. Gaslini” Institute, Genoa, Italy
| | - Marilia Carabotti
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna T. Giallonardo
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Mengoni F, Salari V, Kosenkova I, Tsenov G, Donadelli M, Malerba G, Bertini G, Del Gallo F, Fabene PF. Gut microbiota modulates seizure susceptibility. Epilepsia 2021; 62:e153-e157. [PMID: 34324703 PMCID: PMC8457192 DOI: 10.1111/epi.17009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
A bulk of data suggest that the gut microbiota plays a role in a broad range of diseases, including those affecting the central nervous system. Recently, significant differences in the intestinal microbiota of patients with epilepsy, compared to healthy volunteers, have been reported in an observational study. However, an active role of the intestinal microbiota in the pathogenesis of epilepsy, through the so‐called “gut–brain axis,” has yet to be demonstrated. In this study, we evaluated the direct impact of microbiota transplanted from epileptic animals to healthy recipient animals, to clarify whether the microbiota from animals with epilepsy can affect the excitability of the recipients’ brain by lowering seizure thresholds. Our results provide the first evidence that mice who received microbiota from epileptic animals are more prone to develop status epilepticus, compared to recipients of “healthy” microbiota, after a subclinical dose of pilocarpine, indicating a higher susceptibility to seizures. The lower thresholds for seizure activity found in this study support the hypothesis that the microbiota, through the gut–brain axis, is able to affect neuronal excitability in the brain.
Collapse
Affiliation(s)
- Francesca Mengoni
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Valentina Salari
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Inna Kosenkova
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Grygoriy Tsenov
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Giovanni Malerba
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Bertini
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Gallucci A, Patel DC, Thai K, Trinh J, Gude R, Shukla D, Campbell SL. Gut metabolite S-equol ameliorates hyperexcitability in entorhinal cortex neurons following Theiler murine encephalomyelitis virus-induced acute seizures. Epilepsia 2021; 62:1829-1841. [PMID: 34212377 PMCID: PMC9291536 DOI: 10.1111/epi.16979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022]
Abstract
Objective A growing body of evidence indicates a potential role for the gut–brain axis as a novel therapeutic target in treating seizures. The present study sought to characterize the gut microbiome in Theiler murine encephalomyelitis virus (TMEV)‐induced seizures, and to evaluate the effect of microbial metabolite S‐equol on neuronal physiology as well as TMEV‐induced neuronal hyperexcitability ex vivo. Methods We infected C57BL/6J mice with TMEV and monitored the development of acute behavioral seizures 0–7 days postinfection (dpi). Fecal samples were collected at 5–7 dpi and processed for 16S sequencing, and bioinformatics were performed with QIIME2. Finally, we conducted whole‐cell patch‐clamp recordings in cortical neurons to investigate the effect of exogenous S‐equol on cell intrinsic properties and neuronal hyperexcitability. Results We demonstrated that gut microbiota diversity is significantly altered in TMEV‐infected mice at 5–7 dpi, exhibiting separation in beta diversity in TMEV‐infected mice dependent on seizure phenotype, and lower abundance of genus Allobaculum in TMEV‐infected mice regardless of seizure phenotype. In contrast, we identified specific loss of S‐equol‐producing genus Adlercreutzia as a microbial hallmark of seizure phenotype following TMEV infection. Electrophysiological recordings indicated that exogenous S‐equol alters cortical neuronal physiology. We found that entorhinal cortex neurons are hyperexcitable in TMEV‐infected mice, and exogenous application of microbial‐derived S‐equol ameliorated this TMEV‐induced hyperexcitability. Significance Our study presents the first evidence of microbial‐derived metabolite S‐equol as a potential mechanism for alteration of TMEV‐induced neuronal excitability. These findings provide new insight for the novel role of S‐equol and the gut–brain axis in epilepsy treatment.
Collapse
Affiliation(s)
- Allison Gallucci
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, Virginia, USA.,Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Dipan C Patel
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - K'Ehleyr Thai
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, Virginia, USA.,Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jonathan Trinh
- University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Rosalie Gude
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Devika Shukla
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Susan L Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
21
|
Evidences for a Role of Gut Microbiota in Pathogenesis and Management of Epilepsy. Int J Mol Sci 2021; 22:ijms22115576. [PMID: 34070389 PMCID: PMC8197531 DOI: 10.3390/ijms22115576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy as a chronic neurological disorder is characterized by recurrent, unprovoked epileptic seizures. In about half of the people who suffer from epilepsy, the root cause of the disorder is unknown. In the other cases, different factors can cause the onset of epilepsy. In recent years, the role of gut microbiota has been recognized in many neurological disorders, including epilepsy. These data are based on studies of the gut microbiota–brain axis, a relationship starting by a dysbiosis followed by an alteration of brain functions. Interestingly, epileptic patients may show signs of dysbiosis, therefore the normalization of the gut microbiota may lead to improvement of epilepsy and to greater efficacy of anticonvulsant drugs. In this descriptive review, we analyze the evidences for the role of gut microbiota in epilepsy and hypothesize a mechanism of action of these microorganisms in the pathogenesis and treatment of the disease. Human studies revealed an increased prevalence of Firmicutes in patients with refractory epilepsy. Exposure to various compounds can change microbiota composition, decreasing or exacerbating epileptic seizures. These include antibiotics, epileptic drugs, probiotics and ketogenic diet. Finally, we hypothesize that physical activity may play a role in epilepsy through the modulation of the gut microbiota.
Collapse
|
22
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
23
|
Pittman QJ. A gut feeling about the ketogenic diet in epilepsy. Epilepsy Res 2020; 166:106409. [PMID: 32673970 DOI: 10.1016/j.eplepsyres.2020.106409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023]
|
24
|
Fleiss B, Gressens P, Stolp HB. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Front Neurol 2020; 11:575. [PMID: 32765390 PMCID: PMC7381224 DOI: 10.3389/fneur.2020.00575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|