1
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
2
|
Giordano ME, Udayan G, Guascito MR, De Bartolomeo AR, Carlino A, Conte M, Contini D, Lionetto MG. Apoptotic volume decrease (AVD) in A 549 cells exposed to water-soluble fraction of particulate matter (PM 10). Front Physiol 2023; 14:1218687. [PMID: 37492639 PMCID: PMC10364053 DOI: 10.3389/fphys.2023.1218687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Exposure to atmospheric particulate matter (PM) is recognized as a human health risk factor of great concern. The present work aimed to study the cellular mechanisms underlying cytotoxic effects of airborne particulate matter <10 µm in size (PM10), sampled in an urban background site from January to May 2020, on A549 cells. In particular, the study addressed if PM10 exposure can be a main factor in the induction of the Apoptotic Volume Decrease (AVD), which is one of the first events of apoptosis, and if the generation of intracellular oxidative stress can be involved in the PM10 induction of apoptosis in A549 cells. The cytotoxicity of PM10 samples was measured by MTT test on cells exposed for 24 h to the PM10 aqueous extracts, cell volume changes were monitored by morphometric analysis of the cells, apoptosis appearance was detected by annexin V and the induction of intracellular oxidative stress was evaluated by the ROS sensitive CM-H2DCFDA fluorescent probe. The results showed cytotoxic effects ascribable to apoptotic death in A549 cells exposed for 24 h to aqueous extracts of airborne winter PM10 samples characterized by high PM10 value and organic carbon content. The detected reduced cell viability in winter samples ranged from 55% to 100%. Normotonic cell volume reduction (ranging from about 60% to 30% cell volume decrease) after PM10 exposure was already detectable after the first 30 min clearly indicating the ability of PM10, mainly arising from biomass burning, to induce Apoptotic Volume Decrease (AVD) in A549 cells. AVD was prevented by the pre-treatment with 0.5 mM SITS indicating the activation of Cl- efflux presumably through the activation of VRAC channels. The exposure of A549 cells to PM10 aqueous extracts was able to induce intracellular oxidative stress detected by using the ROS-sensitive probe CM-H2DCFDA. The PM10-induced oxidative stress was statistically significantly correlated with cell viability inhibition and with apoptotic cell shrinkage. It was already evident after 15 min exposure representing one of the first cellular effects caused by PM exposure. This result suggests the role of oxidative stress in the PM10 induction of AVD as one of the first steps in cytotoxicity.
Collapse
Affiliation(s)
- M E Giordano
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - G Udayan
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - M R Guascito
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - A R De Bartolomeo
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - A Carlino
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - M Conte
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Rome, Italy
| | - D Contini
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Lecce, Italy
| | - M G Lionetto
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
3
|
Lee YS, Kwon O, Jeong GR, Noh J, Kim SE, Yi GS, Hwang EM, Park JY. Deficiency of TTYH1 Expression Reduces the Migration and Invasion of U2OS Human Osteosarcoma Cells. Life (Basel) 2022; 12:life12040530. [PMID: 35455021 PMCID: PMC9032734 DOI: 10.3390/life12040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
The Tweety homolog (TTYH) chloride channel family is involved in oncogenic processes including cell proliferation, invasion, and colonization of cancers. Among the TTYH family, TTYH1 is highly expressed in several cancer cells, such as glioma, breast, and gastric cancer cells. However, the role of TTYH1 in the progression of osteosarcoma remains unknown. Here, we report that deficient TTYH1 expression results in the inhibition of the migration and invasion of U2OS human osteosarcoma cells. We found that TTYH1 was endogenously expressed at both mRNA and protein levels in U2OS cells and that these channels were located at the plasma membrane of the cells. Moreover, we found that silencing of the TTYH1 with small interfering RNA (siRNA) resulted in a decrease in the migration and invasion of U2OS cells, while the proliferation of the cells was not affected. Additionally, treatment with TTYH1 siRNA significantly suppressed the mRNA expression of epithelial−mesenchymal transition (EMT)-regulated transcription factors such as Zinc E-Box Binding Homeobox 1 (ZEB1) and SNAIL. Most importantly, the expression of matrix metalloproteinase (MMP)-2, MPP-9, and N-cadherin was dramatically reduced following the silencing of TTYH1. Taken together, our findings suggest that silencing of TTYH1 expression reduces migration and invasion of U2OS cells and that TTYH1 may act as a potential molecular target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Young-Sun Lee
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (Y.-S.L.); (O.K.); (G.-R.J.); (J.N.); (S.E.K.)
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Osung Kwon
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (Y.-S.L.); (O.K.); (G.-R.J.); (J.N.); (S.E.K.)
| | - Geuk-Rae Jeong
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (Y.-S.L.); (O.K.); (G.-R.J.); (J.N.); (S.E.K.)
| | - Junyeol Noh
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (Y.-S.L.); (O.K.); (G.-R.J.); (J.N.); (S.E.K.)
| | - Sung Eun Kim
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (Y.-S.L.); (O.K.); (G.-R.J.); (J.N.); (S.E.K.)
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (Y.-S.L.); (O.K.); (G.-R.J.); (J.N.); (S.E.K.)
- Correspondence:
| |
Collapse
|
4
|
The Important Role of Ion Transport System in Cervical Cancer. Int J Mol Sci 2021; 23:ijms23010333. [PMID: 35008759 PMCID: PMC8745646 DOI: 10.3390/ijms23010333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is a significant gynecological cancer and causes cancer-related deaths worldwide. Human papillomavirus (HPV) is implicated in the etiology of cervical malignancy. However, much evidence indicates that HPV infection is a necessary but not sufficient cause in cervical carcinogenesis. Therefore, the cellular pathophysiology of cervical cancer is worthy of study. This review summarizes the recent findings concerning the ion transport processes involved in cell volume regulation and intracellular Ca2+ homeostasis of epithelial cells and how these transport systems are themselves regulated by the tumor microenvironment. For cell volume regulation, we focused on the volume-sensitive Cl− channels and K+-Cl− cotransporter (KCC) family, important regulators for ionic and osmotic homeostasis of epithelial cells. Regarding intracellular Ca2+ homeostasis, the Ca2+ store sensor STIM molecules and plasma membrane Ca2+ channel Orai proteins, the predominant Ca2+ entry mechanism in epithelial cells, are discussed. Furthermore, we evaluate the potential of these membrane ion transport systems as diagnostic biomarkers and pharmacological interventions and highlight the challenges.
Collapse
|
5
|
Wilczyński B, Dąbrowska A, Saczko J, Kulbacka J. The Role of Chloride Channels in the Multidrug Resistance. MEMBRANES 2021; 12:38. [PMID: 35054564 PMCID: PMC8781147 DOI: 10.3390/membranes12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Nowadays, one of medicine's main and most challenging aims is finding effective ways to treat cancer. Unfortunately, although there are numerous anti-cancerous drugs, such as cisplatin, more and more cancerous cells create drug resistance. Thus, it is equally important to find new medicines and research the drug resistance phenomenon and possibilities to avoid this mechanism. Ion channels, including chloride channels, play an important role in the drug resistance phenomenon. Our article focuses on the chloride channels, especially the volume-regulated channels (VRAC) and CLC chloride channels family. VRAC induces multidrug resistance (MDR) by causing apoptosis connected with apoptotic volume decrease (AVD) and VRAC are responsible for the transport of anti-cancerous drugs such as cisplatin. VRACs are a group of heterogenic complexes made from leucine-rich repetition with 8A (LRRC8A) and a subunit LRRC8B-E responsible for the properties. There are probably other subunits, which can create those channels, for example, TTYH1 and TTYH2. It is also known that the ClC family is involved in creating MDR in mainly two mechanisms-by changing the cell metabolism or acidification of the cell. The most researched chloride channel from this family is the CLC-3 channel. However, other channels are playing an important role in inducing MDR as well. In this paper, we review the role of chloride channels in MDR and establish the role of the channels in the MDR phenomenon.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
6
|
Sforna L, Michelucci A, Morena F, Argentati C, Franciolini F, Vassalli M, Martino S, Catacuzzeno L. Piezo1 controls cell volume and migration by modulating swelling-activated chloride current through Ca 2+ influx. J Cell Physiol 2021; 237:1857-1870. [PMID: 34913176 DOI: 10.1002/jcp.30656] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
Regulatory volume decrease (RVD), a homeostatic process responsible for the re-establishment of the original cell volume upon swelling, is critical in controlling several functions, including migration. RVD is mainly sustained by the swelling-activated Cl- current (ICl,swell ), which can be modulated by cytoplasmic Ca2+ . Cell swelling also activates mechanosensitive channels, including the ubiquitously expressed Ca2+ -permeable channel Piezo1. We hypothesized that, by controlling cytoplasmic Ca2+ and in turn ICl,swell , Piezo1 is involved in the fine regulation of RVD and cell migration. We compared RVD and ICl,swell in wild-type (WT) HEK293T cells, which express endogenous levels of Piezo1, and in cells overexpressing (OVER) or knockout (KO) for Piezo1. Compared to WT, RVD was markedly increased in OVER, while virtually absent in KO cells. Consistently, ICl,swell amplitude was highest in OVER and lowest in KO cells, with WT cells displaying an intermediate level, suggesting a Ca2+ -dependent modulation of the current by Piezo1 channels. Indeed, in the absence of external Ca2+ , ICl,swell in both WT and OVER cells, as well as the RVD probed in OVER cells, were significantly lower than in the presence of Ca2+ and no longer different compared to KO cells. However, the Piezo-mediated Ca2+ influx was ineffective in enhancing ICl,swell in the absence of releasable Ca2+ from intracellular stores. The different expression levels of Piezo1 affected also cell migration which was strongly enhanced in OVER, while reduced in KO cells, as compared to WT. Taken together, our data indicate that Piezo1 controls RVD and migration in HEK293T cells by modulating ICl,swell through Ca2+ influx.
Collapse
Affiliation(s)
- Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonio Michelucci
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Center for the Cellular Microenvironment, School of Engineering, G12 8LT, Glasgow, UK
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.,CEMIN, Center of Excellence on Nanostructured Innovative Materials, University of Perugia, Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Yurinskaya VE, Vereninov AA. Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease. Front Cell Dev Biol 2021; 9:736488. [PMID: 34869320 PMCID: PMC8635019 DOI: 10.3389/fcell.2021.736488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cation-coupled chloride cotransporters play a key role in generating the Cl- electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaining cell ionic homeostasis is still undeveloped. Here, we demonstrate a recently developed approach on how to predict cell ionic homeostasis dynamics when stopping the sodium pump in human lymphoid cells U937. The results demonstrate the reliability of the approach and provide the first quantitative description of unidirectional monovalent ion fluxes through the plasma membrane of an animal cell, considering all the main types of cation-coupled chloride cotransporters operating in a system with the sodium pump and electroconductive K+, Na+, and Cl- channels. The same approach was used to study ionic and water balance changes associated with regulatory volume decrease (RVD), a well-known cellular response underlying the adaptation of animal cells to a hypoosmolar environment. A computational analysis of cell as an electrochemical system demonstrates that RVD may happen without any changes in the properties of membrane transporters and channels due to time-dependent changes in electrochemical ion gradients. The proposed approach is applicable when studying truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.
Collapse
Affiliation(s)
- Valentina E Yurinskaya
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey A Vereninov
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
8
|
Yurinskaya V, Aksenov N, Moshkov A, Goryachaya T, Shemery A, Vereninov A. Flow fluorometry quantification of anion channel VRAC subunit LRRC8A at the membrane of living U937 cells. Channels (Austin) 2021; 14:45-52. [PMID: 32075501 PMCID: PMC7039630 DOI: 10.1080/19336950.2020.1730535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Assessing the expression of channels on the cell membrane is a necessary step in studying the functioning of ion channels in living cells. We explore, first, if endogenous VRAC can be assayed using flow cytometry and a commercially available antibody against an extracellular loop of the LRRC8A, also known as SWELL1, subunit of the VRAC channel. The second goal is to determine if an increase in the number of VRAC channels at the cell membrane is responsible for an increase in chloride permeability of the membrane in two well-known cases: during staurosporine (STS)-induced apoptosis and after water balance disturbance caused by hypotonic medium. Human suspension lymphoid cells U937 were used as they are suitable for flow fluorometry and because we have recently studied their membrane chloride permeability during apoptosis. We found that surface expression of endogenous LRRC8A subunits can be quantified in living U937 cells using flow fluorometry with the Alomone Lab antibody. Further, we revealed that treatment of cells for 1 hour using STS or a hypotonic solution did not change the number of LRRC8A subunits to the extent that would correspond to changes in the membrane chloride permeability determined by ion content analysis. This indicates that prolonged increase in chloride permeability of the cell membrane during apoptotic cell shrinkage or cell volume regulation under hypotonicity in U937 cells occurs without altering cell surface expression of VRAC.
Collapse
Affiliation(s)
| | - Nikolay Aksenov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey Moshkov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Tatyana Goryachaya
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Ashley Shemery
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Alexey Vereninov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
9
|
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers (Basel) 2021; 13:1572. [PMID: 33805488 PMCID: PMC8036620 DOI: 10.3390/cancers13071572] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.
Collapse
|
10
|
Fernandez-Abascal J, Graziano B, Encalada N, Bianchi L. Glial Chloride Channels in the Function of the Nervous System Across Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:195-223. [PMID: 35138616 PMCID: PMC11247392 DOI: 10.1007/978-981-16-4254-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the nervous system, the concentration of Cl- in neurons that express GABA receptors plays a key role in establishing whether these neurons are excitatory, mostly during early development, or inhibitory. Thus, much attention has been dedicated to understanding how neurons regulate their intracellular Cl- concentration. However, regulation of the extracellular Cl- concentration by other cells of the nervous system, including glia and microglia, is as important because it ultimately affects the Cl- equilibrium potential across the neuronal plasma membrane. Moreover, Cl- ions are transported in and out of the cell, via either passive or active transporter systems, as counter ions for K+ whose concentration in the extracellular environment of the nervous system is tightly regulated because it directly affects neuronal excitability. In this book chapter, we report on the Cl- channel types expressed in the various types of glial cells focusing on the role they play in the function of the nervous system in health and disease. Furthermore, we describe the types of stimuli that these channels are activated by, the other solutes that they may transport, and the involvement of these channels in processes such as pH regulation and Regulatory Volume Decrease (RVD). The picture that emerges is one of the glial cells expressing a variety of Cl- channels, encoded by members of different gene families, involved both in short- and long-term regulation of the nervous system function. Finally, we report data on invertebrate model organisms, such as C. elegans and Drosophila, that are revealing important and previously unsuspected functions of some of these channels in the context of living and behaving animals.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Bianca Graziano
- Department Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Nicole Encalada
- Department Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
11
|
|
12
|
Yurinskaya VE, Vereninov IA, Vereninov AA. Balance of Na +, K +, and Cl - Unidirectional Fluxes in Normal and Apoptotic U937 Cells Computed With All Main Types of Cotransporters. Front Cell Dev Biol 2020; 8:591872. [PMID: 33240889 PMCID: PMC7677585 DOI: 10.3389/fcell.2020.591872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
Fluxes of monovalent ions through the multiple pathways of the plasma membrane are highly interdependent, and their assessment by direct measurement is difficult or even impossible. Computation of the entire flux balance helps to identify partial flows and study the functional expression of individual transporters. Our previous computation of unidirectional fluxes in real cells ignored the ubiquitous cotransporters NKCC and KCC. Here, we present an analysis of the entire balance of unidirectional Na+, K+, and Cl- fluxes through the plasma membrane in human lymphoid U937 cells, taking into account not only the Na/K pump and electroconductive channels but all major types of cotransporters NC, NKCC, and KCC. Our calculations use flux equations based on the fundamental principles of macroscopic electroneutrality of the system, water balance, and the generally accepted thermodynamic dependence of ion fluxes on the driving force, and they do not depend on hypotheses about the molecular structure of the channel and transporters. A complete list of the major inward and outward Na+, K+, and Cl- fluxes is obtained for human lymphoid U937 cells at rest and during changes in the ion and water balance for the first 4 h of staurosporine-induced apoptosis. It is shown how the problem of the inevitable multiplicity of solutions to the flux equations, which arises with an increase in the number of ion pathways, can be solved in real cases by analyzing the ratio of ouabain-sensitive and ouabain-resistant parts of K+ (Rb+) influx (OSOR) and using additional experimental data on the effects of specific inhibitors. It is found that dynamics of changes in the membrane channels and transporters underlying apoptotic changes in the content of ions and water in cells, calculated without taking into account the KCC and NKCC cotransporters, differs only in details from that calculated for cells with KCC and NKCC. The developed approach to the assessment of unidirectional fluxes may be useful for understanding functional expression of ion channels and transporters in other cells under various conditions. Attached software allows reproduction of all calculated data under presented conditions and to study the effects of the condition variation.
Collapse
Affiliation(s)
- Valentina E Yurinskaya
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Igor A Vereninov
- Peter the Great St-Petersburg Polytechnic University, St-Petersburg, Russia
| | - Alexey A Vereninov
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
13
|
Rana PS, Model MA. A Reverse-Osmosis Model of Apoptotic Shrinkage. Front Cell Dev Biol 2020; 8:588721. [PMID: 33195250 PMCID: PMC7644884 DOI: 10.3389/fcell.2020.588721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
The standard theory of apoptotic volume decrease (AVD) posits activation of potassium and/or chloride channels, causing an efflux of ions and osmotic loss of water. However, in view of the multitude of possible channels that are known to support apoptosis, a model based on specific signaling to a channel presents certain problems. We propose another mechanism of apoptotic dehydration based on cytoskeletal compression. As is well known, cytoskeleton is not strong enough to expel a substantial amount of water against an osmotic gradient. It is possible, however, that an increase in intracellular pressure may cause an initial small efflux of water, and that will create a small concentration gradient of ions, favoring their exit. If the channels are open, some ions will exit the cell, relieving the osmotic gradient; in this way, the process will be able to continue. Calculations confirm the possibility of such a mechanism. An increase in membrane permeability for water or ions may also result in dehydration if accompanied even by a constant cytoskeletal pressure. We review the molecular processes that may lead to apoptotic dehydration in the context of this model.
Collapse
Affiliation(s)
- Priyanka S Rana
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Michael A Model
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
14
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
15
|
Ciura S, Prager-Khoutorsky M, Thirouin ZS, Wyrosdic JC, Olson JE, Liedtke W, Bourque CW. Trpv4 Mediates Hypotonic Inhibition of Central Osmosensory Neurons via Taurine Gliotransmission. Cell Rep 2019; 23:2245-2253. [PMID: 29791836 DOI: 10.1016/j.celrep.2018.04.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 01/15/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022] Open
Abstract
The maintenance of hydromineral homeostasis requires bidirectional detection of changes in extracellular fluid osmolality by primary osmosensory neurons (ONs) in the organum vasculosum laminae terminalis (OVLT). Hypertonicity excites ONs in part through the mechanical activation of a variant transient receptor potential vanilloid-1 channel (dn-Trpv1). However, the mechanism by which local hypotonicity inhibits ONs in the OVLT remains unknown. Here, we show that hypotonicity can reduce the basal activity of dn-Trpv1 channels and hyperpolarize acutely isolated ONs. Surprisingly, we found that mice lacking dn-Trpv1 maintain normal inhibitory responses to hypotonicity when tested in situ. In the intact setting, hypotonicity inhibits ONs through a non-cell-autonomous mechanism that involves glial release of the glycine receptor agonist taurine through hypotonicity activated anion channels (HAAC) that are activated subsequent to Ca2+ influx through Trpv4 channels. Our study clarifies how Trpv4 channels contribute to the inhibition of OVLT ONs during hypotonicity in situ.
Collapse
Affiliation(s)
- Sorana Ciura
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada.
| | - Masha Prager-Khoutorsky
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Zahra S Thirouin
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Joshua C Wyrosdic
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - James E Olson
- Department of Emergency Medicine/Department of Neuroscience, Cell Biology and Physiology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Wolfgang Liedtke
- Centre for Translational Neuroscience, 201G Bryan Research Bldg. Box 2900, Duke University Medical Centre, Durham, NC 27710, USA
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada.
| |
Collapse
|
16
|
Lu P, Xu M, Xiong Z, Zhou F, Wang L. Fusobacterium nucleatum prevents apoptosis in colorectal cancer cells via the ANO1 pathway. Cancer Manag Res 2019; 11:9057-9066. [PMID: 31802939 PMCID: PMC6829176 DOI: 10.2147/cmar.s185766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Objective : Chemotherapy failure derived from drug resistance is the most important reason causing the recurrence in colorectal cancer patients. Therefore, it is necessary to shed light on the mechanism of chemotherapy resistance in colorectal cancer patients. Methods : We looked into the contribution of Fusobacterium nucleatum and ANO1 to chemoresistance in the human colorectal carcinoma cell lines. We silence and overexpress ANO1 in HCT116 and HT29 cells with lentivirus and siRNA knockdown technique in the absence or presence of F. nucleatum, oxaliplatin or 5-fluorouracil (5-FU). ANO1, p-pg, cleaved PARP, cleaved caspase-3, and EGFR expression was measured by Western blot. Cell apoptosis was measured by flow cytometry. Results : We found that F. nucleatum promoted ANO1 expression on colon cancer cells. Moreover, ANO1 prevent colon cancer apoptosis from oxaliplatin and 5-FU. Additionally, knockdown ANO1 expression could block F. nucleatum protective effects and increase the apoptosis effects induced by oxaliplatin and 5-FU. Therefore, F. nucleatum might be biologically involved in the development of colon cancer chemoresistance via ANO1 pathway. Conclusions : Taken together, our findings provide a valuable insight into clinical management and therapy, which may ameliorate colorectal cancer patient outcomes.
Collapse
Affiliation(s)
- Pei Lu
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Minyi Xu
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Zhongbo Xiong
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Fangfang Zhou
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Lei Wang
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| |
Collapse
|
17
|
Xu X, Xu J, Zhao C, Hou X, Li M, Wang L, Chen L, Chen Y, Zhu L, Yang H. Antitumor effects of disulfiram/copper complex in the poorly-differentiated nasopharyngeal carcinoma cells via activating ClC-3 chloride channel. Biomed Pharmacother 2019; 120:109529. [PMID: 31606620 DOI: 10.1016/j.biopha.2019.109529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
The enhancement of the anticancer activity by disulfiram (DSF) chelated with copper (DSF/Cu2+) has been investigated recently, while the underlying molecular mechanisms still need to be fully elucidated. Chloride channel-3 (ClC-3) is over-expressed in a variety of cancers and involves multiple tumor biological events. However, whether the over-expression of ClC-3 in tumor cells affects the sensitivity of anti-tumor drugs remains unclear. Here, we showed that the involvement of ClC-3 chloride channel in the selective cytotoxicity of DSF/Cu2+ in the poorly-differentiated nasopharyngeal carcinoma. The EC50 of DSF alone and DSF/Cu2+ in activating the Cl- channel were 95.36 μM and 0.31 μM in the CNE-2Z cells, respectively. DSF/Cu2+ exhibited a positive correlation between the induction of the Cl- currents and the inhibition of cell proliferation. DSF/Cu2+ increased the ClC-3 protein expression and induced the cell apoptosis. Cl- channel blockers, NPPB and DIDS, and ClC-3 siRNA partially inhibited the cell apoptosis, and depleted the Cl- currents induced by DSF/Cu2+ in CNE-2Z cells. However, these effects could not be observed in the normal nasopharyngeal epithelium NP69-SV40 T cells. In vivo, the transplanted human nasopharyngeal carcinoma tumors size in the DSF/Cu2+ group decreased about 73.2% of those in the solvent control group. The chloride blockers partially inhibited the antitumor action of DSF/Cu2+. These data demonstrated that the selective cytotoxicity of DSF/Cu2+ may relate to its selective activation of ClC-3 Cl- channel pathways in CNE-2Z cells. ClC-3 Cl- channel can be viewed as a new and promising target for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Physiology, School of Medicine, Henan University, Kaifeng, 475000, China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jingkui Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chongyu Zhao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Mengjia Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Lixin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yehui Chen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Linyan Zhu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| |
Collapse
|
18
|
Crottès D, Jan LY. The multifaceted role of TMEM16A in cancer. Cell Calcium 2019; 82:102050. [PMID: 31279157 PMCID: PMC6711484 DOI: 10.1016/j.ceca.2019.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers. In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.
Collapse
Affiliation(s)
- David Crottès
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
19
|
Acid- and Volume-Sensitive Chloride Currents in Microglial Cells. Int J Mol Sci 2019; 20:ijms20143475. [PMID: 31311135 PMCID: PMC6678294 DOI: 10.3390/ijms20143475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/27/2023] Open
Abstract
Many cell types express an acid-sensitive outwardly rectifying (ASOR) anion current of an unknown function. We characterized such a current in BV-2 microglial cells and then studied its interrelation with the volume-sensitive outwardly rectifying (VSOR) Cl− current and the effect of acidosis on cell volume regulation. We used patch clamp, the Coulter method, and the pH-sensitive dye BCECF to measure Cl− currents and cell membrane potentials, mean cell volume, and intracellular pH, respectively. The ASOR current activated at pH ≤ 5.0 and displayed an I− > Cl− > gluconate− permeability sequence. When compared to the VSOR current, it was similarly sensitive to DIDS, but less sensitive to DCPIB, and insensitive to tamoxifen. Under acidic conditions, the ASOR current was the dominating Cl− conductance, while the VSOR current was apparently inactivated. Acidification caused cell swelling under isotonic conditions and prevented the regulatory volume decrease under hypotonicity. We conclude that acidification, associated with activation of the ASOR- and inactivation of the VSOR current, massively impairs cell volume homeostasis. ASOR current activation could affect microglial function under acidotoxic conditions, since acidosis is a hallmark of pathophysiological events like inflammation, stroke or ischemia and migration and phagocytosis in microglial cells are closely related to cell volume regulation.
Collapse
|
20
|
Valdivieso ÁG, Santa‐Coloma TA. The chloride anion as a signalling effector. Biol Rev Camb Philos Soc 2019; 94:1839-1856. [DOI: 10.1111/brv.12536] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ángel G. Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| | - Tomás A. Santa‐Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| |
Collapse
|
21
|
Sure independence screening in the presence of missing data. Stat Pap (Berl) 2019. [DOI: 10.1007/s00362-019-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Yurinskaya VE, Vereninov IA, Vereninov AA. A Tool for Computation of Changes in Na +, K +, Cl - Channels and Transporters Due to Apoptosis by Data on Cell Ion and Water Content Alteration. Front Cell Dev Biol 2019; 7:58. [PMID: 31058149 PMCID: PMC6481184 DOI: 10.3389/fcell.2019.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Monovalent ions are involved in a vast array of cellular processes. Their movement across the cell membrane is regulated by numerous channels and transporters. Identification of the pathways responsible for redistribution of ions and cell water in living cells is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. Our previous computational studies were concerned with monovalent ion fluxes in cells under the conditions of balanced ion distribution or during transition processes after stopping the Na+/K+ pump. Here we analyze a more complex case-redistribution of ions during cell apoptosis when the parameters keep changing during the process. New experimental data for staurosporine-induced apoptosis of human lymphoma cells U937 have been obtained: the time course of changes in cellular K+, Na+, Cl-, and water content, as well as Rb+ fluxes as a marker of the Na/K pump activity. Using a newly developed computational tool, we found that alteration of ion and water balance was associated with a 55% decrease in the Na+/K+-ATPase rate coefficient over a 4-h period, with a time-dependent increase in potassium channel permeability, and a decrease in sodium channel permeability. The early decrease in [Cl-]i and cell volume were associated with an ~5-fold increase in chloride channel permeability. The developed approach and the presented executable file can be used to identify the channels and transporters responsible for alterations of cell ion and water balance not only during apoptosis but in other physiological scenarios.
Collapse
Affiliation(s)
- Valentina E. Yurinskaya
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Igor A. Vereninov
- Peter the Great St-Petersburg Polytechnic University, St-Petersburg, Russia
| | - Alexey A. Vereninov
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
23
|
Ion Channels: New Actors Playing in Chemotherapeutic Resistance. Cancers (Basel) 2019; 11:cancers11030376. [PMID: 30884858 PMCID: PMC6468599 DOI: 10.3390/cancers11030376] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
In the battle against cancer cells, therapeutic modalities are drastically limited by intrinsic or acquired drug resistance. Resistance to therapy is not only common, but expected: if systemic agents used for cancer treatment are usually active at the beginning of therapy (i.e., 90% of primary breast cancers and 50% of metastases), about 30% of patients with early-stage breast cancer will have recurrent disease. Altered expression of ion channels is now considered as one of the hallmarks of cancer, and several ion channels have been linked to cancer cell resistance. While ion channels have been associated with cell death, apoptosis and even chemoresistance since the late 80s, the molecular mechanisms linking ion channel expression and/or function with chemotherapy have mostly emerged in the last ten years. In this review, we will highlight the relationships between ion channels and resistance to chemotherapy, with a special emphasis on the underlying molecular mechanisms.
Collapse
|
24
|
Zhang Y, Lv Y, Ji W, Zhou R, Gao S, Zhou F. Therapeutic hypothermia effectively reduces elevated extracellular ascorbate concentrations caused by acute spinal cord injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 47:22-29. [PMID: 30526134 DOI: 10.1080/21691401.2018.1541136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, systemic hypothermia has taken the spotlight for its use in spinal cord injury (SCI) research fields, but detailed molecular mechanisms are still not fully understood. In this study, we use an online-electrochemical system (OECS) to in vivo continuously monitor the ascorbate of the rats' spinal cord. We find that the basal level of ascorbate in rat spinal cord is 1.85 ± 0.88 μmol L-1 (n = 20). It increased immediately after SCI and reached 2.36 ± 0.65 μmol L-1 (164.90% ± 7.99% of the basal level) (n = 5) at 60 min after the injury. The SCI-induced extracellular ascorbate increase is obviously attenuated by therapeutic hypothermia (28 °C) after injury and ascorbate returns to 3.01 ± 0.59 μmol L-1 (100.24% ± 5.02% of the basal level) (n = 5), at 60 min after SCI. These results substantially manifest that the OECS for ascorbate detection could be employed as a platform for understanding the pathological changes during spinal cord injury. This study provides experimental evidence for the essential roles of ascorbate in SCI which could serve as a biomarker for SCI. Our findings also raise the possibility that therapeutic hypothermia can effectively exert neuroprotection in the acute phase of SCI.
Collapse
Affiliation(s)
- Yawen Zhang
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| | - Yang Lv
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| | - Wenliang Ji
- b Department of Chemistry , Renmin University of China , Beijing , China
| | - Rubing Zhou
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| | - Shan Gao
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| | - Fang Zhou
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| |
Collapse
|
25
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
26
|
Kasuya G, Nakane T, Yokoyama T, Jia Y, Inoue M, Watanabe K, Nakamura R, Nishizawa T, Kusakizako T, Tsutsumi A, Yanagisawa H, Dohmae N, Hattori M, Ichijo H, Yan Z, Kikkawa M, Shirouzu M, Ishitani R, Nureki O. Cryo-EM structures of the human volume-regulated anion channel LRRC8. Nat Struct Mol Biol 2018; 25:797-804. [DOI: 10.1038/s41594-018-0109-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022]
|
27
|
Lambert IH, Sørensen BH. Facilitating the Cellular Accumulation of Pt-Based Chemotherapeutic Drugs. Int J Mol Sci 2018; 19:E2249. [PMID: 30071606 PMCID: PMC6121265 DOI: 10.3390/ijms19082249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/15/2018] [Indexed: 01/12/2023] Open
Abstract
Cisplatin, carboplatin, and oxaliplatin are Pt-based drugs used in the chemotherapeutic eradication of cancer cells. Although most cancer patient cells initially respond well to the treatment, the clinical effectiveness declines over time as the cancer cells develop resistance to the drugs. The Pt-based drugs are accumulated via membrane-bound transporters, translocated to the nucleus, where they trigger various intracellular cell death programs through DNA interaction. Here we illustrate how resistance to Pt-based drugs, acquired through limitation in the activity/subcellular localization of canonical drug transporters, might be circumvented by the facilitated uptake of Pt-based drug complexes via nanocarriers/endocytosis or lipophilic drugs by diffusion.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Department of Biology, Section of Cell Biology and Physiology, Universitetsparken 13, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Belinda Halling Sørensen
- Department of Biology, Section of Cell Biology and Physiology, Universitetsparken 13, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
28
|
Vereninov IA, Yurinskaya VE, Vereninov AA. Commentary: How Cells Can Control Their Size by Pumping Ions. Front Cell Dev Biol 2017; 5:72. [PMID: 28871282 PMCID: PMC5566556 DOI: 10.3389/fcell.2017.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Igor A. Vereninov
- Saint Petersburg State Polytechnic UniversitySaint Petersburg, Russia
| | | | | |
Collapse
|
29
|
Lu P, Ding Q, Ding S, Fan Y, Li X, Tian D, Liu M. Transmembrane channel-like protein 8 as a potential biomarker for poor prognosis of hepatocellular carcinoma. Mol Clin Oncol 2017; 7:244-248. [PMID: 28781795 DOI: 10.3892/mco.2017.1285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/04/2017] [Indexed: 01/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignant tumor and the third leading cause of cancer-related mortality worldwide. Transmembrane channel-like protein 8 (TMC8) is reported to play a major role in several aspects of human pathophysiology, such as ion channel permeability, human papillomavirus infection and skin cancer; however, its role in HCC has not been fully elucidated. The aim of the present study was to investigate the expression levels of TMC8 in 146 pairs of liver cancer samples and adjacent non-tumorous samples using immunohistochemistry. Reverse transcription-quantitative polymerase chain reaction analysis was used to confirm the results. The association between TMC8 expression and clinicopathological characteristics, including overall survival, was analyzed. The results indicated that the expression of TMC8 was significantly upregulated in HCC tissues and associated with metastasis and hepatitis B virus infection. According to the analysis of the overall survival using Cox proportional hazard regression model, higher expression of TMC8 was associated with a poorer prognosis and the overexpression of TMC8 was an independent risk factor for HCC. By contrast, HBsAg did not significantly affect the survival of HCC patients. These results suggest that the overexpression of TMC8 in HCC predicts poor prognosis and may be a potential biomarker for this type of cancer.
Collapse
Affiliation(s)
- Panpan Lu
- Institute of Liver Diseases, Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qiang Ding
- Institute of Liver Diseases, Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Shuping Ding
- Institute of Liver Diseases, Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuhui Fan
- Institute of Liver Diseases, Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xin Li
- Institute of Liver Diseases, Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Dean Tian
- Institute of Liver Diseases, Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Mei Liu
- Institute of Liver Diseases, Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
30
|
Fujimoto M, Inoue T, Kito H, Niwa S, Suzuki T, Muraki K, Ohya S. Transcriptional repression of HER2 by ANO1 Cl - channel inhibition in human breast cancer cells with resistance to trastuzumab. Biochem Biophys Res Commun 2016; 482:188-194. [PMID: 27838298 DOI: 10.1016/j.bbrc.2016.11.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023]
Abstract
The Ca2+-activated Cl- channel ANO1 contributes to tumorigenesis and metastasis in several carcinomas including breast cancer (BCA). Cl- channels have recently been attracting attention as 'transcriptional modulators'. Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 30% of patients with BCA, and anti-HER2 monoclonal antibodies such as trastuzumab have emerged as a treatment for metastatic BCA. Among the seven human BCA cell lines examined in the present study, MDA-MB-453 and YMB-1 cells were HER2-positive; however, YMB-1 cell viability showed resistance to trastuzumab. Whole-cell patch-clamp configurations indicated that ANO1 was the main Cl- conductance in YMB-1 cells, and the pharmacological and siRNA-mediated inhibition of ANO1 significantly prevented HER2 transcription in YMB-1 cells. The expression levels of insulin-like growth factor-binding protein 5 (IGFBP5), which is a risk factor for BCA recurrence and metastasis, was not affected by the inhibition of ANO1 in YMB-1 cells. These results suggest that ANO1 Cl- channels may function as a transcriptional regulator of HER2, and ANO1 inhibitors have potential in the treatment of BCA patients with resistance to HER2-targeted therapy.
Collapse
Affiliation(s)
- Mayu Fujimoto
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Takahiro Inoue
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Satomi Niwa
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 603-8334, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Susumu Ohya
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
31
|
Narinyan L, Ayrapetyan S. Cyclic AMP-dependent signaling system is a primary metabolic target for non-thermal effect of microwaves on heart muscle hydration. Electromagn Biol Med 2016; 36:182-191. [PMID: 28085517 DOI: 10.1080/15368378.2016.1241803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously, we have suggested that cell hydration is a universal and extra-sensitive sensor for the structural changes of cell aqua medium caused by the impact of weak chemical and physical factors. The aim of present work is to elucidate the nature of the metabolic messenger through which physiological solution (PS) treated by non-thermal (NT) microwaves (MW) could modulate heart muscle hydration of rats. For this purpose, the effects of NT MW-treated PS on heart muscle hydration, [3H]-ouabain binding with cell membrane, 45Ca2+ uptake and intracellular cyclic nucleotides contents in vivo and in vitro experiments were studied. It is shown that intraperitoneal injections of both Sham-treated PS and NT MW-treated PS elevate heart muscle hydration. However, the effect of NT MW-treated PS on muscle hydration is more pronounced than the effect of Sham-treated PS. In vitro experiments NT MW-treated PS has dehydration effect on muscle, which is not changed by decreasing Na+ gradients on membrane. Intraperitoneal injection of Sham- and NT MW-treated PS containing 45Ca2+ have similar dehydration effect on muscle, while NT MW-treated PS has activation effect on Na+/Ca2+ exchange in reverse mode. The intraperitoneal injection of NT MW-treated PS depresses [3H]-ouabain binding with its high-affinity membrane receptors, elevates intracellular cAMP and decreases cGMP contents. Based on the obtained data, it is suggested that cAMP-dependent signaling system serves as a primary metabolic target for NT MW effect on heart muscle hydration.
Collapse
Affiliation(s)
- Lilia Narinyan
- a UNESCO Chair - Life Sciences International Postgraduate Educational Center , Yerevan , Armenia
| | - Sinerik Ayrapetyan
- a UNESCO Chair - Life Sciences International Postgraduate Educational Center , Yerevan , Armenia
| |
Collapse
|
32
|
Sørensen BH, Dam CS, Stürup S, Lambert IH. Dual role of LRRC8A-containing transporters on cisplatin resistance in human ovarian cancer cells. J Inorg Biochem 2016; 160:287-95. [DOI: 10.1016/j.jinorgbio.2016.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/15/2016] [Accepted: 04/03/2016] [Indexed: 01/08/2023]
|
33
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|