1
|
Annink ME, Kraaijenhof JM, Beverloo CYY, Oostveen RF, Verberne HJ, Stroes ESG, Nurmohamed NS. Estimating inflammatory risk in atherosclerotic cardiovascular disease: plaque over plasma? Eur Heart J Cardiovasc Imaging 2025; 26:444-460. [PMID: 39657321 DOI: 10.1093/ehjci/jeae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Inflammation is an important driver of disease in the context of atherosclerosis, and several landmark trials have shown that targeting inflammatory pathways can reduce cardiovascular event rates. However, the high cost and potentially serious adverse effects of anti-inflammatory therapies necessitate more precise patient selection. Traditional biomarkers of inflammation, such as high-sensitivity C-reactive protein, show an association with cardiovascular risk on a population level but do not have specificity for local plaque inflammation. Nowadays, advancements in non-invasive imaging of the vasculature enable direct assessment of vascular inflammation. Positron emission tomography (PET) tracers such as 18F-fluorodeoxyglucose enable detection of metabolic activity of inflammatory cells but are limited by low specificity and myocardial spillover effects. 18F-sodium fluoride is a tracer that identifies active micro-calcification in plaques, indicating vulnerable plaques. Gallium-68 DOTATATE targets pro-inflammatory macrophages by binding to somatostatin receptors, which enhances specificity for plaque inflammation. Coronary computed tomography angiography (CCTA) provides high-resolution images of coronary arteries, identifying high-risk plaque features. Measuring pericoronary adipose tissue attenuation on CCTA represents a novel marker of vascular inflammation. This review examines both established and emerging methods for assessing atherosclerosis-related inflammation, emphasizing the role of advanced imaging in refining risk stratification and guiding personalized therapies. Integrating these imaging modalities with measurements of systemic and molecular biomarkers could shift atherosclerotic cardiovascular disease management towards a more personalized approach.
Collapse
Affiliation(s)
- Maxim E Annink
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Jordan M Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Cheyenne Y Y Beverloo
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Reindert F Oostveen
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Hein J Verberne
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Muffová B, Králová Lesná I, Poledne R. Physiology and Pathobiology of Perivascular Adipose Tissue: Inflammation-based Atherogenesis. Physiol Res 2024; 73:929-941. [PMID: 39903884 PMCID: PMC11835208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 02/06/2025] Open
Abstract
Perivascular adipose tissue (PVAT) envelops the majority of systemic vessels, providing crucial mechanical support and vessel protection. In physiological conditions, PVAT releases various bioactive molecules, contributing to the anti-inflammatory environment around neighboring vessels. However, in conditions like obesity, PVAT can exacerbate cardiovascular issues such as atherosclerosis. Communication between PVAT and nearby vessels is bidirectional, with PVAT responding dynamically to signals from the vasculature. This responsiveness positions PVAT as a promising indicator of vascular inflammation. Recently, the role of PVAT in the CVD risk prediction is also greatly discussed. The objective of this review is to summarize the current state of knowledge about the PVAT function, its role in physiologic and pathophysiologic processes and its potential in CVD risk prediction. Keywords: Perivascular adipose tissue, inflammation, atherogenesis, Fat attenuation index.
Collapse
Affiliation(s)
- B Muffová
- Atherosclerosis Research Laboratory, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
3
|
Regulski MJ, Saunders MC, McCulloch SE, Danilkovitch A. Pilot Study: Human Adipose Tissue Allograft for Fat Pad Defects in Patients With Preulcerative Lesions. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6404. [PMID: 39726820 PMCID: PMC11671075 DOI: 10.1097/gox.0000000000006404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/24/2024] [Indexed: 12/28/2024]
Abstract
Background Loss or displacement of a fat pad on the foot increases plantar pressure, leading to pain and plantar ulcers. These ulcers, especially in patients with diabetic neuropathy, have high recurrence rates, often resulting in amputations. Standard of care focuses on reducing plantar pressure with shoe padding or orthotic devices, leaving the restoration of the fat pad as an unmet medical need. To address this, a human cryopreserved adipose tissue (hCAT) allograft has been developed to repair adipose tissue defects. Methods Scientific characterization of hCAT included assessments of its structural properties, immunogenicity, persistence, and remodeling in both in vitro and in vivo models. The incidence of adverse events and ulcer recurrence was analyzed retrospectively in 12 patients with diabetic neuropathy with preulcerative lesions who received 1.5-3.0 mL subcutaneous hCAT implants in areas with fat pad defects. Results When implanted in patients, hCAT remained palpable at the implantation sites, and no ulcerations occurred for an average of 6.4 months (range, 2-10 months). No product-related adverse events have been recorded to date. Long-term follow-up for implanted patients is ongoing. Conclusions Use of hCAT seems to be safe and potentially beneficial for managing patients at risk for plantar ulcerations. Further studies are warranted to evaluate hCAT's potential to manage patients at high risk for plantar ulcer formation.
Collapse
|
4
|
Quarta S, Santarpino G, Carluccio MA, Calabriso N, Cardetta F, Siracusa L, Strano T, Palamà I, Leccese G, Visioli F, Massaro M. Cardiac fat adipocytes: An optimized protocol for isolation of ready-to-use mature adipocytes from human pericardial adipose tissue. J Mol Cell Cardiol 2024; 196:12-25. [PMID: 39214497 DOI: 10.1016/j.yjmcc.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
A better understanding of the pathophysiology of cardiac fat depots is crucial to describe their role in the development of cardiovascular diseases. To this end, we have developed a method to isolate mature fat cells from the pericardial adipose tissue (PAT), the most accessible cardiac fat depot during cardiac surgery. Using enzymatic isolation, we were able to successfully obtain mature fat cells together with the corresponding cells of the stromal vascular fraction (SVF). We subjected the PAT adipocytes to thorough morphological and molecular characterization, including detailed fatty acid profiling, and simultaneously investigated their reactivity to external stimuli. Our approach resulted in highly purified fat cells with sustained viability for up to 72 h after explantation. Remarkably, these adipocytes responded to multiple challenges, including pro-inflammatory and metabolic stimuli, indicating their potential to trigger a pro-inflammatory response and modulate endothelial cell behavior. Furthermore, we have created conditions to maintain whole PAT in culture and preserve their viability and reactivity to external stimuli. The efficiency of cell recovery combined with minimal dedifferentiation underscores the promise for future applications as a personalized tool for screening and assessing individual patient responses to drugs and supplements or nutraceuticals.
Collapse
Affiliation(s)
- Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy.
| | - Giuseppe Santarpino
- Department of Clinical and Experimental Medicine, Magna Graecia University of Catanzaro, Italy; Department of Cardiac Surgery, Città di Lecce Hospital, GVM Care&Research, Lecce, Italy; Department of Cardiac Surgery, Paracelsus Medical University, Nuremberg, Germany.
| | | | - Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy.
| | - Francesco Cardetta
- Department of Cardiac Surgery, University "Campus Biomedico", Rome, Italy.
| | - Laura Siracusa
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Catania section, Via Paolo Gaifami 18, 95126 Catania, Italy.
| | - Tonia Strano
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Catania section, Via Paolo Gaifami 18, 95126 Catania, Italy.
| | - Ilaria Palamà
- Institute Nanotechnology Institute, CNR-NANOTEC, 73100 Lecce, Italy.
| | - Gabriella Leccese
- Institute Nanotechnology Institute, CNR-NANOTEC, 73100 Lecce, Italy.
| | | | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy.
| |
Collapse
|
5
|
Annink ME, Kraaijenhof JM, Stroes ESG, Kroon J. Moving from lipids to leukocytes: inflammation and immune cells in atherosclerosis. Front Cell Dev Biol 2024; 12:1446758. [PMID: 39161593 PMCID: PMC11330886 DOI: 10.3389/fcell.2024.1446758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the most important cause of morbidity and mortality worldwide. While it is traditionally attributed to lipid accumulation in the vascular endothelium, recent research has shown that plaque inflammation is an important additional driver of atherogenesis. Though clinical outcome trials utilizing anti-inflammatory agents have proven promising in terms of reducing ASCVD risk, it is imperative to identify novel actionable targets that are more specific to atherosclerosis to mitigate adverse effects associated with systemic immune suppression. To that end, this review explores the contributions of various immune cells from the innate and adaptive immune system in promoting and mitigating atherosclerosis by integrating findings from experimental studies, high-throughput multi-omics technologies, and epidemiological research.
Collapse
Affiliation(s)
- Maxim E. Annink
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, Netherlands
| |
Collapse
|
6
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
7
|
Albuquerque CI, Tavares ER, Guido MC, Carvalho PO, Tavoni TM, Lopes NM, Silva BMDO, Jensen L, Stolf NAG, Maranhão RC. Treatment of rabbits with atherosclerosis induced by cholesterol feeding with daunorubicin associated to a lipid core nanoparticle (LDE). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Králová A, Kubátová H, Kauerová S, Janoušek L, Froněk J, Králová Lesná I, Poledne R. Cholesterol efflux and macrophage polarization in human adipose tissue. Physiol Res 2022. [DOI: 10.33549/physiolres.934926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pro-inflammatory status of adipose tissue (AT) has been found to be related to reverse cholesterol transport (RCT) from peritoneal macrophages. However, this finding was made in experimental models using induced peritonitis and isolated peritoneal macrophages of animals. This experimental relationship is in agreement with RCT changes in man in two extreme situations, sepsis or cardiovascular complications.
Given the above, we sought to test RTC in relationship to macrophage polarization in the visceral AT (VAT) of living kidney donors (LKDs) and the effect of conditioned media obtained from their AT. The influence of ATCM on CE capacity was first assessed in an experiment where standard plasma was used as cholesterol acceptor from [14C] cholesterol labeled THP-1 cells. Conditioned media as a product of LKDs’ incubated AT showed no effect on CE. Likewise, we did not find any effect of individual plasma of LKDs on CE when individual plasma of LKDs were used as acceptors. On the other hand, we documented an effect of LKDs’ adipose cell size on CE. Our results indicate that the pro-inflammatory status of human AT is not likely induced by disrupted RCT but might be influenced by the metabolic status of LKDs’ adipose tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - R Poledne
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
9
|
KRÁLOVÁ A, BARTUŠKOVÁ H, KAUEROVÁ S, JANOUŠEK L, FRONĚK J, KRÁLOVÁ LESNÁ I, POLEDNE R. Cholesterol efflux and macrophage polarization in human adipose tissue. Physiol Res 2022; 71:859-868. [PMID: 36426890 PMCID: PMC9814980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pro-inflammatory status of adipose tissue (AT) has been found to be related to reverse cholesterol transport (RCT) from peritoneal macrophages. However, this finding was made in experimental models using induced peritonitis and isolated peritoneal macrophages of animals. This experimental relationship is in agreement with RCT changes in man in two extreme situations, sepsis or cardiovascular complications. Given the above, we sought to test RTC in relationship to macrophage polarization in the visceral AT (VAT) of living kidney donors (LKDs) and the effect of conditioned media obtained from their AT. The influence of ATCM on CE capacity was first assessed in an experiment where standard plasma was used as cholesterol acceptor from [14C] cholesterol labeled THP-1. Conditioned media as a product of LKDs' incubated AT showed no effect on CE. Likewise, we did not find any effect of individual plasma of LKDs on CE when individual plasma of LKDs were used as acceptors. On the other hand, we documented an effect of LKDs' adipose cell size on CE. Our results indicate that the pro-inflammatory status of human AT is not likely induced by disrupted RCT but might be influenced by the metabolic status of LKDs' adipose tissue.
Collapse
Affiliation(s)
- Anna KRÁLOVÁ
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana BARTUŠKOVÁ
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Soňa KAUEROVÁ
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Libor JANOUŠEK
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiří FRONĚK
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivana KRÁLOVÁ LESNÁ
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic,First Faculty of Medicine, Charles University, Military University Hospital, Prague, Czech Republic
| | - Rudolf POLEDNE
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
10
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kang KR, Kim HJ. Rosmarinic acid downregulates the oxLDL‑induced interaction between monocytes and endothelial cells, in addition to monocyte diapedesis, under high glucose conditions. Int J Mol Med 2022; 49:68. [PMID: 35315501 PMCID: PMC8989427 DOI: 10.3892/ijmm.2022.5125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Endothelial dysfunction during diabetes has been previously reported to be at least in part attributed to increased oxidized low‑density lipoprotein (oxLDL) levels mediated by high glucose (HG) levels. Endothelial inflammation increases the adhesiveness of monocytes to the endothelium in addition to increasing vascular permeability, promoting diabetic atherogenesis. In a previous study, it was reported that oxLDL treatment induced nucleotide‑binding domain and leucine‑rich repeat containing family, pyrin domain‑containing 3 inflammasome activation in endothelial cells (ECs) under HG conditions, in a manner that could be effectively reversed by rosmarinic acid. However, it remains unclear whether oxLDL‑mediated inflammasome activation can regulate the interaction between monocytes and ECs. The effects of oxLDL‑mediated inflammasome activation on endothelial permeability under HG conditions, in addition to the effects of rosmarinic acid on these oxLDL‑mediated processes, also remain poorly understood. Therefore, the present study aimed to elucidate the mechanisms involved in oxLDL‑induced endothelial permeability and monocyte diapedesis under HG conditions, in addition to the potential effects of rosmarinic acid. ECs were treated with oxLDL under HG conditions in the presence or absence of ROS scavengers mitoTEMPO and NAC, p38 inhibitor SB203580, FOXO1 inhibitor AS1842856 or transfected with the TXNIP siRNA, before protein expression levels of intercellular adhesion molecule 1 (ICAM‑1), vascular cell adhesion molecule‑1 (VCAM‑1), phosphorylated vascular endothelial‑cadherin (VE‑cadhedrin), VE‑cadherin and zonula occludens‑1 (ZO‑1) were measured by western blotting. In addition, adhesion assay and Transwell assays were performed. oxLDL was found to significantly increase the expression of ICAM‑1 and VCAM‑1 in ECs under HG conditions whilst also enhancing the adhesion of monocytes to ECs. This was found to be dependent on the reactive oxygen species (ROS)/p38 MAPK/forkhead box O1 (FOXO1)/thioredoxin interacting protein (TXNIP) signaling pathway. In addition, oxLDL‑stimulated ECs under HG conditions exhibited increased phosphorylated VE‑cadherin protein levels and decreased ZO‑1 protein expression levels compared with those in untreated ECs, suggesting increased endothelial permeability. Furthermore, monocyte transmigration through the endothelial monolayer was significantly increased by oxLDL treatment under HG conditions. These oxLDL‑mediated effects under HG conditions were also demonstrated to be dependent on this ROS/p38 MAPK/FOXO1/TXNIP signaling pathway. Subsequently, rosmarinic acid treatment significantly reversed oxLDL‑induced overexpression of adhesion molecules and monocyte‑EC adhesion, oxLDL‑induced endothelial junction hyperpermeability and monocyte transmigration through the endothelial monolayer under HG conditions, in a dose‑dependent manner. These results suggest that rosmarinic acid can exert a protective effect against oxLDL‑mediated endothelial dysfunction under HG conditions by reducing the interaction between monocytes and ECs in addition to preventing monocyte diapedesis.
Collapse
Affiliation(s)
- Jean Baptiste Nyandwi
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Republic of Rwanda
| | - Young Shin Ko
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Hana Jin
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Kee Ryeon Kang
- Department of Biochemistry, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| |
Collapse
|
11
|
Paukner K, Králová Lesná I, Poledne R. Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis. Int J Mol Sci 2022; 23:533. [PMID: 35008955 PMCID: PMC8745363 DOI: 10.3390/ijms23010533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Membrane cholesterol is essential for cell membrane properties, just as serum cholesterol is important for the transport of molecules between organs. This review focuses on cholesterol transport between lipoproteins and lipid rafts on the surface of macrophages. Recent studies exploring this mechanism and recognition of the central dogma-the key role of macrophages in cardiovascular disease-have led to the notion that this transport mechanism plays a major role in the pathogenesis of atherosclerosis. The exact molecular mechanism of this transport remains unclear. Future research will improve our understanding of the molecular and cellular bases of lipid raft-associated cholesterol transport.
Collapse
Affiliation(s)
- Karel Paukner
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Physiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Small Animal Clinic, 612 00 Brno, Czech Republic
| | - Ivana Králová Lesná
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Anesthesia and Intensive Medicine, First Faculty of Medicine, Charles University and University Military Hospital, 128 08 Prague, Czech Republic
| | - Rudolf Poledne
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
| |
Collapse
|
12
|
Heeran AB, McCready J, Dunne MR, Donlon NE, Nugent TS, Bhardwaj A, Mitchelson KAJ, Buckley AM, Ravi N, Roche HM, Reynolds JV, Lynam-Lennon N, O’Sullivan J. Opposing Immune-Metabolic Signature in Visceral Versus Subcutaneous Adipose Tissue in Patients with Adenocarcinoma of the Oesophagus and the Oesophagogastric Junction. Metabolites 2021; 11:768. [PMID: 34822426 PMCID: PMC8624269 DOI: 10.3390/metabo11110768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) is an exemplar model of obesity-associated cancer. Previous work in our group has demonstrated that overweight/obese OAC patients have better responses to neoadjuvant therapy, but the underlying mechanisms are unknown. Unravelling the immune-metabolic signatures of adipose tissue may provide insight for this observation. We hypothesised that different metabolic pathways predominate in visceral (VAT) and subcutaneous adipose tissue (SAT) and inflammatory secretions will differ between the fat depots. Real-time ex vivo metabolic profiles of VAT and SAT from 12 OAC patients were analysed. These samples were screened for the secretion of 54 inflammatory mediators, and data were correlated with patient body composition. Oxidative phosphorylation (OXPHOS) was significantly higher in VAT when compared to SAT. OXPHOS was significantly higher in the SAT of patients receiving neoadjuvant treatment. VEGF-A, VEGF-C, P1GF, Flt-1, bFGF, IL-15, IL-16, IL-17A, CRP, SAA, ICAM-1, VCAM-1, IL-2, IL-13, IFN-γ, and MIP-1β secretions were significantly higher from VAT than SAT. Higher levels of bFGF, Eotaxin-3, and TNF-α were secreted from the VAT of obese patients, while higher levels of IL-23 and TARC were secreted from the SAT of obese patients. The angiogenic factors, bFGF and VEGF-C, correlated with visceral fat area. Levels of OXPHOS are higher in VAT than SAT. Angiogenic, vascular injury and inflammatory cytokines are elevated in VAT versus SAT, indicating that VAT may promote inflammation, linked to regulating treatment response.
Collapse
Affiliation(s)
- Aisling B. Heeran
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Jessica McCready
- Department of Biological and Physical Sciences, Assumption University, Worcester, MA 01609, USA;
| | - Margaret R. Dunne
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Noel E. Donlon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Timothy S. Nugent
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Anshul Bhardwaj
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Kathleen A. J. Mitchelson
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (K.A.J.M.); (H.M.R.)
| | - Amy M. Buckley
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Narayanasamy Ravi
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Helen M. Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (K.A.J.M.); (H.M.R.)
- Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK
| | - John V. Reynolds
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Niamh Lynam-Lennon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Jacintha O’Sullivan
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| |
Collapse
|
13
|
Zhang L, Ma L, Li J, Lei J, Chen J, Yu C. VE-cadherin N-glycosylation modified by N-acetylglucosaminyltransferase V regulates VE-cadherin-β-catenin interaction and monocyte adhesion. Exp Physiol 2021; 106:1869-1877. [PMID: 34117813 DOI: 10.1113/ep089617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Inflammation-induced monocyte adhesion is the initiator of most vascular diseases. The underlying mechanisms that mediate monocyte adhesion remain to be clarified fully. What is the main finding and its importance? N-acetylglucosaminyltransferase V (GnT-V)-mediated N-glycosylation of VE-cadherin regulates the dissociation of the VE-cadherin-β-catenin complex to modulate monocyte adhesion, but GnT-V overexpression cannot rescue monocyte adhesion induced by interleukin-1β. This study clarified the molecular mechanism of VE-cadherin in regulating the monocyte adhesion process. ABSTRACT Monocyte adhesion is a crucial step in the initial stage of atherosclerosis, and dysfunction of VE-cadherin has been reported to be involved in this process. Our group previously found that VE-cadherin and its binding protein, β-catenin, were modified by sialylation, and the levels of sialylation were decreased in pro-inflammatory cytokine-treated human umbilical vein EA.hy926 cells. In this study, we confirmed that the sugar chains of VE-cadherin were modified by N-acetylglucosaminyltransferase V (GnT-V). We showed that the levels of GnT-V and β1,6-N-acetylglucosamine on the VE-cadherin were reduced in the presence of interleukin-1β, whereas the level of monocyte transendothelial migration was increased. Moreover, the interaction between VE-cadherin and β-catenin was increased, accompanied by an increased accumulation of degradative VE-cadherin and cytoplasmic β-catenin, indicating impairment of cell-cell junctions after interleukin-1β treatment. Furthermore, GnT-V short hairpin RNA and overexpression analysis confirmed that glycosylation of VE-cadherin was modified by GnT-V in EA.hy926 cells, which contributed to the monocyte-endothelial adhesion process. Taken together, these results suggest that the function of VE-cadherin in facilitating monocyte adhesion might result from the decreasing GnT-V expression and disorder of GnT-V-catalysed N-glycosylation. Our study clarified the molecular mechanism of VE-cadherin in regulation of the monocyte adhesion process and provided new insights into the post-transcriptional modifications of VE-cadherin.
Collapse
Affiliation(s)
- Lei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| | - Jiajia Li
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Department of Pharmacy, Chongqing Hechuan District People's Hospital, Chongqing, PR China
| | - Jin Lei
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| |
Collapse
|
14
|
Dymkowska D. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria. Mitochondrion 2021; 57:131-147. [PMID: 33412335 DOI: 10.1016/j.mito.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Endothelial mitochondria play important signaling roles critical for the regulation of various cellular processes, including calcium signaling, ROS generation, NO synthesis or inflammatory response. Mitochondrial stress or disturbances in mitochondrial function may participate in the development and/or progression of endothelial dysfunction and could precede vascular diseases. Vascular functions are also strictly regulated by properly functioning degradation machinery, including autophagy and mitophagy, and tightly coordinated by mitochondrial and endoplasmic reticulum responses to stress. Within this review, current knowledge related to the development of cardiovascular disorders and the importance of mitochondria, endoplasmic reticulum and degradation mechanisms in vascular endothelial functions are summarized.
Collapse
Affiliation(s)
- Dorota Dymkowska
- The Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology PAS, 3 Pasteur str. 02-093 Warsaw, Poland.
| |
Collapse
|