1
|
El-Mergawi R, El-Dabaa M, Elkhawaga F. Effect of splitting the sub-lethal dose of glyphosate on plant growth shikimate pathway-related metabolites and antioxidant status in faba beans. Sci Rep 2025; 15:10792. [PMID: 40155445 PMCID: PMC11953361 DOI: 10.1038/s41598-025-87799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/22/2025] [Indexed: 04/01/2025] Open
Abstract
Glyphosate exerts its herbicidal activity by inhibiting the shikimate pathway, the main source of many primary and secondary metabolites. Application of a low dose of glyphosate to faba bean plants was effective in controlling Orobanche crenata infestation, but some toxic effects on host plants can occur. Splitting the low glyphosate dose can serve as a mitigation strategy to reduce the host toxicity. Under parasitic-free conditions, a greenhouse experiment was conducted during two seasons to study the effect of dividing the recommended glyphosate dose (170 g a.i. ha-1) into two-five sprays on the growth, shikimate-related metabolites, and antioxidant status of three faba bean varieties. After 40 days, splitting treatments tended to cause cumulative inhibition effects on the growth and productivity traits of faba beans depending on the tested varieties, seasons, and the number of sprays applied. The maximum reduction effect was noticed for twice- sprayed treatment in the first season and for five-sprayed treatment in the second one. The cumulative effect of splitting glyphosate treatments on the shikimate pathway metabolites and the antioxidant status was measured after a week of spraying. Splitting treatments induced great increases in shikimic acid and phenylalanine contents compared with control. These treatments continued to exert their oxidative stress on faba bean plants by reducing antioxidant activity and antioxidant compounds such as total phenolics, flavonoids, and the detected phenolic acids (p-hydroxybenzoic, syringic, vanillic, coumaric, and ferulic). A significant increase in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and polyphenol oxidase) was recorded for all splitting treatments.
Collapse
Affiliation(s)
- Ragab El-Mergawi
- Botany Department, Agricultural and Biology Institute, National Research Centre, El-Tahrir Street, Dokki, 1222, Cairo, Egypt.
| | - Mahmoud El-Dabaa
- Botany Department, Agricultural and Biology Institute, National Research Centre, El-Tahrir Street, Dokki, 1222, Cairo, Egypt
| | - Fathia Elkhawaga
- Botany Department, Agricultural and Biology Institute, National Research Centre, El-Tahrir Street, Dokki, 1222, Cairo, Egypt
| |
Collapse
|
2
|
Physiological and biochemical responses of selected weed and crop species to the plant-based bioherbicide WeedLock. Sci Rep 2022; 12:19602. [PMID: 36379972 PMCID: PMC9666524 DOI: 10.1038/s41598-022-24144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
WeedLock is a broad-spectrum plant-based bioherbicide that is currently on the market as a ready-to-use formulation. In this study, we investigated the physiological and biochemical effects of WeedLock (672.75 L ha-1) on Ageratum conyzoides L., Eleusine indica (L.) Gaertn, Zea mays L., and Amaranthus gangeticus L. at four different time points. WeedLock caused significant reductions in chlorophyll pigment content and disrupted photosynthetic processes in all test plants. The greatest inhibition in photosynthesis was recorded in A. conyzoides at 24 h post-treatment with a 74.88% inhibition. Plants treated with WeedLock showed increased malondialdehyde (MDA) and proline production, which is indicative of phytotoxic stress. Remarkably, MDA contents of all treated plants increased by more than 100% in comparison to untreated. The activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was elevated following treatment with WeedLock. Significant increases were observed in the SOD activity of A. conyzoides ranging from 69.66 to 118.24% from 6 to 72 h post-treatment. Our findings confirm that WeedLock disrupts the normal physiological and biochemical processes in plants following exposure and that its mode of action is associated with ROS (reactive oxygen species) production, similar to that of PPO (protoporphyrinogen oxidase) inhibitors, although specific site-of-action of this novel bioherbicide warrants further investigation.
Collapse
|
3
|
Faqir Napar WP, Kaleri AR, Ahmed A, Nabi F, Sajid S, Ćosić T, Yao Y, Liu J, Raspor M, Gao Y. The anthocyanin-rich tomato genotype LA-1996 displays superior efficiency of mechanisms of tolerance to salinity and drought. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153662. [PMID: 35259587 DOI: 10.1016/j.jplph.2022.153662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Tomato cultivation is affected by high soil salinity and drought stress, which cause major yield losses worldwide. In this work, we compare the efficiency of mechanisms of tolerance to salinity, and osmotic stress applied as mannitol or drought, in three tomato genotypes: LA-2838 (Ailsa Craig), LA-2662 (Saladette), and LA-1996 (Anthocyanin fruit - Aft), a genotype known for high anthocyanin content. Exposure to salinity or drought induced stress in all three genotypes, but the LA-1996 plants displayed superior tolerance to stress compared with the other two genotypes. They were more efficient in anthocyanin and proline accumulation, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity, and leaf Na+, K+, and Ca2+ homeostasis. In addition, they suffered lesser oxidative damage as measured by chlorophyll (Chl) loss and malondialdehyde (MDA) accumulation, and bioassays showed that they were less affected in terms of seed germination and root elongation. Exposure to stress induced the upregulation of stress-related genes SlNCED1, SlAREB1, SlABF4, SlWRKY8, and SlDREB2A more efficiently in LA-1996 than in the two susceptible genotypes. Conversely, the upregulation of the NADPH oxidase gene SlRBOH1 was more pronounced in LA-2838 and LA-2662. Principal component analysis showed obvious distinction between the tolerant genotype LA-1996 and the susceptible LA-2838 and LA-2662 in response to stress, and association of leaf and stem anthocyanin content with major stress tolerance traits. We suggest that anthocyanin accumulation can be considered as a marker of stress tolerance in tomato, and that LA-1996 can be considered for cultivation in salinity- or drought-affected areas.
Collapse
Affiliation(s)
- Wado Photo Faqir Napar
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Abdul Rasheed Kaleri
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Awais Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Farhan Nabi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Sumbal Sajid
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Tatjana Ćosić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jikai Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Martin Raspor
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
4
|
Faizan M, Sehar S, Rajput VD, Faraz A, Afzal S, Minkina T, Sushkova S, Adil MF, Yu F, Alatar AA, Akhter F, Faisal M. Modulation of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic Acid in Rice ( Oryza sativa) Plant under Arsenic Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112254. [PMID: 34834617 PMCID: PMC8618137 DOI: 10.3390/plants10112254] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
The objective of this research was to determine the effect of zinc oxide nanoparticles (ZnONPs) and/or salicylic acid (SA) under arsenic (As) stress on rice (Oryza sativa). ZnONPs are analyzed for various techniques viz., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). All of these tests established that ZnONPs are pure with no internal defects, and can be potentially used in plant applications. Hence, we further investigated for better understanding of the underlying mechanisms and the extent of ZnONPs and SA induced oxidative stress damages. More restricted plant growth, gas exchange indices, significant reduction in the SPAD index and maximum quantum yield (Fv/Fm) and brutal decline in protein content were noticed in As-applied plants. In contrast, foliar fertigation of ZnONPs and/or SA to As-stressed rice plants lessens the oxidative stress, as exposed by subordinate levels of reactive oxygen species (ROS) synthesis. Improved enzymatic activities of catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD), proline and total soluble protein contents under ZnONPs and SA treatment plays an excellent role in the regulation of various transcriptional pathways participated in oxidative stress tolerance. Higher content of nitrogen (N; 13%), phosphorus (P; 10%), potassium (K; 13%), zinc (Zn; 68%), manganese (Mn; 14%), and iron (Fe; 19) in ZnONPs and SA treated plants under As-stress, thus hampered growth and photosynthetic efficiency of rice plants. Our findings suggest that toxicity of As was conquering by the application of ZnONPs and SA in rice plants.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China; (M.F.); (F.Y.)
| | - Shafaque Sehar
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Ahmad Faraz
- School of Life Sciences, Glocal University, Saharanpur 247121, India;
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Pryagraj 211004, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Muhammad Faheem Adil
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.)
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China; (M.F.); (F.Y.)
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, New York, NY 11794-5281, USA;
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence: ; Tel.: +966-(011)-4675877
| |
Collapse
|
5
|
Soares C, Rodrigues F, Sousa B, Pinto E, Ferreira IMPLVO, Pereira R, Fidalgo F. Foliar Application of Sodium Nitroprusside Boosts Solanum lycopersicum L. Tolerance to Glyphosate by Preventing Redox Disorders and Stimulating Herbicide Detoxification Pathways. PLANTS 2021; 10:plants10091862. [PMID: 34579395 PMCID: PMC8466062 DOI: 10.3390/plants10091862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 01/24/2023]
Abstract
Strategies to minimize the effects of glyphosate (GLY), the most used herbicide worldwide, on non-target plants need to be developed. In this context, the current study was designed to evaluate the potential of nitric oxide (NO), provided as 200 µM sodium nitroprusside (SNP), to ameliorate GLY (10 mg kg−1 soil) phytotoxicity in tomato plants. Upon herbicide exposure, plant development was majorly inhibited in shoots and roots, followed by a decrease in flowering and fruit set; however, the co-application of NO partially prevented these symptoms, improving plant growth. Concerning redox homeostasis, lipid peroxidation (LP) and reactive oxygen species (ROS) levels rose in response to GLY in shoots of tomato plants, but not in roots. Additionally, GLY induced the overaccumulation of proline and glutathione, and altered ascorbate redox state, but resulted in the inhibition of the antioxidant enzymes. Upon co-treatment with NO, the non-enzymatic antioxidants were not particularly changed, but an upregulation of all antioxidant enzymes was found, which helped to keep ROS and LP under control. Overall, data point towards the benefits of NO against GLY in tomato plants by reducing the oxidative damage and stimulating detoxification pathways, while also preventing GLY-induced impairment of flowering and fruit fresh mass.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
- Correspondence:
| | - Francisca Rodrigues
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Bruno Sousa
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Edgar Pinto
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (E.P.); (I.M.P.L.V.O.F.)
- Department of Environmental Health, School of Health, P.Porto (ESS-P.Porto), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (E.P.); (I.M.P.L.V.O.F.)
| | - Ruth Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Fernanda Fidalgo
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| |
Collapse
|
6
|
Silicon Improves the Redox Homeostasis to Alleviate Glyphosate Toxicity in Tomato Plants-Are Nanomaterials Relevant? Antioxidants (Basel) 2021; 10:antiox10081320. [PMID: 34439568 PMCID: PMC8389300 DOI: 10.3390/antiox10081320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/24/2023] Open
Abstract
Given the widespread use of glyphosate (GLY), this agrochemical is becoming a source of contamination in agricultural soils, affecting non-target plants. Therefore, sustainable strategies to increase crop tolerance to GLY are needed. From this perspective and recalling silicon (Si)'s role in alleviating different abiotic stresses, the main goal of this study was to assess if the foliar application of Si, either as bulk or nano forms, is capable of enhancing Solanum lycopersicum L. tolerance to GLY (10 mg kg-1). After 28 day(s), GLY-treated plants exhibited growth-related disorders in both shoots and roots, accompanied by an overproduction of superoxide anion (O2•-) and malondialdehyde (MDA) in shoots. Although plants solely exposed to GLY have activated non-enzymatic antioxidant mechanisms (proline, ascorbate and glutathione), a generalized inhibition of the antioxidant enzymes was found, suggesting the occurrence of great redox disturbances. In response to Si or nano-SiO2 co-application, most of GLY phytotoxic effects on growth were prevented, accompanied with a better ROS removal, especially by an upregulation of the main antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Overall, results pointed towards the potential of both sources of Si to reduce GLY-induced oxidative stress, without major differences between their efficacy.
Collapse
|
7
|
Soares C, Pereira R, Martins M, Tamagnini P, Serôdio J, Moutinho-Pereira J, Cunha A, Fidalgo F. Glyphosate-dependent effects on photosynthesis of Solanum lycopersicum L.-An ecophysiological, ultrastructural and molecular approach. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122871. [PMID: 32450466 DOI: 10.1016/j.jhazmat.2020.122871] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to assess the toxicity of glyphosate (GLY; 0, 10, 20 and 30 mg kg-1) in Solanum lycopersicum L., particularly focusing on the photosynthetic metabolism. By combining ecophysiological, ultrastructural, biochemical and molecular tools, the results revealed that the exposure of tomato plants to GLY led to alterations in leaf water balance regulation [increasing stomatal conductance (gs) and decreasing water use efficiency (WUEi) at higher concentrations] and induced slight alterations in the structural integrity of cells, mainly in chloroplasts, accompanied by a loss of cell viability. Moreover, the transcriptional and biochemical control of several photosynthetic-related parameters was reduced upon GLY exposure. However, in vivo chlorophyll fluorometry and IRGA gas-exchange studies revealed that the photosynthetic yield of S. lycopersicum was not repressed by GLY. Overall, GLY impacts cellular and subcellular homeostasis (by affecting chloroplast structure, reducing photosynthetic pigments and inhibiting photosynthetic-related genes transcription), and leaf structure, but is not reducing the carbon flow on a leaf area basis. Altogether, these results suggest a trade-off effect in which GLY-induced toxicity is compensated by a higher photosynthetic activity related to GLY-induced dysfunction in gs and an increase in mesophyll thickness/density, allowing the viable leaf cells to maintain their photosynthetic capacity.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paula Tamagnini
- Bioengineering and Synthetic Microbiology Group, i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João Serôdio
- Biology Department and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - José Moutinho-Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Cunha
- Biology Department & CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Department of Biology, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Assessment of synthetic auxin type compounds as potential modulators of herbicide action in Pisum sativum L. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00557-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Jan S, Singh R, Bhardwaj R, Ahmad P, Kapoor D. Plant growth regulators: a sustainable approach to combat pesticide toxicity. 3 Biotech 2020; 10:466. [PMID: 33088662 DOI: 10.1007/s13205-020-02454-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022] Open
Abstract
Pesticides are chemical substances intended for preventing or controlling pests. These are toxic substances which contaminate soil, water bodies and vegetative crops. Excessive use of pesticides may cause destruction of biodiversity. In plants, pesticides lead to oxidative stress, inhibition of physiological and biochemical pathways, induce toxicity, impede photosynthesis and negatively affect yield of crops. Increased production of reactive oxygen species like superoxide radicals, O- 2 hydrogen peroxide, H2O2; singlet oxygen, O2; hydroxyl radical, OH-; and hydroperoxyl radical HO2-, causes damage to protein, lipid, carbohydrate and DNA within plants. Plant growth regulators (PGR) are recognized for promoting growth and development under optimal as well as stress conditions. PGR combat adverse effect by acting as chemical messenger and under complex regulation, enable plants to survive under stress conditions. PGR mediate various physiological and biochemical responses, thereby reducing pesticide-induced toxicity. Exogenous applications of PGRs, such as brassinosteroid, cytokinins, salicylic acid, jasmonic acid, etc., mitigate pesticide toxicity by stimulating antioxidant defense system and render tolerance towards stress conditions. They provide resistance against pesticides by controlling production of reactive oxygen species, nutrient homeostasis, increase secondary metabolite production, and trigger antioxidant mechanisms. These phytohormones protect plants against oxidative damage by activating mitogen-stimulated protein kinase cascade. Current study is based on reported research work that has shown the effect of PGR in promoting plant growth subjected to pesticide stress. The present review covers the aspects of pesticidal response of plants and evaluates the contribution of PGRs in mitigating pesticide-induced stress and increasing the tolerance of plants. Further, the study suggests the use of PGRs as a tool in mitigating effects of pesticidal stress together with improved growth and development.
Collapse
|
10
|
Characterization of Porous Structures of Cellulose Nanofibrils Loaded with Salicylic Acid. Polymers (Basel) 2020; 12:polym12112538. [PMID: 33142964 PMCID: PMC7692582 DOI: 10.3390/polym12112538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Bleached and unbleached pulp fibers were treated with 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO) mediated oxidation to obtain cellulose nanofibrils (CNFs). The resulting bleached and unbleached CNFs were mixed with salicylic acid (0, 5, 10, 20 wt%) before casting and freeze-drying or 3D-printing. A series of methods were tested and implemented to characterize the CNF materials and the porous structures loaded with salicylic acid. The CNFs were characterized with atomic force microscopy and laser profilometry, and release of salicylic acid was quantified with UV-visible absorbance spectroscopy, conductivity measurements, and inductive coupled plasma mass spectrometry (ICP-MS). Fourier-transform infrared spectroscopy (FTIR) complemented the analyses. Herein, we show that aerogels of bleached CNFs yield a greater release of salicylic acid, compared to CNF obtained from unbleached pulp. The results suggest that biodegradable constructs of CNFs can be loaded with a plant hormone that is released slowly over time, which may find uses in small scale agricultural applications and for the private home market.
Collapse
|
11
|
Ecotoxicological Assessment of a Glyphosate-Based Herbicide in Cover Plants: Medicago sativa L. as a Model Species. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the several innovations that have been incorporated in agriculture, the use of herbicides, especially glyphosate (GLY), is still the major tool for weed control. Although this herbicide has a notable worldwide representation, concerns about its environmental safety were recently raised, with a lot of divergence between studies on its non-target toxicity. Therefore, it is of utmost importance to understand the risks of this herbicide to non-target plants, including cover crop species, which have a crucial role in maintaining agroecosystems functions and in preventing soil erosion. Thus, this work aims to evaluate the growth and physiological responses of a cover plant species (Medicago sativa L.) exposed to increasing concentrations of a GLY-based herbicide (GBH), particularly focusing on the oxidative metabolism. The growth of roots and shoots was affected, being this effect accompanied by a rise of lipid peroxidation, suggesting the occurrence of oxidative stress, and by an activation of the antioxidant (AOX) system. Indeed, the results showed that adverse effects are visible at active ingredient concentrations of 8.0 mg kg−1, with the lowest EC50 being 12 mg kg−1, showing that GBH-contaminated soils may pose a risk to the survival of non-target plants in the most contaminated areas. Overall, these findings proved that GBH greatly impairs the growth of a non-target plant, strengthening the need of additional studies to unravel the real risks associated with the over usage of this pesticide, since there is an evident lack of studies performed with contaminated soils.
Collapse
|
12
|
Soares C, Pereira R, Spormann S, Fidalgo F. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? - Evaluation of oxidative damage and antioxidant responses in tomato. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:256-265. [PMID: 30685666 DOI: 10.1016/j.envpol.2019.01.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Using a realistic and environmental relevant approach, the present study aimed at understanding the biochemical and physiological basis of glyphosate (GLY)-induced stress in non-target plant species, using tomato (Solanum lycopersicum L.) as a model. For this purpose, plants were grown for 28 days under different concentrations of a commercial formulation of GLY (Roundup® UltraMax) - 0, 10, 20 and 30 mg kg-1 soil. The exposure of plants to increasing concentrations of GLY caused a severe inhibition of growth (root and shoot elongation and fresh weight), especially in the highest treatments. In what regards the levels of reactive oxygen species (ROS), both hydrogen peroxide (H2O2) and superoxide anion (O2.-) remained unchanged in shoots, but significantly increased in roots. Moreover, a concentration-dependent decrease in lipid peroxidation (LP) was found in shoots, though in roots differences were only found for the highest concentration of GLY. The evaluation of the antioxidant system showed that GLY interfered with several antioxidant metabolites (proline, ascorbate and glutathione) and enzyme activities (superoxide dismutase - SOD; catalase - CAT; ascorbate peroxidase - APX), generally inducing a positive response of the defense mechanisms. Overall, data obtained in this study unequivocally demonstrated that soil contamination by GLY, applied as part of its commercial formulation Roundup® UltraMax, impairs the growth and physiological performance of tomato plants, and likely of other non-target plant species, after 28 days of exposure by clearly affecting the normal redox homeostasis.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Sofia Spormann
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
13
|
Yüzbaşıoğlu E, Dalyan E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:322-330. [PMID: 30599309 DOI: 10.1016/j.plaphy.2018.12.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
In this study, we investigated how 6.6 mM thiram induces to stress response in tomato and evaluated the possible protective role of different concentration of salicylic acid (0.01, 0.1 and 1 mM SA) against thiram toxicity by analyzing tomato leaf samples taken on the 1st, 5th, 11th day of the treatment. The thiram treatment resulted in oxidative stress through an increase in hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels in a time-dependent manner and led to a decline in the total chlorophyll and carotenoid levels. However, thiram-treated plants induced antioxidant enzyme activities, including catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2), and ascorbate peroxidase (APX; EC 1.11.1.11), as well as pesticide detoxification enzymes such as peroxidase (POX; EC 1.11.1.7) and glutathione S-transferase (GST; EC.2.5.1.18). In addition, three genes (GST1, GST2, GST3) that encode for glutathione S-transferase and one gene (P450) that encodes for cytochrome P-450 monooxygenases were upregulated. SA showed a positive effect on the plants treated with thiram thanks to the decrease in the H2O2 and MDA levels, the enhancement of photosynthetic pigments, and the regulation in antioxidant enzyme activities in the tomato leaves. In addition, the SA-pretreatment triggered the activity and expression of pesticide detoxification enzymes in the thiram-treated leaves. Particularly the pretreatment with 1 mM SA significantly improved the activity of GST and led to the upregulation of GST1, GST2, GST3, and P450 expression levels. These results indicate that the application of thiram fungicide causes toxicity; however, the damaging effect could be mitigated through pretreatment with SA.
Collapse
Affiliation(s)
- Elif Yüzbaşıoğlu
- Department of Botany, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey.
| | - Eda Dalyan
- Department of Botany, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|