1
|
Malusare SP, Zilio G, Fronhofer EA. Evolution of thermal performance curves: A meta-analysis of selection experiments. J Evol Biol 2023; 36:15-28. [PMID: 36129955 PMCID: PMC10087336 DOI: 10.1111/jeb.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Temperatures are increasing due to global changes, putting biodiversity at risk. Organisms are faced with a limited set of options to cope with this situation: adapt, disperse or die. We here focus on the first possibility, more specifically, on evolutionary adaptations to temperature. Ectotherms are usually characterized by a hump-shaped relationship between fitness and temperature, a non-linear reaction norm that is referred to as thermal performance curve (TPC). To understand and predict impacts of global change, we need to know whether and how such TPCs evolve. Therefore, we performed a systematic literature search and a statistical meta-analysis focusing on experimental evolution and artificial selection studies. This focus allows us to directly quantify relative fitness responses to temperature selection by calculating fitness differences between TPCs from ancestral and derived populations after thermal selection. Out of 7561 publications screened, we found 47 studies corresponding to our search criteria representing taxa across the tree of life, from bacteria, to plants and vertebrates. We show that, independently of species identity, the studies we found report a positive response to temperature selection. Considering entire TPC shapes, adaptation to higher temperatures traded off with fitness at lower temperatures, leading to niche shifts. Effects were generally stronger in unicellular organisms. By contrast, we do not find statistical support for the often discussed "Hotter is better" hypothesis. While our meta-analysis provides evidence for adaptive potential of TPCs across organisms, it also highlights that more experimental work is needed, especially for under-represented taxa, such as plants and non-model systems.
Collapse
Affiliation(s)
- Sarthak P Malusare
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Giacomo Zilio
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emanuel A Fronhofer
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
2
|
Clark EI, Bitume EV, Bean DW, Stahlke AR, Hohenlohe PA, Hufbauer RA. Evolution of reproductive life-history and dispersal traits during the range expansion of a biological control agent. Evol Appl 2022; 15:2089-2099. [PMID: 36540644 PMCID: PMC9753830 DOI: 10.1111/eva.13502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Evolutionary theory predicts that the process of range expansion will lead to differences in life-history and dispersal traits between the core and edge of a population. At the edge, selection and genetic drift can have opposing effects on reproductive ability, while spatial sorting by dispersal ability can increase dispersal. However, the context that individuals experience, including population density and mating status, also impacts dispersal behavior. We seek to understand the shifts in traits of populations expanding across natural, heterogenous environments, and the evolutionary and behavioral factors that may drive those shifts. We evaluated theoretical predictions for evolution of reproductive life-history and dispersal traits using the range expansion of a biological control agent, Diorhabda carinulata, or northern tamarisk beetle. We find that individuals from the edge had increased fecundity and female body mass, and reduced age at first reproduction, indicating that genetic load is low and suggesting that selection has acted at the edge. We also find that density of conspecifics during rearing and mating status influence dispersal of males and that dispersal increases at the edge of the range under certain conditions, particularly when males were unmated and reared at low density. The restricted conditions in which dispersal has increased suggest that spatial sorting has exerted weak effects relative to other potential processes. Our results support most theoretical predictions about evolution during range expansion, even across a heterogeneous environment, especially when the ecological context is considered.
Collapse
Affiliation(s)
- Eliza I. Clark
- Graduate Degree Program in Ecology, Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Ellyn V. Bitume
- Pacific Southwest Research StationInstitute of Pacific Islands Forestry, USDA Forest ServiceHiloHawaiiUSA
| | - Dan W. Bean
- Colorado Department of AgriculturePalisade InsectaryPalisadeColoradoUSA
| | - Amanda R. Stahlke
- Initiative for Bioinformatics and Evolutionary Studies, Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
- Bee Research LaboratoryUSDA, Agricultural Research Service, Beltsville Agricultural Research CenterBeltsvilleMarylandUSA
| | - Paul A. Hohenlohe
- Initiative for Bioinformatics and Evolutionary Studies, Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Ruth A. Hufbauer
- Graduate Degree Program in Ecology, Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
3
|
Lancaster LT. On the macroecological significance of eco-evolutionary dynamics: the range shift-niche breadth hypothesis. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210013. [PMID: 35067095 PMCID: PMC8784922 DOI: 10.1098/rstb.2021.0013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Global correlations of range size and niche breadth, and their relationship to latitude, have long intrigued ecologists and biogeographers. Study of these patterns has given rise to a number of hypothesized ecological and evolutionary processes purported to shape biogeographic outcomes, including the climate variability hypothesis, oscillation hypothesis, ecological opportunity, competitive release and taxon cycles. Here, I introduce the alternative range shift-niche breadth hypothesis, which posits that broader niches and larger range sizes are jointly determined under eco-evolutionary processes unique to expanding ranges, which may or may not be adaptive, but which co-shape observed latitudinal gradients in niche breadth and range size during periods of widespread range expansion. I formulate this hypothesis in comparison against previous hypotheses, exploring how each relies on equilibrium versus non-equilibrium evolutionary processes, faces differing issues of definition and scale, and results in alternative predictions for comparative risk and resilience of global ecosystems. Such differences highlight that accurate understanding of process is critical when applying macroecological insight to biodiversity forecasting. Furthermore, past conceptual emphasis on a central role of local adaptation under equilibrium conditions may have obscured a ubiquitous role of non-equilibrium evolutionary processes for generating many important, regional and global macroecological patterns. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
Collapse
Affiliation(s)
- Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
4
|
Tsai HY. Digest: Predicting the future by learning from the past in lizards' thermal traits. Evolution 2021; 75:2613-2615. [PMID: 34423849 DOI: 10.1111/evo.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
How do traitsevolve on a global scale? Ibargüengoytía et al. provide a framework for understanding the evolutionary history of thermal traits in a broadly diverse lizard family Liolaemidae and find that the lizards' body temperature has evolved following the change in air temperature over the past ∼20,000 years, while the preferred body temperature for physiological functions has evolved at a lower rate. This difference results in a higher buffer to respond to global climate change, in particular for viviparous species, which usually show lower body temperatures in their natural environments. Oviparous species from the arid environments are at higher risk of extinction in the family Liolaemidae.
Collapse
Affiliation(s)
- Hsiang-Yu Tsai
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
5
|
Sieger CS, Hovestadt T. The degree of spatial variation relative to temporal variation influences evolution of dispersal. OIKOS 2020. [DOI: 10.1111/oik.07567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlotte Sophie Sieger
- Dept. Animal Ecology and Tropical Biology, Biozentrum, Universität Würzburg Emil‐Fischer‐Str. 32 DE‐97074 Würzburg Germany
| | - Thomas Hovestadt
- Dept. Animal Ecology and Tropical Biology, Biozentrum, Universität Würzburg Emil‐Fischer‐Str. 32 DE‐97074 Würzburg Germany
| |
Collapse
|
6
|
Tsai HY, Rubenstein DR, Chen BF, Liu M, Chan SF, Chen DP, Sun SJ, Yuan TN, Shen SF. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 2020; 9:57022. [PMID: 32807299 PMCID: PMC7442485 DOI: 10.7554/elife.57022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/28/2020] [Indexed: 01/03/2023] Open
Abstract
Understanding how climate-mediated biotic interactions shape thermal niche width is critical in an era of global change. Yet, most previous work on thermal niches has ignored detailed mechanistic information about the relationship between temperature and organismal performance, which can be described by a thermal performance curve. Here, we develop a model that predicts the width of thermal performance curves will be narrower in the presence of interspecific competitors, causing a species' optimal breeding temperature to diverge from that of its competitor. We test this prediction in the Asian burying beetle Nicrophorus nepalensis, confirming that the divergence in actual and optimal breeding temperatures is the result of competition with their primary competitor, blowflies. However, we further show that intraspecific cooperation enables beetles to outcompete blowflies by recovering their optimal breeding temperature. Ultimately, linking abiotic factors and biotic interactions on niche width will be critical for understanding species-specific responses to climate change.
Collapse
Affiliation(s)
- Hsiang-Yu Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, United States.,Center for Integrative Animal Behavior, Columbia University, New York, United States
| | - Bo-Fei Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mark Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Fan Chan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Pei Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Syuan-Jyun Sun
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Neng Yuan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Engell Dahl J, Bertrand M, Pierre A, Curtit B, Pillard C, Tasiemski A, Convey P, Renault D. Thermal tolerance patterns of a carabid beetle sampled along invasion and altitudinal gradients at a sub-Antarctic island. J Therm Biol 2019; 86:102447. [DOI: 10.1016/j.jtherbio.2019.102447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023]
|
8
|
LaRue EA, Emery NC, Briley L, Christie MR. Geographic variation in dispersal distance facilitates range expansion of a lake shore plant in response to climate change. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Elizabeth A. LaRue
- Department of Biological Sciences Purdue University West Lafayette Indiana
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Boulder Colorado
| | - Laura Briley
- Great Lakes Integrated Sciences and Assessments University of Michigan Ann Arbor Michigan
| | - Mark R. Christie
- Department of Biological Sciences Purdue University West Lafayette Indiana
- Department of Forestry and Natural Resources West Lafayette Indiana
| |
Collapse
|
9
|
Hillaert J, Vandegehuchte ML, Hovestadt T, Bonte D. Information use during movement regulates how fragmentation and loss of habitat affect body size. Proc Biol Sci 2018; 285:20180953. [PMID: 30111596 PMCID: PMC6111160 DOI: 10.1098/rspb.2018.0953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
An individual's body size is central to its behaviour and physiology, and tightly linked to its movement ability. The spatial arrangement of resources and a consumer's capacity to locate them are therefore expected to exert strong selection on consumer body size. We investigated the evolutionary impact of both the fragmentation and loss of habitat on consumer body size and its feedback effects on resource distribution, under varying levels of information used during habitat choice. We developed a mechanistic, individual-based, spatially explicit model, including several allometric rules for key consumer traits. Our model reveals that as resources become more fragmented and scarce, informed habitat choice selects for larger body sizes while random habitat choice promotes small sizes. Information use may thus be an overlooked explanation for the observed variation in body size responses to habitat fragmentation. Moreover, we find that resources can accumulate and aggregate if information about resource abundance is incomplete. Informed movement results in stable resource-consumer dynamics and controlled resources across space. However, habitat loss and fragmentation destabilize local dynamics and disturb resource suppression by the consumer. Considering information use during movement is thus critical to understand the eco-evolutionary dynamics underlying the functioning and structuring of consumer communities.
Collapse
Affiliation(s)
- Jasmijn Hillaert
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Martijn L Vandegehuchte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, Emil-Fischer-Strasse 32, 97074 Wuerzburg, Germany
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Affiliation(s)
- Dries Bonte
- Ghent University; Dept. Biology; K.L. Ledeganckstraat 35 BE-9000 Ghent Belgium
| | - Maxime Dahirel
- Ghent University; Dept. Biology; K.L. Ledeganckstraat 35 BE-9000 Ghent Belgium
- Univ. of Rennes 1/ CNRS; UMR 6553 Ecobio Rennes France
| |
Collapse
|