1
|
Zhu P, Yuan W, Liu W, Wu J, Wang P, Ning B. Adenosine deaminase acting on RNA 2 provides neuroprotection by activating Kv1.1 channels in a rat epilepsy model. Cytojournal 2024; 21:57. [PMID: 39737133 PMCID: PMC11683407 DOI: 10.25259/cytojournal_53_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/28/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Potassium voltage-gated channel sub-family A member 1 (Kv1.1), as a shaker homolog potassium channel, displays a special mechanism for posttranscriptional regulation called RNA editing. Adenosine deaminase acting on RNA 2 (ADAR2) can cause abnormal editing or loss of normal editing, which results in cell damage and related diseases. The relationship between Kv1.1 and editing enzyme ADAR2 in epileptic rats remains incompletely understood. We aimed to investigate the neuroprotective role of ADAR2 and its relationship with Kv1.1 in epileptic rats and the SH-SY5Y neuroblastoma cell line. Material and Methods A rat epilepsy model was induced in vivo using lithium chloride-pilocarpine. We investigated the effect of ADAR2 on epileptic rats through Western blotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and histological analysis. Western blotting was aimed at investigating the effect of overexpression of ADAR2 and Kv1.1-interfering RNA (si-Kv1.1) for neuronal apoptosis. Results The overexpression of ADAR2 in epileptic rats led to the increased mRNA and protein expression of Kv1.1 (P < 0.001) and B-cell leukemia/lymphoma 2 protein (Bcl-2) (P < 0.001), whereas the decreased expressions of Bcl-2-associated X protein and cleaved caspases-3/7 at protein levels (P < 0.0001; P < 0.0001; P < 0.01) detected by Western blotting and qRT-PCR experiments. Hematoxylin and eosin staining and Nissl staining revealed the neuroprotection provided by ADAR2 overexpression. The experiments demonstrated that Kv1.1 was regulated by ADAR2. ADAR2 overexpression increased neuronal survival in in vivo experiments through the elevation of Bcl-2 levels (P < 0.05) and reduction of cleaved caspase-3/7 activity (P < 0.0001; P < 0.01). In the recovery experimental group that involved silencing Kv1.1, the beneficial effects of overexpressing ADAR2 were no longer observed (P < 0.05). Conclusion Our findings confirm that the upregulation of ADAR2 promotes Kv1.1 protein expression, which ultimately reduces neuronal damage in the hippocampus of animals with epilepsy.
Collapse
Affiliation(s)
- Pingping Zhu
- Department of Neurology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Wei Yuan
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Wenquan Liu
- Department of Rehabilitation Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jian Wu
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Pengzhen Wang
- Department of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Zheng Y, Chen J. Voltage-gated potassium channels and genetic epilepsy. Front Neurol 2024; 15:1466075. [PMID: 39434833 PMCID: PMC11492950 DOI: 10.3389/fneur.2024.1466075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in exome and targeted sequencing have significantly improved the aetiological diagnosis of epilepsy, revealing an increasing number of epilepsy-related pathogenic genes. As a result, the diagnosis and treatment of epilepsy have become more accessible and more traceable. Voltage-gated potassium channels (Kv) regulate electrical excitability in neuron systems. Mutate Kv channels have been implicated in epilepsy as demonstrated in case reports and researches using gene-knockout mouse models. Both gain and loss-of-function of Kv channels lead to epilepsy with similar phenotypes through different mechanisms, bringing new challenges to the diagnosis and treatment of epilepsy. Research on genetic epilepsy is progressing rapidly, with several drug candidates targeting mutated genes or channels emerging. This article provides a brief overview of the symptoms and pathogenesis of epilepsy associated with voltage-gated potassium ion channels dysfunction and highlights recent progress in treatments. Here, we reviewed case reports of gene mutations related to epilepsy in recent years and summarized the proportion of Kv genes. Our focus is on the progress in precise treatments for specific voltage-gated potassium channel genes linked to epilepsy, including KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNH1, and KCNH5.
Collapse
Affiliation(s)
| | - Jing Chen
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Si M, Darvish A, Paulhus K, Kumar P, Hamilton KA, Glasscock E. Epilepsy-associated Kv1.1 channel subunits regulate intrinsic cardiac pacemaking in mice. J Gen Physiol 2024; 156:e202413578. [PMID: 39037413 PMCID: PMC11261506 DOI: 10.1085/jgp.202413578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The heartbeat originates from spontaneous action potentials in specialized pacemaker cells within the sinoatrial node (SAN) of the right atrium. Voltage-gated potassium channels in SAN myocytes mediate outward K+ currents that regulate cardiac pacemaking by controlling action potential repolarization, influencing the time between heartbeats. Gene expression studies have identified transcripts for many types of voltage-gated potassium channels in the SAN, but most remain of unknown functional significance. One such gene is Kcna1, which encodes epilepsy-associated voltage-gated Kv1.1 K+ channel α-subunits that are important for regulating action potential firing in neurons and cardiomyocytes. Here, we investigated the functional contribution of Kv1.1 to cardiac pacemaking at the whole heart, SAN, and SAN myocyte levels by performing Langendorff-perfused isolated heart preparations, multielectrode array recordings, patch clamp electrophysiology, and immunocytochemistry using Kcna1 knockout (KO) and wild-type (WT) mice. Our results showed that either genetic or pharmacological ablation of Kv1.1 significantly decreased the SAN firing rate, primarily by impairing SAN myocyte action potential repolarization. Voltage-clamp electrophysiology and immunocytochemistry revealed that Kv1.1 exerts its effects despite contributing only a small outward K+ current component, which we term IKv1.1, and despite apparently being present in low abundance at the protein level in SAN myocytes. These findings establish Kv1.1 as the first identified member of the Kv1 channel family to play a role in sinoatrial function, thereby rendering it a potential candidate and therapeutic targeting of sinus node dysfunction. Furthermore, our results demonstrate that small currents generated via low-abundance channels can still have significant impacts on cardiac pacemaking.
Collapse
Affiliation(s)
- Man Si
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Ahmad Darvish
- School of Biological and Physical Science, Northwestern State University, Natchitoches, LA, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Shreveport, LA, USA
| | - Kelsey Paulhus
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Praveen Kumar
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Kathryn A. Hamilton
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Shreveport, LA, USA
| | - Edward Glasscock
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Shreveport, LA, USA
| |
Collapse
|
4
|
Fialho GL, Pang TD, Kong WY, Tran AP, Yu CG, Rodriguez ID, Nearing BD, Waks JW, Maher TR, Clarke JR, Shepherd A, D'Avila A, Schachter SC, Verrier RL. Individuals with chronic epilepsy have elevated P-wave heterogeneity comparable to patients with atrial fibrillation. Epilepsia 2023; 64:2361-2372. [PMID: 37329175 DOI: 10.1111/epi.17686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Identification of epilepsy patients with elevated risk for atrial fibrillation (AF) is critical given the heightened morbidity and premature mortality associated with this arrhythmia. Epilepsy is a worldwide health problem affecting nearly 3.4 million people in the United States alone. The potential for increased risk for AF in patients with epilepsy is not well appreciated, despite recent evidence from a national survey of 1.4 million hospitalizations indicating that AF is the most common arrhythmia in people with epilepsy. METHODS We analyzed inter-lead heterogeneity of P-wave morphology, a marker reflecting arrhythmogenic nonuniformities of activation/conduction in atrial tissue. The study groups consisted of 96 patients with epilepsy and 44 consecutive patients with AF in sinus rhythm before clinically indicated ablation. Individuals without cardiovascular or neurological conditions (n = 77) were also assessed. We calculated P-wave heterogeneity (PWH) by second central moment analysis of simultaneous beats from leads II, III, and aVR ("atrial dedicated leads") from standard 12-lead electrocardiography (ECG) recordings from admission day to the epilepsy monitoring unit (EMU). RESULTS Female patients composed 62.5%, 59.6%, and 57.1% of the epilepsy, AF, and control subjects, respectively. The AF cohort was older (66 ± 1.1 years) than the epilepsy group (44 ± 1.8 years, p < .001). The level of PWH was greater in the epilepsy group than in the control group (67 ± 2.6 vs. 57 ± 2.5 μV, p = .046) and reached levels observed in AF patients (67 ± 2.6 vs. 68 ± 4.9 μV, p = .99). In multiple linear regression analysis, PWH levels in individuals with epilepsy were mainly correlated with the PR interval and could be related to sympathetic tone. Epilepsy remained associated with PWH after adjustments for cardiac risk factors, age, and sex. SIGNIFICANCE Patients with chronic epilepsy have increased PWH comparable to levels observed in patients with AF, while being ~20 years younger, suggesting an acceleration in structural change and/or cardiac electrical instability. These observations are consistent with emerging evidence of an "epileptic heart" condition.
Collapse
Affiliation(s)
- Guilherme L Fialho
- Federal University of Santa Catarina, Florianopolis, Brazil
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Trudy D Pang
- Departments of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Wan Yee Kong
- Departments of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Anthony P Tran
- Departments of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Calvin G Yu
- Departments of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Ivo D Rodriguez
- Departments of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Bruce D Nearing
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Jonathan W Waks
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Timothy R Maher
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - John-Ross Clarke
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Alyssa Shepherd
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Andre D'Avila
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Steven C Schachter
- Departments of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Richard L Verrier
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
6
|
Wilson C, Zi M, Smith M, Hussain M, D’Souza A, Dobrzynski H, Boyett MR. Atrioventricular node dysfunction in pressure overload-induced heart failure—Involvement of the immune system and transcriptomic remodelling. Front Pharmacol 2023; 14:1083910. [PMID: 37081960 PMCID: PMC10110994 DOI: 10.3389/fphar.2023.1083910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.
Collapse
Affiliation(s)
- Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Munir Hussain
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| |
Collapse
|
7
|
Sun X, Lv Y, Lin J. The mechanism of sudden unexpected death in epilepsy: A mini review. Front Neurol 2023; 14:1137182. [PMID: 36815002 PMCID: PMC9939452 DOI: 10.3389/fneur.2023.1137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is defined as a sudden, unexpected, non-traumatic, non-drowning death in a person with epilepsy. SUDEP is generally considered to result from seizure-related cardiac dysfunction, respiratory depression, autonomic nervous dysfunction, or brain dysfunction. Frequency of generalized tonic clonic seizures (GTCS), prone posture, and refractory epilepsy are considered risk factors. SUDEP has also been associated with inherited cardiac ion channel disease and severe obstructive sleep apnea. Most previous studies of SUDEP mechanisms have focused on cardiac and respiratory dysfunction and imbalance of the neural regulatory system. Cardiac-related mechanisms include reduction in heart rate variability and prolongation of QT interval, which can lead to arrhythmias. Laryngospasm and amygdala activation may cause obstructive and central apnea, respectively. Neural mechanisms include impairment of 5-HT and adenosine neuromodulation. The research to date regarding molecular mechanisms of SUDEP is relatively limited. Most studies have focused on p-glycoprotein, catecholamines, potassium channels, and the renin-angiotensin system, all of which affect cardiac and respiratory function.
Collapse
Affiliation(s)
- Xinyi Sun
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yehui Lv
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Yehui Lv ✉
| | - Jian Lin
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
8
|
Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand 2022; 146:699-707. [PMID: 36225112 DOI: 10.1111/ane.13695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
With the development and application of next-generation sequencing technology, the aetiological diagnosis of genetic epilepsy is rapidly becoming easier and less expensive. Additionally, there is a growing body of research into precision therapy based on genetic diagnosis. The numerous genes in the potassium ion channel family constitute the largest family of ion channels: this family is divided into different subtypes. Potassium ion channels play a crucial role in the electrical activity of neurons and are directly involved in the mechanism of epileptic seizures. In China, scientific research on genetic diagnosis and studies of precision therapy for genetic epilepsy are progressing rapidly. Many cases of epilepsy caused by mutation of potassium channel genes have been identified, and several potassium channel gene targets and drug candidates have been discovered. The purpose of this review is to briefly summarize the progress of research on the precise diagnosis and treatment of potassium ion channel-related genetic epilepsy, especially the research conducted in China. Here in, we review several large cohort studies on the genetic diagnosis of epilepsy in China in recent years, summarized the proportion of potassium channel genes. We focus on the progress of precison therapy on some hot epilepsy related potassium channel genes: KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNMA1, and KCNT1.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zehong Lin
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Sijia Wen
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
9
|
Langthaler S, Lozanović Šajić J, Rienmüller T, Weinberg SH, Baumgartner C. Ion Channel Modeling beyond State of the Art: A Comparison with a System Theory-Based Model of the Shaker-Related Voltage-Gated Potassium Channel Kv1.1. Cells 2022; 11:cells11020239. [PMID: 35053355 PMCID: PMC8773569 DOI: 10.3390/cells11020239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
The mathematical modeling of ion channel kinetics is an important tool for studying the electrophysiological mechanisms of the nerves, heart, or cancer, from a single cell to an organ. Common approaches use either a Hodgkin-Huxley (HH) or a hidden Markov model (HMM) description, depending on the level of detail of the functionality and structural changes of the underlying channel gating, and taking into account the computational effort for model simulations. Here, we introduce for the first time a novel system theory-based approach for ion channel modeling based on the concept of transfer function characterization, without a priori knowledge of the biological system, using patch clamp measurements. Using the shaker-related voltage-gated potassium channel Kv1.1 (KCNA1) as an example, we compare the established approaches, HH and HMM, with the system theory-based concept in terms of model accuracy, computational effort, the degree of electrophysiological interpretability, and methodological limitations. This highly data-driven modeling concept offers a new opportunity for the phenomenological kinetic modeling of ion channels, exhibiting exceptional accuracy and computational efficiency compared to the conventional methods. The method has a high potential to further improve the quality and computational performance of complex cell and organ model simulations, and could provide a valuable new tool in the field of next-generation in silico electrophysiology.
Collapse
Affiliation(s)
- Sonja Langthaler
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, A-8010 Graz, Austria; (S.L.); (J.L.Š.); (T.R.)
| | - Jasmina Lozanović Šajić
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, A-8010 Graz, Austria; (S.L.); (J.L.Š.); (T.R.)
- Innovation Center of the Faculty of Mechanical Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Theresa Rienmüller
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, A-8010 Graz, Austria; (S.L.); (J.L.Š.); (T.R.)
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA;
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43081, USA
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, A-8010 Graz, Austria; (S.L.); (J.L.Š.); (T.R.)
- Correspondence:
| |
Collapse
|
10
|
Sahly AN, Shevell M, Sadleir LG, Myers KA. SUDEP risk and autonomic dysfunction in genetic epilepsies. Auton Neurosci 2021; 237:102907. [PMID: 34773737 DOI: 10.1016/j.autneu.2021.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023]
Abstract
The underlying pathophysiology of sudden unexpected death in epilepsy (SUDEP) remains unclear. This phenomenon is likely multifactorial, and there is considerable evidence that genetic factors play a role. There are certain genetic causes of epilepsy in which the risk of SUDEP appears to be increased relative to epilepsy overall. For individuals with pathogenic variants in genes including SCN1A, SCN1B, SCN8A, SCN2A, GNB5, KCNA1 and DEPDC5, there are varying degrees of evidence to suggest an increased risk for sudden death. Why the risk for sudden death is higher is not completely clear; however, in many cases pathogenic variants in these genes are also associated with autonomic dysfunction, which is hypothesized as a contributing factor to SUDEP. We review the evidence for increased SUDEP risk for patients with epilepsy due to pathogenic variants in these genes, and also discuss what is known about autonomic dysfunction in these contexts.
Collapse
Affiliation(s)
- Ahmed N Sahly
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Michael Shevell
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Medical Centre, Montreal, Quebec, Canada
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Medical Centre, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Costagliola G, Orsini A, Coll M, Brugada R, Parisi P, Striano P. The brain-heart interaction in epilepsy: implications for diagnosis, therapy, and SUDEP prevention. Ann Clin Transl Neurol 2021; 8:1557-1568. [PMID: 34047488 PMCID: PMC8283165 DOI: 10.1002/acn3.51382] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
The influence of the central nervous system and autonomic system on cardiac activity is being intensively studied, as it contributes to the high rate of cardiologic comorbidities observed in people with epilepsy. Indeed, neuroanatomic connections between the brain and the heart provide links that allow cardiac arrhythmias to occur in response to brain activation, have been shown to produce arrhythmia both experimentally and clinically. Moreover, seizures may induce a variety of transient cardiac effects, which include changes in heart rate, heart rate variability, arrhythmias, asystole, and other ECG abnormalities, and can trigger the development of Takotsubo syndrome. People with epilepsy are at a higher risk of death than the general population, and sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. Although the cause of SUDEP is still unknown, cardiac abnormalities during and between seizures could play a significant role in its pathogenesis, as highlighted by studies on animal models of SUDEP and registration of SUDEP events. Recently, genetic mutations in genes co-expressed in the heart and brain, which may result in epilepsy and cardiac comorbidity/increased risk for SUDEP, have been described. Recognition and a better understanding of brain-heart interactions, together with new advances in sequencing techniques, may provide new insights into future novel therapies and help in the prevention of cardiac dysfunction and sudden death in epileptic individuals.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Pediatric Clinic, Santa Chiara's University Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessandro Orsini
- Pediatric Clinic, Santa Chiara's University Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Monica Coll
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.,Medical Science Department, School of Medicine, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Service, Hospital Josep Trueta, Girona, Spain
| | - Pasquale Parisi
- Chair of Pediatrics, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Sant' Andrea Hospital, Rome, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
12
|
Ameamsri U, Chaveerach A, Sudmoon R, Tanee T, Peigneur S, Tytgat J. Oleamide in Ipomoea and Dillenia Species and Inflammatory Activity Investigated through Ion Channel Inhibition. Curr Pharm Biotechnol 2021; 22:254-261. [PMID: 32515307 DOI: 10.2174/1389201021666200607185250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oleamide is an essential substance for human health. So, the plants with high oleamide content are great sources for health care products. OBJECTIVE This study is conducted to investigate the quality of oleamide in plants and test the bioactivity in the selected two studied species. METHODS The three Ipomoea and five Dillenia species including Ipomoea alba, Ipomoea aquatica and Ipomoea pes-caprae, and Dillenia indica, Dillenia obovata, Dillenia ovata, Dillenia parviflora and Dillenia pentagyna were investigated for the quantity of oleamide by high-performance liquid chromatography. The biological activity test was conducted on the powder formulation of the chosen plants, Dillenia ovata and Dillenia parviflora at a ratio of 30:70, for anti-inflammatory activity ex vivo on a panel of molecular targets through ion channel inhibition including voltage-gated sodium channel, voltage-gated potassium channel, and the cardiac ion as human ether-a-go-go related gene. RESULTS The results showed that the leaf extracts of I. aquatica and D. ovata gave the highest and subsequent oleamide quantity i.e. 7.52 and 5.17 mg/g, respectively. Out of the Dillenia formulation which contained various compounds, oleamide showed the highest percentages of inhibition at 8.0-20.0%, and 6.2-14.2% in voltage-gated sodium channel, and voltage-gated potassium channel which had slightly lower values than the oleamide standard, and no effect as 0.0% value inhibition in the cardiac ion channel. CONCLUSION The Dillenia formulation exhibits anti-inflammatory activity without affecting the heart. Accordingly, the three studied Ipomoea and three studied Dillenia species may be used for the same activity as a single component or formulation with effective solvent for disease treatments.
Collapse
Affiliation(s)
- Unchaleeporn Ameamsri
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham, Thailand
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
13
|
Dhaibar HA, Hamilton KA, Glasscock E. Kv1.1 subunits localize to cardiorespiratory brain networks in mice where their absence induces astrogliosis and microgliosis. Mol Cell Neurosci 2021; 113:103615. [PMID: 33901631 DOI: 10.1016/j.mcn.2021.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiorespiratory collapse following a seizure is a suspected cause of sudden unexpected death in epilepsy (SUDEP), the leading cause of epilepsy-related mortality. In the commonly used Kcna1 gene knockout (Kcna1-/-) mouse model of SUDEP, cardiorespiratory profiling reveals an array of aberrant breathing patterns that could contribute to risk of seizure-related mortality. However, the brain structures mediating these respiratory abnormalities remain unknown. We hypothesize that Kv1.1 deficiency in respiratory control centers of the brain contribute to respiratory dysfunction in Kcna1-/- mice leading to increased SUDEP risk. Thus, in this study, we first used immunohistochemistry to map expression of Kv1.1 protein in cardiorespiratory brain regions of wild-type Kcna1+/+ (WT) mice. Next, GFAP and Iba1 immunostaining was used to test for the presence of astrogliosis and microgliosis, respectively, in the cardiorespiratory centers of Kcna1-/- mice, which could be indicative of seizure-related brain injury that could impair breathing. In WT mice, we detected Kv1.1 protein in all cardiorespiratory centers examined, including the basolateral amygdala, dorsal respiratory group, dorsal motor nucleus of vagus, nucleus ambiguus, ventral respiratory column, and pontine respiratory group, as well as chemosensory centers including the retrotrapezoid and median raphae nuclei. Extensive gliosis was observed in the same areas in Kcna1-/- mice suggesting that seizure-associated brain injury could contribute to respiratory abnormalities.
Collapse
Affiliation(s)
- Hemangini A Dhaibar
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | - Kathryn A Hamilton
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | - Edward Glasscock
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
14
|
Trosclair K, Si M, Watts M, Gautier NM, Voigt N, Traylor J, Bitay M, Baczko I, Dobrev D, Hamilton KA, Bhuiyan MS, Dominic P, Glasscock E. Kv1.1 potassium channel subunit deficiency alters ventricular arrhythmia susceptibility, contractility, and repolarization. Physiol Rep 2021; 9:e14702. [PMID: 33427415 PMCID: PMC7798052 DOI: 10.14814/phy2.14702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy-associated Kv1.1 voltage-gated potassium channel subunits encoded by the Kcna1 gene have traditionally been considered absent in heart, but recent studies reveal they are expressed in cardiomyocytes where they could regulate intrinsic cardiac electrophysiology. Although Kv1.1 now has a demonstrated functional role in atria, its role in the ventricles has never been investigated. In this work, electrophysiological, histological, and gene expression approaches were used to explore the consequences of Kv1.1 deficiency in the ventricles of Kcna1 knockout (KO) mice at the organ, cellular, and molecular levels to determine whether the absence of Kv1.1 leads to ventricular dysfunction that increases the risk of premature or sudden death. When subjected to intracardiac pacing, KO mice showed normal baseline susceptibility to inducible ventricular arrhythmias (VA) but resistance to VA under conditions of sympathetic challenge with isoproterenol. Echocardiography revealed cardiac contractile dysfunction manifesting as decreased ejection fraction and fractional shortening. In whole-cell patch-clamp recordings, KO ventricular cardiomyocytes exhibited action potential prolongation indicative of impaired repolarization. Imaging, histological, and transcript analyses showed no evidence of structural or channel gene expression remodeling, suggesting that the observed deficits are likely electrogenic due to Kv1.1 deficiency. Immunoblots of patient heart samples detected the presence of Kv1.1 at relatively high levels, implying that Kv1.1 contributes to human cardiac electrophysiology. Taken together, this work describes an important functional role for Kv1.1 in ventricles where its absence causes repolarization and contractility deficits but reduced susceptibility to arrhythmia under conditions of sympathetic drive.
Collapse
Affiliation(s)
- Krystle Trosclair
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Man Si
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Megan Watts
- Department of Internal MedicineSection of CardiologyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Nicole M. Gautier
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Niels Voigt
- Institute of Pharmacology and ToxicologyUniversity Medical Center GoettingenGoettingenGermany
- DZHK (German Center for Cardiovascular Research)GöttingenGermany
| | - James Traylor
- Department of PathologyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Miklós Bitay
- Department of Cardiac Surgery2nd Department of Medicine and Cardiology CenterUniversity of SzegedSzegedHungary
| | - Istvan Baczko
- Department of Pharmacology and PharmacotherapyInterdisciplinary Excellence CentreUniversity of SzegedSzegedHungary
| | - Dobromir Dobrev
- Institute of PharmacologyWest German Heart and Vascular CenterUniversity Duisburg‐EssenEssenGermany
| | - Kathryn A. Hamilton
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Md. Shenuarin Bhuiyan
- Department of PathologyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Paari Dominic
- Department of Internal MedicineSection of CardiologyLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Edward Glasscock
- Department of Cellular Biology & AnatomyLouisiana State University Health Sciences CenterShreveportLAUSA
- Department of Biological SciencesSouthern Methodist UniversityDallasTXUSA
| |
Collapse
|
15
|
Koźmiński W, Pera J. Involvement of the Peripheral Nervous System in Episodic Ataxias. Biomedicines 2020; 8:biomedicines8110448. [PMID: 33105744 PMCID: PMC7690566 DOI: 10.3390/biomedicines8110448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Episodic ataxias comprise a group of inherited disorders, which have a common hallmark—transient attacks of ataxia. The genetic background is heterogeneous and the causative genes are not always identified. Furthermore, the clinical presentation, including intraictal and interictal symptoms, as well as the retention and progression of neurological deficits, is heterogeneous. Spells of ataxia can be accompanied by other symptoms—mostly from the central nervous system. However, in some of episodic ataxias involvement of peripheral nervous system is a part of typical clinical picture. This review intends to provide an insight into involvement of peripheral nervous system in episodic ataxias.
Collapse
Affiliation(s)
- Wojciech Koźmiński
- Department of Neurology, University Hospital, ul. Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503 Krakow, Poland
- Correspondence:
| |
Collapse
|
16
|
D’Adamo MC, Liantonio A, Rolland JF, Pessia M, Imbrici P. Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21082935. [PMID: 32331416 PMCID: PMC7215777 DOI: 10.3390/ijms21082935] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.
Collapse
Affiliation(s)
- Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
| | - Antonella Liantonio
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain Po Box 17666, UAE
| | - Paola Imbrici
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Correspondence:
| |
Collapse
|
17
|
Trosclair K, Dhaibar HA, Gautier NM, Mishra V, Glasscock E. Neuron-specific Kv1.1 deficiency is sufficient to cause epilepsy, premature death, and cardiorespiratory dysregulation. Neurobiol Dis 2020; 137:104759. [PMID: 31978607 DOI: 10.1016/j.nbd.2020.104759] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality, but the precise cellular substrates involved remain elusive. Epilepsy-associated ion channel genes with co-expression in brain and heart have been proposed as SUDEP candidate genes since they provide a singular unifying link between seizures and lethal cardiac arrhythmias. Here, we generated a conditional knockout (cKO) mouse with neuron-specific deletion of Kcna1, a SUDEP-associated gene with brain-heart co-expression, to test whether seizure-evoked cardiac arrhythmias and SUDEP require the absence of Kv1.1 in both brain and heart or whether ablation in neurons is sufficient. To obtain cKO mice, we developed a floxed Kcna1 mouse which we crossed to mice with the Synapsin1-Cre transgene, which selectively deletes Kcna1 in most neurons. Molecular analyses confirmed neuron-specific Kcna1 deletion in cKO mice and corresponding loss of Kv1.1 except in cerebellum where Synapsin1-Cre is not highly expressed. Survival studies and electroencephalography, electrocardiography, and plethysmography recordings showed that cKO mice exhibit premature death, epilepsy, and cardiorespiratory dysregulation but to a lesser degree than global knockouts. Heart rate variability (HRV) was increased in cKO mice with peaks during daytime suggesting disturbed diurnal HRV patterns as a SUDEP biomarker. Residual Kv1.1 expression in cKO cerebellum suggests it may play an unexpected role in regulating ictal cardiorespiratory dysfunction and SUDEP risk. This work demonstrates the principle that channelopathies with brain-heart expression patterns can increase death risk by brain-driven mechanisms alone without a functionally compromised heart, reinforcing seizure control as a primary clinical strategy for SUDEP prevention.
Collapse
Affiliation(s)
- Krystle Trosclair
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America.
| | - Hemangini A Dhaibar
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America.
| | - Nicole M Gautier
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America.
| | - Vikas Mishra
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America.
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, LA 71103, United States of America; Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States of America.
| |
Collapse
|
18
|
Wang X, Li G, Guo J, Zhang Z, Zhang S, Zhu Y, Cheng J, Yu L, Ji Y, Tao J. Kv1.3 Channel as a Key Therapeutic Target for Neuroinflammatory Diseases: State of the Art and Beyond. Front Neurosci 2020; 13:1393. [PMID: 31992966 PMCID: PMC6971160 DOI: 10.3389/fnins.2019.01393] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
It remains a challenge for the effective treatment of neuroinflammatory disease, including multiple sclerosis (MS), stroke, epilepsy, and Alzheimer’s and Parkinson’s disease. The voltage-gated potassium Kv1.3 channel is of interest, which is considered as a novel therapeutic target for treating neuroinflammatory disorders due to its crucial role in subsets of T lymphocytes as well as microglial cells. Toxic animals, such as sea anemones, scorpions, spiders, snakes, and cone snails, can produce a variety of toxins that act on the Kv1.3 channel. The Stichodactyla helianthus K+ channel blocking toxin (ShK) from the sea anemone S. helianthus is proved as a classical blocker of Kv1.3. One of the synthetic analogs ShK-186, being developed as a therapeutic for autoimmune diseases, has successfully completed first-in-man Phase 1 trials. In addition to addressing the recent progress on the studies underlying the pharmacological characterizations of ShK on MS, the review will also explore the possibility for clinical treatment of ShK-like Kv1.3 blocking polypeptides on other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Guoyi Li
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingkang Guo
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Zhiping Zhang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Shuzhang Zhang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Yudan Zhu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiwei Cheng
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Yu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China,Xinhua Translational Institute for Cancer Pain, Shanghai, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| |
Collapse
|