1
|
Thompson E, Prior S, Brüning-Richardson A. Traditional Plant-Derived Compounds Inhibit Cell Migration and Induce Novel Cytoskeletal Effects in Glioblastoma Cells. J Xenobiot 2024; 14:613-633. [PMID: 38804289 PMCID: PMC11130960 DOI: 10.3390/jox14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Glioblastomas (GBMs) are aggressive and invasive cancers of the brain, associated with high rates of tumour recurrence and poor patient outcomes despite initial treatment. Targeting cell migration is therefore of interest in highly invasive cancers such as GBMs, to prevent tumour dissemination and regrowth. One current aim of GBM research focuses on assessing the anti-migratory properties of novel or repurposed inhibitors, including plant-based drugs which display anti-cancer properties. We investigated the potential anti-migratory activity of plant-based products with known cytotoxic effects in cancers, using a range of two-dimensional (2D) and three-dimensional (3D) migration and invasion assays as well as immunofluorescence microscopy to determine the specific anti-migratory and phenotypic effects of three plant-derived compounds, Turmeric, Indigo and Magnolia bark, on established glioma cell lines. Migrastatic activity was observed in all three drugs, with Turmeric exerting the most inhibitory effect on GBM cell migration into scratches and from the spheroid edge at all the timepoints investigated (p < 0.001). We also observed novel cytoskeletal phenotypes affecting actin and the focal adhesion dynamics. As our in vitro results determined that Turmeric, Indigo and Magnolia are promising migrastatic drugs, we suggest additional experimentation at the whole organism level to further validate these novel findings.
Collapse
Affiliation(s)
| | - Sally Prior
- Correspondence: (S.P.); (A.B.-R.); Tel.: +44-01484-472518 (A.B.-R.)
| | | |
Collapse
|
2
|
Laforgue L, Fertin A, Usson Y, Verdier C, Laurent VM. Efficient deformation mechanisms enable invasive cancer cells to migrate faster in 3D collagen networks. Sci Rep 2022; 12:7867. [PMID: 35550548 PMCID: PMC9098560 DOI: 10.1038/s41598-022-11581-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cell migration is a widely studied topic but has been very often limited to two dimensional motion on various substrates. Indeed, less is known about cancer cell migration in 3D fibrous-extracellular matrix (ECM) including variations of the microenvironment. Here we used 3D time lapse imaging on a confocal microscope and a phase correlation method to follow fiber deformations, as well as cell morphology and live actin distribution during the migration of cancer cells. Different collagen concentrations together with three bladder cancer cell lines were used to investigate the role of the metastatic potential on 3D cell migration characteristics. We found that grade-3 cells (T24 and J82) are characterized by a great diversity of shapes in comparison with grade-2 cells (RT112). Moreover, grade-3 cells with the highest metastatic potential (J82) showed the highest values of migration speeds and diffusivities at low collagen concentration and the greatest sensitivity to collagen concentration. Our results also suggested that the small shape fluctuations of J82 cells are the signature of larger migration velocities. Moreover, the displacement fields generated by J82 cells showed significantly higher fiber displacements as compared to T24 and RT112 cells, regardless of collagen concentration. The analysis of cell movements enhanced the fact that bladder cancer cells were able to exhibit different phenotypes (mesenchymal, amoeboid). Furthermore, the analysis of spatio-temporal migration mechanisms showed that cancer cells are able to push or pull on collagen fibers, therefore producing efficient local collagen deformations in the vicinity of cells. Our results also revealed that dense actin regions are correlated with the largest displacement fields, and this correlation is enhanced for the most invasive J82 cancer cells. Therefore this work opens up new routes to understand cancer cell migration in soft biological networks.
Collapse
Affiliation(s)
- Laure Laforgue
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, 38000, France
| | - Arnold Fertin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Yves Usson
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Claude Verdier
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
| | | |
Collapse
|
3
|
Delgado MG, Rivera CA, Lennon-Duménil AM. Macropinocytosis and Cell Migration: Don't Drink and Drive…. Subcell Biochem 2022; 98:85-102. [PMID: 35378704 DOI: 10.1007/978-3-030-94004-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.
Collapse
|
4
|
Blackley DG, Cooper JH, Pokorska P, Ratheesh A. Mechanics of developmental migration. Semin Cell Dev Biol 2021; 120:66-74. [PMID: 34275746 DOI: 10.1016/j.semcdb.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/01/2023]
Abstract
The ability to migrate is a fundamental property of animal cells which is essential for development, homeostasis and disease progression. Migrating cells sense and respond to biochemical and mechanical cues by rapidly modifying their intrinsic repertoire of signalling molecules and by altering their force generating and transducing machinery. We have a wealth of information about the chemical cues and signalling responses that cells use during migration. Our understanding of the role of forces in cell migration is rapidly evolving but is still best understood in the context of cells migrating in 2D and 3D environments in vitro. Advances in live imaging of developing embryos combined with the use of experimental and theoretical tools to quantify and analyse forces in vivo, has begun to shed light on the role of mechanics in driving embryonic cell migration. In this review, we focus on the recent studies uncovering the physical basis of embryonic cell migration in vivo. We look at the physical basis of the classical steps of cell migration such as protrusion formation and cell body translocation and review the recent research on how these processes work in the complex 3D microenvironment of a developing organism.
Collapse
Affiliation(s)
- Deannah G Blackley
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jack H Cooper
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Paulina Pokorska
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Aparna Ratheesh
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
5
|
Scott M, Żychaluk K, Bearon RN. A mathematical framework for modelling 3D cell motility: applications to glioblastoma cell migration. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 38:333-354. [PMID: 34189581 DOI: 10.1093/imammb/dqab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022]
Abstract
The collection of 3D cell tracking data from live images of micro-tissues is a recent innovation made possible due to advances in imaging techniques. As such there is increased interest in studying cell motility in 3D in vitro model systems but a lack of rigorous methodology for analysing the resulting data sets. One such instance of the use of these in vitro models is in the study of cancerous tumours. Growing multicellular tumour spheroids in vitro allows for modelling of the tumour microenvironment and the study of tumour cell behaviours, such as migration, which improves understanding of these cells and in turn could potentially improve cancer treatments. In this paper, we present a workflow for the rigorous analysis of 3D cell tracking data, based on the persistent random walk model, but adaptable to other biologically informed mathematical models. We use statistical measures to assess the fit of the model to the motility data and to estimate model parameters and provide confidence intervals for those parameters, to allow for parametrization of the model taking correlation in the data into account. We use in silico simulations to validate the workflow in 3D before testing our method on cell tracking data taken from in vitro experiments on glioblastoma tumour cells, a brain cancer with a very poor prognosis. The presented approach is intended to be accessible to both modellers and experimentalists alike in that it provides tools for uncovering features of the data set that may suggest amendments to future experiments or modelling attempts.
Collapse
Affiliation(s)
- M Scott
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - K Żychaluk
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - R N Bearon
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| |
Collapse
|
6
|
Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis. Acta Biomater 2021; 126:326-338. [PMID: 33737201 DOI: 10.1016/j.actbio.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In the last decade, cellular forces in three-dimensional hydrogels that mimic the extracellular matrix have been calculated by means of Traction Force Microscopy (TFM). However, characterizing the accuracy limits of a traction recovery method is critical to avoid obscuring physiological information due to traction recovery errors. So far, 3D TFM algorithms have only been validated using simplified cell geometries, bypassing image processing steps or arbitrarily simulating focal adhesions. Moreover, it is still uncertain which of the two common traction recovery methods, i.e., forward and inverse, is more robust against the inherent challenges of 3D TFM. In this work, we established an advanced in silico validation framework that is applicable to any 3D TFM experimental setup and that can be used to correctly couple the experimental and computational aspects of 3D TFM. Advancements relate to the simultaneous incorporation of complex cell geometries, simulation of microscopy images of varying bead densities and different focal adhesion sizes and distributions. By measuring the traction recovery error with respect to ground truth solutions, we found that while highest traction recovery errors occur for cases with sparse and small focal adhesions, our implementation of the inverse method improves two-fold the accuracy with respect to the forward method (average error of 23% vs. 50%). This advantage was further supported by recovering cellular tractions around angiogenic sprouts in an in vitro model of angiogenesis. The inverse method recovered higher traction peaks and a clearer pulling pattern at the sprout protrusion tips than the forward method. STATEMENT OF SIGNIFICANCE: Biomaterial performance is often studied by quantifying cell-matrix mechanical interactions by means of Traction Force Microscopy (TFM). However, 3D TFM algorithms are often validated in simplified scenarios, which do not allow to fully assess errors that could obscure physiological information. Here, we established an advanced in silico validation framework that mimics real TFM experimental conditions and that characterizes the expected errors of a 3D TFM workflow. We apply this framework to demonstrate the enhanced accuracy of a novel inverse traction recovery method that is illustrated in the context of an in vitro model of sprouting angiogenesis. Together, our study shows the importance of a proper traction recovery method to minimise errors and the need for an advanced framework to assess those errors.
Collapse
|
7
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
8
|
Solano-Gálvez SG, Álvarez-Hernández DA, Gutiérrez-Kobeh L, Vázquez-López R. Leishmania: manipulation of signaling pathways to inhibit host cell apoptosis. Ther Adv Infect Dis 2021; 8:20499361211014977. [PMID: 34104433 PMCID: PMC8165860 DOI: 10.1177/20499361211014977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
The maintenance of homeostasis in living systems requires the elimination of unwanted cells which is performed, among other mechanisms, by type I cell death or apoptosis. This type of programmed cell death involves several morphological changes such as cytoplasm shrinkage, chromatin condensation (pyknosis), nuclear fragmentation (karyorrhexis), and plasma membrane blebbing that culminate with the formation of apoptotic bodies. In addition to the maintenance of homeostasis, apoptosis also represents an important defense mechanism for cells against intracellular microorganisms. In counterpart, diverse intracellular pathogens have developed a wide array of strategies to evade apoptosis and persist inside cells. These strategies include the manipulation of signaling pathways involved in the inhibition of apoptosis where mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) play a key role. Leishmania is an intracellular protozoan parasite that causes a wide spectrum of diseases known as leishmaniasis. This parasite displays different strategies, including apoptosis inhibition, to down-regulate host cell defense mechanisms in order to perpetuate infection.
Collapse
Affiliation(s)
- Sandra-Georgina Solano-Gálvez
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Diego-Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, CICSA Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México, México
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Bloomsbury, London, UK
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucán Estado de México, Naucalpan, 52786, México
| |
Collapse
|
9
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Collective Dynamics of Model Pili-Based Twitcher-Mode Bacilliforms. Sci Rep 2020; 10:10747. [PMID: 32612117 PMCID: PMC7330051 DOI: 10.1038/s41598-020-67212-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa, like many bacilliforms, are not limited only to swimming motility but rather possess many motility strategies. In particular, twitching-mode motility employs hair-like pili to transverse moist surfaces with a jittery irregular crawl. Twitching motility plays a critical role in redistributing cells on surfaces prior to and during colony formation. We combine molecular dynamics and rule-based simulations to study twitching-mode motility of model bacilliforms and show that there is a critical surface coverage fraction at which collective effects arise. Our simulations demonstrate dynamic clustering of twitcher-type bacteria with polydomains of local alignment that exhibit spontaneous correlated motions, similar to rafts in many bacterial communities.
Collapse
|
11
|
Abstract
Cell migration is highly sensitive to fluid shear stress (FSS) in blood flow or interstitial fluid flow. However, whether the FSS gradient can regulate the migration of cells remains unclear. In this work, we constructed a parallel-plate flow chamber with different FSS gradients and verified the gradient flow field by particle image velocimetry measurements and finite element analyses. We then investigated the effect of FSS magnitudes and gradients on the migration of osteoclast precursor RAW264.7 cells. Results showed that the cells sensed the FSS gradient and migrated toward the low-FSS region. This FSS gradient-induced migration tended to occur in low-FSS magnitudes and high gradients, e.g., the migration angle relative to flow direction was approximately 90° for 0.1 Pa FSS and 0.2 Pa mm−1 FSS gradient. When chemically inhibiting the calcium signaling pathways of the mechanosensitive cation channel, endoplasmic reticulum, phospholipase C, and extracellular calcium, the cell migration toward the low-FSS region was significantly reduced. This study may provide insights into the mechanism of the recruitment of osteoclast precursors at the site of bone resorption and of mechanical stimulation-induced bone remodeling.
Collapse
Affiliation(s)
- Yan Gao
- a Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering , Beijing Institute of Technology , Beijing , P. R. China
| | - Taiyang Li
- a Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering , Beijing Institute of Technology , Beijing , P. R. China
| | - Qing Sun
- a Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering , Beijing Institute of Technology , Beijing , P. R. China
| | - Bo Huo
- a Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering , Beijing Institute of Technology , Beijing , P. R. China
| |
Collapse
|
12
|
The Neurokinin-1 Receptor Antagonist Aprepitant, a New Drug for the Treatment of Hematological Malignancies: Focus on Acute Myeloid Leukemia. J Clin Med 2020; 9:jcm9061659. [PMID: 32492831 PMCID: PMC7355887 DOI: 10.3390/jcm9061659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. To treat the disease successfully, new therapeutic strategies are urgently needed. One of these strategies can be the use of neurokinin-1 receptor (NK-1R) antagonists (e.g., aprepitant), because the substance P (SP)/NK-1R system is involved in cancer progression, including AML. AML patients show an up-regulation of the NK-1R mRNA expression; human AML cell lines show immunoreactivity for both SP and the NK-1R (it is overexpressed: the truncated isoform is more expressed than the full-length form) and, via this receptor, SP and NK-1R antagonists (aprepitant, in a concentration-dependent manner) respectively exert a proliferative action or an antileukemic effect (apoptotic mechanisms are triggered by promoting oxidative stress via mitochondrial Ca++ overload). Aprepitant inhibits the formation of AML cell colonies and, in combination with chemotherapeutic drugs, is more effective in inducing cytotoxic effects and AML cell growth blockade. NK-1R antagonists also exert an antinociceptive effect in myeloid leukemia-induced bone pain. The antitumor effect of aprepitant is diminished when the NF-κB pathway is overactivated and the damage induced by aprepitant in cancer cells is higher than that exerted in non-cancer cells. Thus, the SP/NK-1R system is involved in AML, and aprepitant is a promising antitumor strategy against this hematological malignancy. In this review, the involvement of this system in solid and non-solid tumors (in particular in AML) is updated and the use of aprepitant as an anti-leukemic strategy for the treatment of AML is also mentioned (a dose of aprepitant (>20 mg/kg/day) for a period of time according to the response to treatment is suggested). Aprepitant is currently used in clinical practice as an anti-nausea medication.
Collapse
|
13
|
Heck T, Vargas DA, Smeets B, Ramon H, Van Liedekerke P, Van Oosterwyck H. The role of actin protrusion dynamics in cell migration through a degradable viscoelastic extracellular matrix: Insights from a computational model. PLoS Comput Biol 2020; 16:e1007250. [PMID: 31929522 PMCID: PMC6980736 DOI: 10.1371/journal.pcbi.1007250] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/24/2020] [Accepted: 12/05/2019] [Indexed: 11/17/2022] Open
Abstract
Actin protrusion dynamics plays an important role in the regulation of three-dimensional (3D) cell migration. Cells form protrusions that adhere to the surrounding extracellular matrix (ECM), mechanically probe the ECM and contract in order to displace the cell body. This results in cell migration that can be directed by the mechanical anisotropy of the ECM. However, the subcellular processes that regulate protrusion dynamics in 3D cell migration are difficult to investigate experimentally and therefore not well understood. Here, we present a computational model of cell migration through a degradable viscoelastic ECM. This model is a 2D representation of 3D cell migration. The cell is modeled as an active deformable object that captures the viscoelastic behavior of the actin cortex and the subcellular processes underlying 3D cell migration. The ECM is regarded as a viscoelastic material, with or without anisotropy due to fibrillar strain stiffening, and modeled by means of the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. ECM degradation is captured by local fluidization of the material and permits cell migration through the ECM. We demonstrate that changes in ECM stiffness and cell strength affect cell migration and are accompanied by changes in number, lifetime and length of protrusions. Interestingly, directly changing the total protrusion number or the average lifetime or length of protrusions does not affect cell migration. A stochastic variability in protrusion lifetime proves to be enough to explain differences in cell migration velocity. Force-dependent adhesion disassembly does not result in faster migration, but can make migration more efficient. We also demonstrate that when a number of simultaneous protrusions is enforced, the optimal number of simultaneous protrusions is one or two, depending on ECM anisotropy. Together, the model provides non-trivial new insights in the role of protrusions in 3D cell migration and can be a valuable contribution to increase the understanding of 3D cell migration mechanics.
Collapse
Affiliation(s)
- Tommy Heck
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | | | | | | | - Paul Van Liedekerke
- INRIA de Paris and Sorbonne Universités UPMC Univ paris 6, LJLL Team Mamba, Paris, France.,IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Hans Van Oosterwyck
- Biomechanics Section, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Puder S, Fischer T, Mierke CT. The transmembrane protein fibrocystin/polyductin regulates cell mechanics and cell motility. Phys Biol 2019; 16:066006. [PMID: 31398719 DOI: 10.1088/1478-3975/ab39fa] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycystic kidney disease is a disorder that leads to fluid filled cysts that replace normal renal tubes. During the process of cellular development and in the progression of the diseases, fibrocystin can lead to impaired organ formation and even cause organ defects. Besides cellular polarity, mechanical properties play major roles in providing the optimal apical-basal or anterior-posterior symmetry within epithelial cells. A breakdown of the cell symmetry that is usually associated with mechanical property changes and it is known to be essential in many biological processes such as cell migration, polarity and pattern formation especially during development and diseases such as the autosomal recessive cystic kidney disease. Since the breakdown of the cell symmetry can be evoked by several proteins including fibrocystin, we hypothesized that cell mechanics are altered by fibrocystin. However, the effect of fibrocystin on cell migration and cellular mechanical properties is still unclear. In order to explore the function of fibrocystin on cell migration and mechanics, we analyzed fibrocystin knockdown epithelial cells in comparison to fibrocystin control cells. We found that invasiveness of fibrocystin knockdown cells into dense 3D matrices was increased and more efficient compared to control cells. Using optical cell stretching and atomic force microscopy, fibrocystin knockdown cells were more deformable and exhibited weaker cell-matrix as well as cell-cell adhesion forces, respectively. In summary, these findings show that fibrocystin knockdown cells displayed increased 3D matrix invasion through providing increased cellular deformability, decreased cell-matrix and reduced cell-cell adhesion forces.
Collapse
|
15
|
Ruzycka M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Microfluidics for studying metastatic patterns of lung cancer. J Nanobiotechnology 2019; 17:71. [PMID: 31133019 PMCID: PMC6537392 DOI: 10.1186/s12951-019-0492-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/04/2019] [Indexed: 01/09/2023] Open
Abstract
The incidence of lung cancer continues to rise worldwide. Because the aggressive metastasis of lung cancer cells is the major drawback of successful therapies, the crucial challenge of modern nanomedicine is to develop diagnostic tools to map the molecular mechanisms of metastasis in lung cancer patients. In recent years, microfluidic platforms have been given much attention as tools for novel point-of-care diagnostic, an important aspect being the reconstruction of the body organs and tissues mimicking the in vivo conditions in one simple microdevice. Herein, we present the first comprehensive overview of the microfluidic systems used as innovative tools in the studies of lung cancer metastasis including single cancer cell analysis, endothelial transmigration, distant niches migration and finally neoangiogenesis. The application of the microfluidic systems to study the intercellular crosstalk between lung cancer cells and surrounding tumor microenvironment and the connection with multiple molecular signals coming from the external cellular matrix are discussed. We also focus on recent breakthrough technologies regarding lab-on-chip devices that serve as tools for detecting circulating lung cancer cells. The superiority of microfluidic systems over traditional in vitro cell-based assays with regard to modern nanosafety studies and new cancer drug design and discovery is also addressed. Finally, the current progress and future challenges regarding printable and paper-based microfluidic devices for personalized nanomedicine are summarized.
Collapse
Affiliation(s)
- Monika Ruzycka
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097, Warsaw, Poland
| | - Mihaela R Cimpan
- Biomaterials - Department for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Ivan Rios-Mondragon
- Biomaterials - Department for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Ireneusz P Grudzinski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097, Warsaw, Poland.
| |
Collapse
|
16
|
Gutierrez S, Boada MD. Neuropeptide-induced modulation of carcinogenesis in a metastatic breast cancer cell line (MDA-MB-231 LUC+). Cancer Cell Int 2018; 18:216. [PMID: 30598641 PMCID: PMC6303888 DOI: 10.1186/s12935-018-0707-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background Metastatic cancer to bone is well-known to produce extreme pain. It has been suggested that the magnitude of this perceived pain is associated with disease progression and poor prognosis. These data suggest a potential cross-talk between cancer cells and nociceptors that contribute not only to pain, but also to cancer aggressiveness although the underlying mechanisms are yet to be stablished. Methods The in vitro dose dependent effect of neuropeptides (NPs) (substance P [SP], calcitonin gene-related peptide and neurokinin A [NKA]) and/or its combination, on the migration and invasion of MDA-MB-231LUC+ were assessed by wound healing and collagen-based cell invasion assays, respectively. The effect of NPs on the expression of its receptors (SP [NK1] and neurokinin A receptors [NK2], CALCRL and RAMP1) and kininogen (high-molecular-weight kininogen) release to the cell culture supernatant of MDA-MB-231LUC+, were measured using western-blot analysis and an ELISA assay, respectively. Statistical significance was tested using one-way ANOVA, repeated measures ANOVA, or the paired t-test. Post-hoc testing was performed with correction for multiple comparisons as appropriate. Results Our data show that NPs strongly modify the chemokinetic capabilities of a cellular line commonly used as a model of metastatic cancer to bone (MDA-MB-231LUC+) and increased the expression of their receptors (NK1R, NK2R, RAMP1, and CALCRL) on these cells. Finally, we demonstrate that NPs also trigger the acute release of HMWK (Bradykinin precursor) by MDA-MB-231LUC+, a molecule with both tumorigenic and pro-nociceptive activity. Conclusions Based on these observations we conclude that NPs exposure modulates this breast cancer cellular line aggressiveness by increasing its ability to migrate and invade new tissues. Furthermore, these results also support the pro nociceptive and cancer promoter role of the peripheral nervous system, during the initial stages of the disease.
Collapse
Affiliation(s)
- Silvia Gutierrez
- Department of Anesthesiology, Pain Mechanisms Lab, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - M Danilo Boada
- Department of Anesthesiology, Pain Mechanisms Lab, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| |
Collapse
|
17
|
Ranganathan M, Farutin A, Misbah C. Effect of Cytoskeleton Elasticity on Amoeboid Swimming. Biophys J 2018; 115:1316-1329. [PMID: 30177444 PMCID: PMC6170896 DOI: 10.1016/j.bpj.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, it has been reported that the cells of the immune system, as well as Dictyostelium amoebae, can swim in a bulk fluid by changing their shape repeatedly. We refer to this motion as amoeboid swimming. Here, we explore how the propulsion and the deformation of the cell emerge as an interplay between the active forces that the cell employs to activate the shape changes and the passive, viscoelastic response of the cell membrane, the cytoskeleton, and the surrounding environment. We introduce a model in which the cell is represented by an elastic capsule enclosing a viscous liquid. The motion of the cell is activated by time-dependent forces distributed along its surface. The model is solved numerically using the boundary integral formulation. The cell can swim in a fluid medium using cyclic deformations or strokes. We measure the swimming velocity of the cell as a function of the force amplitude, the stroke frequency, and the viscoelastic properties of the cell and the medium. We show that an increase in the shear modulus leads both to a regular slowdown of the swimming, which is more pronounced for more deflated swimmers, and to a tendency toward cell buckling. For a given stroke frequency, the swimming velocity shows a quadratic dependence on force amplitude for small forces, as expected, but saturates for large forces. We propose a scaling relationship for the dependence of swimming velocity on the relevant parameters that qualitatively reproduces the numerical results and allows us to define regimes in which the cell motility is dominated by elastic response or by the effective cortex viscosity. This leads to an estimate of the effective cortex viscosity of 103 Pa ⋅ s for which the two effects are comparable, which is close to that provided by several experiments.
Collapse
Affiliation(s)
- Madhav Ranganathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Alexander Farutin
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| | - Chaouqi Misbah
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| |
Collapse
|
18
|
Solano-Gálvez SG, Abadi-Chiriti J, Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E, Álvarez-Hernández DA, Franyuti-Kelly G, Gutiérrez-Kobeh L, Vázquez-López R. Apoptosis: Activation and Inhibition in Health and Disease. Med Sci (Basel) 2018; 6:E54. [PMID: 29973578 PMCID: PMC6163961 DOI: 10.3390/medsci6030054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
There are many types of cell death, each involving multiple and complex molecular events. Cell death can occur accidentally when exposed to extreme physical, chemical, or mechanical conditions, or it can also be regulated, which involves a genetically coded complex machinery to carry out the process. Apoptosis is an example of the latter. Apoptotic cell death can be triggered through different intracellular signalling pathways that lead to morphological changes and eventually cell death. This is a normal and biological process carried out during maturation, remodelling, growth, and development in tissues. To maintain tissue homeostasis, regulatory, and inhibitory mechanisms must control apoptosis. Paradoxically, these same pathways are utilized during infection by distinct intracellular microorganisms to evade recognition by the immune system and therefore survive, reproduce and develop. In cancer, neoplastic cells inhibit apoptosis, thus allowing their survival and increasing their capability to invade different tissues and organs. The purpose of this work is to review the generalities of the molecular mechanisms and signalling pathways involved in apoptosis induction and inhibition. Additionally, we compile the current evidence of apoptosis modulation during cancer and Leishmania infection as a model of apoptosis regulation by an intracellular microorganism.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Jack Abadi-Chiriti
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Luis Gutiérrez-Velez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Eduardo Rodríguez-Puente
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Enrique Konstat-Korzenny
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Diego-Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Giorgio Franyuti-Kelly
- Medical IMPACT, Infectious Disease Department, Mexico City 53900, Estado de México, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología, Mexico City, 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| |
Collapse
|
19
|
Li T, Liu J, Cai H, Wang B, Feng Y, Liu J. Incorporation of DDR2 clusters into collagen matrix via integrin-dependent posterior remnant tethering. Int J Biol Sci 2018; 14:654-666. [PMID: 29904280 PMCID: PMC6001655 DOI: 10.7150/ijbs.24765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Cell-matrix interactions play critical roles in cell adhesion, tissue remodeling and cancer metastasis. Discoidin domain receptor 2 (DDR2) is a collagen receptor belonging to receptor tyrosine kinase (RTK) family. It is a powerful regulator of collagen deposition in the extracellular matrix (ECM). Although the oligomerization of DDR extracellular domain (ECD) proteins can affect matrix remodeling by inhibiting fibrillogenesis, it is still unknown how cellular DDR2 is incorporated into collagen matrix. Using 3-dimentional (3D) imaging for migrating cells, we identified a novel mechanism that explains how DDR2 incorporating into collagen matrix, which we named as posterior remnant tethering. We followed the de novo formation of these remnants and identified that DDR2 clusters formed at the retracting phase of a pseudopodium, then these clusters were tethered to fibrillar collagen and peeled off from the cell body to generate DDR2 containing posterior remnants. Inhibition of β1-integrin or Rac1 activity abrogated the remnant formation. Thus, our findings unveil a special cellular mechanism for DDR2 clusters incorporating into collagen matrix in an integrin-dependent manner.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu key lab of Drug Screening, Jiangsu key lab of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Jin'e Liu
- Jiangsu key lab of Drug Screening, Jiangsu key lab of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Cai
- Research Center for High Altitude Medicine, Qing Hai University, Xining 810001, China
| | - Baomei Wang
- Institute of Virology, Wenzhou University, Wenzhou, 325000, China
| | | | - Jun Liu
- Jiangsu key lab of Drug Screening, Jiangsu key lab of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
20
|
Cummins TD, Wu KZL, Bozatzi P, Dingwell KS, Macartney TJ, Wood NT, Varghese J, Gourlay R, Campbell DG, Prescott A, Griffis E, Smith JC, Sapkota GP. PAWS1 controls cytoskeletal dynamics and cell migration through association with the SH3 adaptor CD2AP. J Cell Sci 2018; 131:jcs.202390. [PMID: 29175910 PMCID: PMC5818054 DOI: 10.1242/jcs.202390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Our previous studies of PAWS1 (protein associated with SMAD1; also known as FAM83G) have suggested that this molecule has roles beyond BMP signalling. To investigate these roles, we have used CRISPR/Cas9 to generate PAWS1-knockout U2OS osteosarcoma cells. Here, we show that PAWS1 plays a role in the regulation of the cytoskeletal machinery, including actin and focal adhesion dynamics, and cell migration. Confocal microscopy and live cell imaging of actin in U2OS cells indicate that PAWS1 is also involved in cytoskeletal dynamics and organization. Loss of PAWS1 causes severe defects in F-actin organization and distribution as well as in lamellipodial organization, resulting in impaired cell migration. PAWS1 interacts in a dynamic fashion with the actin/cytoskeletal regulator CD2AP at lamellae, suggesting that its association with CD2AP controls actin organization and cellular migration. Genetic ablation of CD2AP from U2OS cells instigates actin and cell migration defects reminiscent of those seen in PAWS1-knockout cells. This article has an associated First Person interview with the first authors of the paper. Summary: PAWS1 (also known as FAM83G) controls cell migration by influencing the organization of F-actin and focal adhesions and the distribution of the actin stress fibre network through its association with CD2AP.
Collapse
Affiliation(s)
- Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Kevin Z L Wu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Polyxeni Bozatzi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | | | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Joby Varghese
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - David G Campbell
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Alan Prescott
- Cell Signalling and Immunology, University of Dundee, Dundee DD1 5EH, UK
| | - Eric Griffis
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - James C Smith
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| |
Collapse
|
21
|
Chen Y, Lu X, Montoya-Durango DE, Liu YH, Dean KC, Darling DS, Kaplan HJ, Dean DC, Gao L, Liu Y. ZEB1 Regulates Multiple Oncogenic Components Involved in Uveal Melanoma Progression. Sci Rep 2017; 7:45. [PMID: 28246385 PMCID: PMC5428321 DOI: 10.1038/s41598-017-00079-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022] Open
Abstract
Human uveal melanoma (UM) is a major ocular malignant tumor with high risk of metastasis and requires multiple oncogenic factors for progression. ZEB1 is a zinc finger E-box binding transcription factor known for participating epithelial-mesenchymal transition (EMT), a critical cellular event for metastasis of malignant tumors of epithelium origin. ZEB1 is also expressed in UM and high expression of ZEB1 correlates with UM advancement, but has little effect on cell morphology. We show that spindle UM cells can become epithelioid but not vice versa; and ZEB1 exerts its tumorigenic effects by promoting cell dedifferentiation, proliferation, invasiveness, and dissemination. We provide evidence that ZEB1 binds not only to repress critical genes involving in pigment synthesis, mitosis, adherent junctions, but also to transactivate genes involving in matrix degradation and cellular locomotion to propel UM progression towards metastasis. We conclude that ZEB1 is a major oncogenic factor required for UM progression and could be a potential therapeutic target for treating UM in the clinic.
Collapse
Affiliation(s)
- Yao Chen
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China.,Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Diego E Montoya-Durango
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Yu-Hua Liu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Douglas S Darling
- Periodontics, Endodontics, and Dental Hygiene, University of Louisville, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Ling Gao
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
22
|
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2016; 11:5-27. [PMID: 28085224 PMCID: PMC5423224 DOI: 10.1002/1878-0261.12019] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities. We propose that targeting master regulators controlling plasticity is needed to hinder tumour dissemination and metastasis.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| |
Collapse
|
23
|
Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis. Sci Rep 2015; 5:17379. [PMID: 26627083 PMCID: PMC4667179 DOI: 10.1038/srep17379] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).
Collapse
|