1
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
2
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
4
|
Santos N, Brandstetter H, Dall E. Arabidopsis thaliana Phytocystatin 6 Forms Functional Oligomer and Amyloid Fibril States. Biochemistry 2023; 62:3420-3429. [PMID: 37989209 PMCID: PMC10702442 DOI: 10.1021/acs.biochem.3c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Cystatins encode a high functional variability not only because of their ability to inhibit different classes of proteases but also because of their propensity to form oligomers and amyloid fibrils. Phytocystatins, essential regulators of protease activity in plants, specifically inhibit papain-like cysteine proteases (PLCPs) and legumains through two distinct cystatin domains. Mammalian cystatins can form amyloid fibrils; however, the potential for amyloid fibril formation of phytocystatins remains unknown. In this study, we demonstrate that Arabidopsis thaliana phytocystatin 6 (AtCYT6) exists as a mixture of monomeric, dimeric, and oligomeric forms in solution. Noncovalent oligomerization was facilitated by the N-terminal cystatin domain, while covalent dimerization occurred through disulfide bond formation in the interdomain linker. The noncovalent dimeric form of AtCYT6 retained activity against its target proteases, papain and legumain, albeit with reduced inhibitory potency. Additionally, we observed the formation of amyloid fibrils by AtCYT6 under acidic pH conditions and upon heating. The amyloidogenic potential could be attributed to the AtCYT6's N-terminal domain (AtCYT6-NTD). Importantly, AtCYT6 amyloid fibrils harbored inhibitory activities against both papain and legumain. These findings shed light on the oligomerization and amyloidogenic behavior of AtCYT6, expanding our understanding of phytocystatin biology and its potential functional implications for plant protease regulation.
Collapse
Affiliation(s)
- Naiá
P. Santos
- Department of Biosciences and Medical
Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical
Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Elfriede Dall
- Department of Biosciences and Medical
Biology, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Sinha N, Zahra T, Gahane AY, Rout B, Bhattacharya A, Basu S, Chakrabarti A, Thakur AK. Protein reservoirs of seeds are amyloid composites employed differentially for germination and seedling emergence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:329-346. [PMID: 37675599 DOI: 10.1111/tpj.16429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.
Collapse
Affiliation(s)
- Nabodita Sinha
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Talat Zahra
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Avinash Yashwant Gahane
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Bandita Rout
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | | | | | | | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
6
|
Ahn E, Botkin J, Ellur V, Lee Y, Poudel K, Prom LK, Magill C. Genome-Wide Association Study of Seed Morphology Traits in Senegalese Sorghum Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2344. [PMID: 37375969 DOI: 10.3390/plants12122344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Sorghum is considered the fifth most important crop in the world. Despite the potential value of Senegalese germplasm for various traits, such as resistance to fungal diseases, there is limited information on the study of sorghum seed morphology. In this study, 162 Senegalese germplasms were evaluated for seed area size, length, width, length-to-width ratio, perimeter, circularity, the distance between the intersection of length & width (IS) and center of gravity (CG), and seed darkness and brightness by scanning and analyzing morphology-related traits with SmartGrain software at the USDA-ARS Plant Science Research Unit. Correlations between seed morphology-related traits and traits associated with anthracnose and head smut resistance were analyzed. Lastly, genome-wide association studies were performed on phenotypic data collected from over 16,000 seeds and 193,727 publicly available single nucleotide polymorphisms (SNPs). Several significant SNPs were found and mapped to the reference sorghum genome to uncover multiple candidate genes potentially associated with seed morphology. The results indicate clear correlations among seed morphology-related traits and potential associations between seed morphology and the defense response of sorghum. GWAS analysis listed candidate genes associated with seed morphologies that can be used for sorghum breeding in the future.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Jacob Botkin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Vishnutej Ellur
- Molecular Plant Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yoonjung Lee
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kabita Poudel
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Prebble DW, Er S, Hlushchuk I, Domanskyi A, Airavaara M, Ekins MG, Mellick GD, Carroll AR. α-Synuclein binding activity of the plant growth promoter asterubine. Bioorg Med Chem Lett 2022; 64:128677. [PMID: 35301136 DOI: 10.1016/j.bmcl.2022.128677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 11/02/2022]
Abstract
Preventing the aggregation of certain amyloid proteins has the potential to slow down the progression of diseases like Alzheimer's, Parkinson's, and type 2 diabetes mellitus. During a high-throughput screen of 300 Australian marine invertebrate extracts, the extract of the marine sponge Thorectandra sp. 4408 displayed binding activity to the Parkinson's disease-associated protein, α-synuclein. Isolation of the active component led to its identification as the known plant growth promoter asterubine (1). This molecule shares distinct structural similarities with potent amyloid beta aggregation inhibitors tramiprosate (homotaurine) and ALZ-801. Herein we report the isolation, NMR data acquired in DMSO and α-synuclein binding activity of asterubine (1).
Collapse
Affiliation(s)
- Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Safak Er
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Irena Hlushchuk
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Mikko Airavaara
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Merrick G Ekins
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia; Queensland Museum, South Brisbane BC, QLD 4101, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
8
|
Li Y, Fu Y, Zhang H, Wang X, Chen T, Wu Y, Xu X, Yang S, Ji P, Song J. Natural Plant Tissue with Bioinspired Nano Amyloid and Hydroxyapatite as Green Scaffolds for Bone Regeneration. Adv Healthc Mater 2022; 11:e2102807. [PMID: 35285169 DOI: 10.1002/adhm.202102807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Indexed: 12/17/2022]
Abstract
Bone defects have been increasingly prevalent around the globe and traditional bone substitutes are constantly limited by low abundance and biosafety due to their animal-based resources. Plant-based scaffolds are currently studied as a green candidate but the bioinertia of cellulose to mammalian cells leads to uncertain bone regeneration. Inspired by the cross-kingdom adhesion of plants and bacteria, this work proposes a concept of a novel plant bone substitute, involving coating decellularized plant with nano amyloids and nano hydroxyapatites, to bridge the plant scaffold and animal tissue regeneration. Natural microporosity of plants can guide alignment of mammalian cells into various organ-like structures. Taking advantage of the bioactive nano amyloids, the scaffolds drastically promote cell adhesion, viability, and proliferation. The enhanced bio-affinity is elucidated as positively charged nano amyloids and serum deposition on the nanostructure. Nano-hydroxyapatite crystals deposited on amyloid further prompt osteogenic differentiation of pre-osteoblasts. In vivo experiments prove successful trabeculae regeneration in the scaffold. Such a hierarchical design leverages the dedicated microstructure of natural plants and high bioactivity of nano amyloid/hydroxyapatite coatings, and addresses the abundant resource of bone substitutes. Not limited to their current application, plant materials functionalized with nano amyloid/hydroxyapatite coatings allow many cross-kingdom tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Yuzhou Li
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| | - Yiru Fu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - He Zhang
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| | - Xu Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Tao Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Yanqiu Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Xinxin Xu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - Sheng Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| |
Collapse
|
9
|
Garai S, Citu, Singla-Pareek SL, Sopory SK, Kaur C, Yadav G. Complex Networks of Prion-Like Proteins Reveal Cross Talk Between Stress and Memory Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:707286. [PMID: 34381483 PMCID: PMC8350573 DOI: 10.3389/fpls.2021.707286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 08/01/2023]
Abstract
Prions are often considered as molecular memory devices, generating reproducible memory of a conformational change. Prion-like proteins (PrLPs) have been widely demonstrated to be present in plants, but their role in plant stress and memory remains unexplored. In this work, we report the widespread presence of PrLPs in plants through a comprehensive meta-analysis of 39 genomes representing major taxonomic groups. We find diverse functional roles associated with these proteins in various species and term the full complement of PrLPs in a genome as its "prionome." In particular, we found the rice prionome being significantly enriched in transposons/retrotransposons (Ts/RTRs) and identified over 60 rice PrLPs that were differentially regulated in stress and developmental responses. This prompted us to explore whether and to what extent PrLPs may build stress memory. By integrating the available rice interactome, transcriptome, and regulome data sets, we could find links between stress and memory pathways that would not have otherwise been discernible. Regulatory inferences derived from the superimposition of these data sets revealed a complex network and cross talk between PrLPs, transcription factors (TFs), and the genes involved in stress priming. This integrative meta-analysis connects transient and transgenerational memory mechanisms in plants with PrLPs, suggesting that plant memory may rely upon protein-based signals in addition to chromatin-based epigenetic signals. Taken together, our work provides important insights into the anticipated role of prion-like candidates in stress and memory, paving the way for more focused studies for validating the role of the identified PrLPs in memory acclimation.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Citu
- Computational Biology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sudhir K. Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Charanpreet Kaur
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
James JE, Willis SM, Nelson PG, Weibel C, Kosinski LJ, Masel J. Universal and taxon-specific trends in protein sequences as a function of age. eLife 2021; 10:e57347. [PMID: 33416492 PMCID: PMC7819706 DOI: 10.7554/elife.57347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/05/2021] [Indexed: 01/12/2023] Open
Abstract
Extant protein-coding sequences span a huge range of ages, from those that emerged only recently to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be 'phylostratigraphy' trends in any properties that evolve slowly with age. A long-term reduction in hydrophobicity and hydrophobic clustering was found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced species, using sensitive HMM methods to detect protein domain homology. We find that the reduction in hydrophobic clustering is universal across lineages. However, only young animal domains have a tendency to have higher structural disorder. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that the composition of the contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life, when these sequences first emerged.
Collapse
Affiliation(s)
- Jennifer E James
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Sara M Willis
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Paul G Nelson
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Catherine Weibel
- Department of Physics, University of ArizonaTucsonUnited States
- Department of Mathematics, University of ArizonaTucsonUnited States
| | - Luke J Kosinski
- Department of Molecular and Cellular Biology, University of ArizonaTucsonUnited States
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| |
Collapse
|
11
|
Antonets KS, Belousov MV, Sulatskaya AI, Belousova ME, Kosolapova AO, Sulatsky MI, Andreeva EA, Zykin PA, Malovichko YV, Shtark OY, Lykholay AN, Volkov KV, Kuznetsova IM, Turoverov KK, Kochetkova EY, Bobylev AG, Usachev KS, Demidov ON, Tikhonovich IA, Nizhnikov AA. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biol 2020; 18:e3000564. [PMID: 32701952 PMCID: PMC7377382 DOI: 10.1371/journal.pbio.3000564] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/19/2020] [Indexed: 02/04/2023] Open
Abstract
Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved β-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.
Collapse
Affiliation(s)
- Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maria E. Belousova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - Yury V. Malovichko
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | | | | | | | | | | | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Konstantin S. Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Oleg. N. Demidov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- INSERM UMR1231, UBFC, Dijon, France
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
12
|
Functional amyloids of eukaryotes: criteria, classification, and biological significance. Curr Genet 2020; 66:849-866. [DOI: 10.1007/s00294-020-01079-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022]
|
13
|
Abstract
The traditional view of protein aggregation as being strictly disease-related has been challenged by many examples of cellular aggregates that regulate beneficial biological functions. When coupled with the emerging view that many regulatory proteins undergo phase separation to form dynamic cellular compartments, it has become clear that supramolecular assembly plays wide-ranging and critical roles in cellular regulation. This presents opportunities to develop new tools to probe and illuminate this biology, and to harness the unique properties of these self-assembling systems for synthetic biology for the purposeful manipulation of biological function.
Collapse
Affiliation(s)
- Giulio Chiesa
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Szilvia Kiriakov
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, 02215, USA. .,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Surguchov A, Emamzadeh FN, Surguchev AA. Amyloidosis and Longevity: A Lesson from Plants. BIOLOGY 2019; 8:biology8020043. [PMID: 31137746 PMCID: PMC6628237 DOI: 10.3390/biology8020043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
The variety of lifespans of different organisms in nature is amazing. Although it is acknowledged that the longevity is determined by a complex interaction between hereditary and environmental factors, many questions about factors defining lifespan remain open. One of them concerns a wide range of lifespans of different organisms. The reason for the longevity of certain trees, which reaches a thousand years and exceeds the lifespan of most long living vertebrates by a huge margin is also not completely understood. Here we have discussed some distinguishing characteristics of plants, which may explain their remarkable longevity. Among them are the absence (or very low abundance) of intracellular inclusions composed of amyloidogenic proteins, the lack of certain groups of proteins prone to aggregate and form amyloids in animals, and the high level of compounds which inhibit protein aggregation and possess antiaging properties.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Fatemeh Nouri Emamzadeh
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4AY, UK.
| | - Alexei A Surguchev
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
15
|
Urban JM, Ho J, Piester G, Fu R, Nilsson BL. Rippled β-Sheet Formation by an Amyloid-β Fragment Indicates Expanded Scope of Sequence Space for Enantiomeric β-Sheet Peptide Coassembly. Molecules 2019; 24:E1983. [PMID: 31126069 PMCID: PMC6571685 DOI: 10.3390/molecules24101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022] Open
Abstract
In 1953, Pauling and Corey predicted that enantiomeric β-sheet peptides would coassemble into so-called "rippled" β-sheets, in which the β-sheets would consist of alternating l- and d-peptides. To date, this phenomenon has been investigated primarily with amphipathic peptide sequences composed of alternating hydrophilic and hydrophobic amino acid residues. Here, we show that enantiomers of a fragment of the amyloid-β (Aβ) peptide that does not follow this sequence pattern, amyloid-β (16-22), readily coassembles into rippled β-sheets. Equimolar mixtures of enantiomeric amyloid-β (16-22) peptides assemble into supramolecular structures that exhibit distinct morphologies from those observed by self-assembly of the single enantiomer pleated β-sheet fibrils. Formation of rippled β-sheets composed of alternating l- and d-amyloid-β (16-22) is confirmed by isotope-edited infrared spectroscopy and solid-state NMR spectroscopy. Sedimentation analysis reveals that rippled β-sheet formation by l- and d-amyloid-β (16-22) is energetically favorable relative to self-assembly into corresponding pleated β-sheets. This work illustrates that coassembly of enantiomeric β-sheet peptides into rippled β-sheets is not limited to peptides with alternating hydrophobic/hydrophilic sequence patterns, but that a broader range of sequence space is available for the design and preparation of rippled β-sheet materials.
Collapse
Affiliation(s)
- Jennifer M Urban
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Janson Ho
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Gavin Piester
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | - Riqiang Fu
- The National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| |
Collapse
|
16
|
Friedrich T, Faivre L, Bäurle I, Schubert D. Chromatin-based mechanisms of temperature memory in plants. PLANT, CELL & ENVIRONMENT 2019; 42:762-770. [PMID: 29920687 DOI: 10.1111/pce.13373] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/24/2018] [Accepted: 06/13/2018] [Indexed: 05/19/2023]
Abstract
For successful growth and development, plants constantly have to gauge their environment. Plants are capable to monitor their current environmental conditions, and they are also able to integrate environmental conditions over time and store the information induced by the cues. In a developmental context, such an environmental memory is used to align developmental transitions with favourable environmental conditions. One temperature-related example of this is the transition to flowering after experiencing winter conditions, that is, vernalization. In the context of adaptation to stress, such an environmental memory is used to improve stress adaptation even when the stress cues are intermittent. A somatic stress memory has now been described for various stresses, including extreme temperatures, drought, and pathogen infection. At the molecular level, such a memory of the environment is often mediated by epigenetic and chromatin modifications. Histone modifications in particular play an important role. In this review, we will discuss and compare different types of temperature memory and the histone modifications, as well as the reader, writer, and eraser proteins involved.
Collapse
Affiliation(s)
- Thomas Friedrich
- Institute of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Léa Faivre
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Isabel Bäurle
- Institute of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Mohammad-Beigi H, Kjaer L, Eskandari H, Aliakbari F, Christiansen G, Ruvo G, Ward JL, Otzen DE. A Possible Connection Between Plant Longevity and the Absence of Protein Fibrillation: Basis for Identifying Aggregation Inhibitors in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:148. [PMID: 30815009 PMCID: PMC6381023 DOI: 10.3389/fpls.2019.00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/28/2019] [Indexed: 05/08/2023]
Abstract
The ability of proteins to aggregate to form well-organized β-sheet rich amyloid fibrils is increasingly viewed as a general if regrettable property of the polypeptide chain. Aggregation leads to diseases such as amyloidosis and neurodegeneration in humans and various mammalian species but is also found in a functional variety in both animals and microbes. However, there are to our knowledge no reports of amyloid formation in plants. Plants are also the source of a large number of aggregation-inhibiting compounds. We reasoned that the two phenomena could be connected and that one of (many) preconditions for plant longevity is the ability to suppress unwanted protein aggregation. In support of this, we show that while protein extracts from the sugar maple tree Acer saccharum fibrillate readily on their own, this process is efficiently abolished by addition of small molecule extracts from the same plant. Further analysis of 44 plants showed a correlation between plant longevity and ability to inhibit protein aggregation. Extracts from the best performing plant, the sugar maple, were subjected to chromatographic fractionation, leading to the identification of a large number of compounds, many of which were shown to inhibit aggregation in vitro. One cautious interpretation is that it may have been advantageous for plants to maintain an efficient collection of aggregation-inhibiting metabolites as long as they do not impair metabolite function. From a practical perspective, our results indicate that long-lived plants may be particularly appropriate sources of new anti-aggregation compounds with therapeutic potential.
Collapse
Affiliation(s)
| | - Lars Kjaer
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Hoda Eskandari
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Gunna Christiansen
- Department of Biomedicine-Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Gianluca Ruvo
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | - Jane L. Ward
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- *Correspondence: Daniel Erik Otzen,
| |
Collapse
|
18
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Abstract
Darwin's gemmules were supposed to be "thrown off" by cells and were "inconceivably minute and numerous as the stars in heaven." They were capable of self-propagation and diffusion from cell to cell, and circulation through the system. The word "gene" coined by Wilhelm Johannsen, was derived from de Vries's term "pangen," itself a substitute for "gemmule" in Darwin's Pangenesis. Johannsen resisted the "morphological" conception of genes as particles with a certain structure. Morgan's genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string. In the late 1940s, McClintock challenged the concept of the stability of the gene when she discovered that some genes could move within a chromosome and between chromosomes. In 1948, Mandel and Metais reported the presence of cell-free nucleic acids in human blood for the first time. Over the past several decades, it has been universally accepted that almost all types of cells not only shed molecules such as cell-free DNA (including genomic DNA, tumor DNA and fetal DNA), RNAs (including mRNA and small RNAs) and prions, but also release into the extracellular environment diverse types of membrane vesicles (known as extracellular vesicles) containing DNA, RNA and proteins. Thus Darwin's speculative gemmules of the 19th century have become the experimentally demonstrated circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Why Study Functional Amyloids? Lessons from the Repeat Domain of Pmel17. J Mol Biol 2018; 430:3696-3706. [PMID: 29886018 DOI: 10.1016/j.jmb.2018.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Accepted: 06/04/2018] [Indexed: 11/24/2022]
Abstract
One of the current challenges facing biomedical researchers is the need to develop new approaches in preventing amyloid formation that is associated with disease. While amyloid is generally considered detrimental to the cell, examples of amyloids that maintain a benign nature and serve a specific function exist. Here, we review our work on the repeat domain (RPT) of the functional amyloid Pmel17. Specifically, the RPT domain contributes in generating amyloid fibrils in melanosomes upon which melanin biosynthesis occurs. Amyloid formation of RPT was shown to be pH sensitive, aggregating only under acidic conditions associated with melanosomal pH. Furthermore, preformed fibrils rapidly dissolved at neutral pH to generate benign monomeric species. From a biological perspective, this unique reversible aggregation/disaggregation is a safeguard against an event of releasing RPT fibrils in the cytosol, resulting in rapid fibril unfolding and circumventing cytotoxicity. Understanding how melanosomes preserve a safe environment will address vital questions that remain unanswered with pathological amyloids.
Collapse
|
21
|
Antonets KS, Nizhnikov AA. Predicting Amyloidogenic Proteins in the Proteomes of Plants. Int J Mol Sci 2017; 18:ijms18102155. [PMID: 29035294 PMCID: PMC5666836 DOI: 10.3390/ijms18102155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids are protein fibrils with characteristic spatial structure. Though amyloids were long perceived to be pathogens that cause dozens of incurable pathologies in humans and mammals, it is currently clear that amyloids also represent a functionally important form of protein structure implicated in a variety of biological processes in organisms ranging from archaea and bacteria to fungi and animals. Despite their social significance, plants remain the most poorly studied group of organisms in the field of amyloid biology. To date, amyloid properties have only been demonstrated in vitro or in heterologous systems for a small number of plant proteins. Here, for the first time, we performed a comprehensive analysis of the distribution of potentially amyloidogenic proteins in the proteomes of approximately 70 species of land plants using the Waltz and SARP (Sequence Analysis based on the Ranking of Probabilities) bioinformatic algorithms. We analyzed more than 2.9 million protein sequences and found that potentially amyloidogenic proteins are abundant in plant proteomes. We found that such proteins are overrepresented among membrane as well as DNA- and RNA-binding proteins of plants. Moreover, seed storage and defense proteins of most plant species are rich in amyloidogenic regions. Taken together, our data demonstrate the diversity of potentially amyloidogenic proteins in plant proteomes and suggest biological processes where formation of amyloids might be functionally important.
Collapse
Affiliation(s)
- Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|