1
|
Alayoubi M, Rodrigues A, Wu C, Whitehouse E, Nguyen J, Cooper ZD, O'Neill PR, Cahill CM. Elucidating interplay between myrcene and cannabinoid receptor 1 receptors to produce antinociception in mouse models of neuropathic pain. Pain 2025:00006396-990000000-00855. [PMID: 40096521 DOI: 10.1097/j.pain.0000000000003558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025]
Abstract
ABSTRACT The need for nonaddictive and effective treatments for chronic pain are at an all-time high. Historical precedence, and now clinical evidence, supports the use of cannabis for alleviating chronic pain. A plethora of research on delta-9-tetrahydrocannabinol exists, yet cannabis is comprised of a multitude of constituents, some of which possess analgesic potential, that have not been systematically investigated, including the terpene myrcene. Myrcene attenuates pain hypersensitivity in preclinical models and is one of the most abundant terpenes found in cannabis. Despite these findings, it remains unclear how myrcene elicits these effects on nociceptive systems. The present study uses a male and female mouse model of neuropathic pain as well as in vitro experiments with HEK293T cells to explore these questions. We first demonstrate myrcene (1-200 mg/kg i.p.) dose-dependently increases mechanical nociceptive thresholds, where potency was greater in female compared with male pain mice. Testing canonical tetrad outcomes, mice were tested for hypolocomotion and hypothermia after myrcene administration. Myrcene did not alter locomotion or temperature, but female pain mice showed a conditioned place aversion to myrcene. A cannabinoid receptor 1 (CB1) antagonist inhibited myrcene's anti-allodynia. By contrast, in vitro cell culture experiments using a TRUPATH assay revealed myrcene does not directly activate CB1 receptors nor alter CB1 receptor activity elicited by CB1 agonist (CP 55,940) or endocannabinoids (anandamide or 2-arachidonoylglycerol). Understanding engagement of CB1 receptors in pain modulation and myrcene's mechanism of action warrants further study to understand the diversity of cannabis pharmacology and to further the frontier of pain research.
Collapse
Affiliation(s)
- Myra Alayoubi
- UCLA, Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA
- Shirley and Stefan Hatos Center for Neuropharmacology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Akeesha Rodrigues
- Shirley and Stefan Hatos Center for Neuropharmacology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Christine Wu
- Shirley and Stefan Hatos Center for Neuropharmacology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Ella Whitehouse
- Shirley and Stefan Hatos Center for Neuropharmacology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Jessica Nguyen
- Shirley and Stefan Hatos Center for Neuropharmacology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Ziva D Cooper
- Shirley and Stefan Hatos Center for Neuropharmacology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Patrick R O'Neill
- Shirley and Stefan Hatos Center for Neuropharmacology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Catherine M Cahill
- Shirley and Stefan Hatos Center for Neuropharmacology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
2
|
Flangea C, Vlad D, Popescu R, Dumitrascu V, Rata AL, Tryfon ME, Balasoiu B, Vlad CS. Cannabis: Zone Aspects of Raw Plant Components in Sport-A Narrative Review. Nutrients 2025; 17:861. [PMID: 40077729 PMCID: PMC11902196 DOI: 10.3390/nu17050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Objectives/Background: The Cannabis genus contain a mixture of cannabinoids and other minor components which have been studied so far. In this narrative review, we highlight the main aspects of the polarized discussion between abuse and toxicity versus the benefits of the compounds found in the Cannabis sativa plant. Methods: We investigated databases such as PubMed, Google Scholar, Web of Science and World Anti-doping Agency (WADA) documents for scientific publications that can elucidate the heated discussion related to the negative aspects of addiction, organ damage and improved sports performance and the medical benefits, particularly in athletes, of some compounds that are promising as nutrients. Results: Scientific arguments bring forward the harmful effects of cannabinoids, ethical and legislative aspects of their usage as doping substances in sports. We present the synthesis and metabolism of the main cannabis compounds along with identification methods for routine anti-doping tests. Numerous other studies attest to the beneficial effects, which could bring a therapeutic advantage to athletes in case of injuries. These benefits recommend Cannabis sativa compounds as nutrients, as well as potential pharmacological agents. Conclusions and Future Perspectives: From the perspective of both athletes and illegal use investigators in sport, there are many interpretations, presented and discussed in this review. Despite many recent studies on cannabis species, there is very little research on the beneficial effects in active athletes, especially on large groups compared to placebo. These studies may complete the current vision of this topic and clarify the hypotheses launched as discussions in this review.
Collapse
Affiliation(s)
- Corina Flangea
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
| | - Daliborca Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
| | - Roxana Popescu
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
- Department of Cell and Molecular Biology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
| | - Andreea Luciana Rata
- Surgical Emergencies Department, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Maria Erika Tryfon
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.E.T.); (B.B.)
| | - Bogdan Balasoiu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.E.T.); (B.B.)
| | - Cristian Sebastian Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
| |
Collapse
|
3
|
Devesa I, Fernández-Ballester G, Fernandez-Carvajal A, Ferrer-Montiel A. A review of the patent literature surrounding TRPV1 modulators. Expert Opin Ther Pat 2025:1-15. [PMID: 39952645 DOI: 10.1080/13543776.2025.2467698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/25/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION TRPV1, a pivotal therapeutic target for chronic pain and pruritus, has been validated in the pathogenesis of several pathologies from diabetes to cancer. Despite the constellation of chemical structures and strategies, none of these molecules has yet been clinically developed as a new drug application due to safety concerns, particularly in thermoregulation. Thus, clinical development of TRPV1 modulators remains a challenge. AREAS COVERED This review covers the patent literature on TRPV1 modulators (2019-2024, PubMed, Google Patents, and Espacenet), from orthosteric ligands to innovative compounds of biotechnological origin such as interfering RNAs or antibodies, and dual modulators that can act on TRPV1 and associated proteins in different tissues. EXPERT OPINION Therapeutic strategies that preferentially act on dysfunctional TRPV1 channels appear essential, along with a superior understanding of the underlying mechanisms affecting changes in core body temperature (CBT). Recent findings describing differential receptor interactions of antagonists that do not affect CBT may pave the way to the next generation of orally active TRPV1 inhibitors. Although we have thus far experienced a bitter feeling in TRPV1 drug development, the recent progress in different disciplines, including human-based preclinical models, will set an interdisciplinary approach to design and develop clinically relevant TRPV1 modulators.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
4
|
Amato R, Pacifico E, Lotito D, Iervolino V, Pierantoni L, Cortese L, Musco N, Lombardi P, Mastellone V, Pero ME. Effects of a Cannabinoid-Based Phytocomplex (Pain Relief TM) on Chronic Pain in Osteoarthritic Dogs. Animals (Basel) 2025; 15:101. [PMID: 39795044 PMCID: PMC11718910 DOI: 10.3390/ani15010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Twenty-one adult crossbreed dogs with chronic pain due to severe osteoarthrosis were enrolled in the study (placebo vs. treatment groups). The dogs in the experimental group received the dietary supplement (Pain ReliefTM, Giantec, Isernia, Italy) for 30 days to evaluate its effects on metabolism and pain relief. During the trial, the Helsinki Chronic Pain Index significantly decreased (p < 0.01) in the experimental group, indicating reduced pain and improved quality of life. Additionally, the treated group showed improvements in oxidative stress, demonstrated by a reduction in reactive oxygen metabolites, and an increase in biological antioxidant potential. Interleukins 6 levels decreased in the treated group, while interleukins 10 levels increased, thus suggesting an anti-inflammatory effect of the supplement. Importantly, no adverse effects were observed. Results suggest that Pain ReliefTM is effective in ameliorating osteoarthritis in dogs, improving their quality of life.
Collapse
Affiliation(s)
- Ruggero Amato
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (R.A.); (D.L.); (L.C.); (N.M.); (P.L.); (V.M.); (M.E.P.)
| | - Eleonora Pacifico
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milano, 20122 Milan, Italy;
| | - Daria Lotito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (R.A.); (D.L.); (L.C.); (N.M.); (P.L.); (V.M.); (M.E.P.)
| | - Valeria Iervolino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (R.A.); (D.L.); (L.C.); (N.M.); (P.L.); (V.M.); (M.E.P.)
| | | | - Laura Cortese
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (R.A.); (D.L.); (L.C.); (N.M.); (P.L.); (V.M.); (M.E.P.)
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (R.A.); (D.L.); (L.C.); (N.M.); (P.L.); (V.M.); (M.E.P.)
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (R.A.); (D.L.); (L.C.); (N.M.); (P.L.); (V.M.); (M.E.P.)
| | - Vincenzo Mastellone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (R.A.); (D.L.); (L.C.); (N.M.); (P.L.); (V.M.); (M.E.P.)
| | - Maria Elena Pero
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (R.A.); (D.L.); (L.C.); (N.M.); (P.L.); (V.M.); (M.E.P.)
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Wagner JK, Gambell E, Gibbons T, Martin TJ, Kaplan JS. Sex Differences in the Anxiolytic Properties of Common Cannabis Terpenes, Linalool and β-Myrcene, in Mice. NEUROSCI 2024; 5:635-649. [PMID: 39728677 DOI: 10.3390/neurosci5040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Volatile organic compounds, colloquially referred to as "terpenes", have been proposed to impact the therapeutic qualities that are traditionally ascribed to cannabis. However, the contribution of these terpenes in anxiety, at relevant levels and exposure methods common with cannabis use, is lacking empirical assessment. We tested the anxiolytic properties of two prominent cannabis terpenes, linalool and β-myrcene, in male and female mice using short duration vapor pulls to model human inhalation when combusting flower or vaping cannabis oil. We observed sex differences in the locomotor effects in the open field and anxiolytic properties in the elevated plus maze of these terpenes that depended on their exposure characteristics. Both linalool and β-myrcene had anxiolytic effects in female mice when delivered in discrete vapor pulls over the course of 30 min. In male mice, only a single vapor hit containing linalool or β-myrcene had anxiolytic effects. The combination of sub-effective levels of linalool and the phytocannabinoid, cannabidiol (CBD), had synergistic anxiolytic effects in females, but these entourage effects between CBD and terpenes were absent with β-myrcene for females and for either terpene in males. Together, our findings reveal sex differences in the anxiolytic properties of common cannabis terpenes and highlight the potential benefits of unique combinations of CBD and terpenes in expanding the therapeutic dose window.
Collapse
Affiliation(s)
- Jasmin K Wagner
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Ella Gambell
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Tucker Gibbons
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Thomas J Martin
- Department of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, CA 92780, USA
| | - Joshua S Kaplan
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| |
Collapse
|
6
|
Stasiłowicz-Krzemień A, Szymanowska D, Szulc P, Cielecka-Piontek J. Antimicrobial, Probiotic, and Immunomodulatory Potential of Cannabis sativa Extract and Delivery Systems. Antibiotics (Basel) 2024; 13:369. [PMID: 38667045 PMCID: PMC11047504 DOI: 10.3390/antibiotics13040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
The compounds present in hemp show multidirectional biological activity. It is related to the presence of secondary metabolites, mainly cannabinoids, terpenes, and flavonoids, and the synergy of their biological activity. The aim of this study was to assess the activity of the Henola Cannabis sativae extract and its combinations with selected carriers (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, magnesium aluminometasilicate, and hydroxypropyl-β-cyclodextrin) in terms of antimicrobial, probiotic, and immunobiological effects. As a result of the conducted research, the antimicrobial activity of the extract was confirmed in relation to the following microorganisms: Clostridium difficile, Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus pyrogenes, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aereuginosa, and Candida albicans (microorganism count was reduced from ~102 CFU mL-1 to <10 CFU mL-1 in most cases). Additionally, for the system with hydroxypropyl-β-cyclodextrin, a significant probiotic potential against bacterial strains was established for strains Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus, Lactobacillus reuteri, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus fermentum, and Streptococcus thermophilus (microorganism count was increased from ~102 to 104-107). In terms of immunomodulatory properties, it was determined that the tested extract and the systems caused changes in IL-6, IL-8, and TNF-α levels.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Daria Szymanowska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
7
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
8
|
Christensen C, Rose M, Cornett C, Allesø M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn't. Biomedicines 2023; 11:2323. [PMID: 37626819 PMCID: PMC10452568 DOI: 10.3390/biomedicines11082323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Collapse
Affiliation(s)
- Catalina Christensen
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Martin Rose
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| | - Morten Allesø
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| |
Collapse
|
9
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
10
|
Costa AOC, Rego RIA, Andrade HHN, Costa TKVL, Salvadori MGSS, Almeida RN, Castro RD. Evaluation of the antinociceptive effect generated by citronellal monoterpene isomers. BRAZ J BIOL 2023; 83:e271781. [PMID: 37255202 DOI: 10.1590/1519-6984.271781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Due to the complex nature of pain and the participation of physical, cognitive, psychological and behavioral aspects, pain management has several approaches. The use of medicinal plants in developing countries is quite expressive. Seeking new options for the treatment of emerging or debilitating diseases. Therefore, the present study seeks to elucidate the effects of the monoterpene, citronellal, differentiating its activity by isomers (R)-(+) and (S)-(-) citronellal. The study used several methods to evaluate the effects of citronellal isomers on motor coordination, nociceptive response, and the involvement of opioid, glutamatergic, and transient receptor pathways. The methods included rota-rod, hot-plate, and formalin tests, as well as the use of specific inhibitors and agonists. Data were analyzed using inferential statistics with a 95% confidence level. Both isomers did not significantly affect the motor coordination of the studied animals. The isomer (S)-(-) citronellal showed better results in relation to its structural counterpart, managing to have an antinociceptive effect in the formalin and hot plate tests with a lower concentration (100 mg/kg) and presenting fewer side effects, however, the this study was not able to elucidate the mechanism of action of this isomer despite having activity in studies with substances that act on specific targets such as glutamate and capsaicin, its activity was not reversed with the use of antagonists for pathways related to nociception. While the (R)-(+) citronellal isomer, despite showing total activity only at a concentration of 150 mg/kg, was able to determine its mechanism of action related to the opioid pathway by reversing its activity by the antagonist naloxone, being this is a pathway already correlated with nociception control treatments, however, it is also related to some unwanted side effects. In this way, new studies are sought to elucidate the mechanism related to the isomer (S)-(-) citronellal and a possibility of use in other areas related to the treatment of pain or inflammation.
Collapse
Affiliation(s)
- A O C Costa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - R I A Rego
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - H H N Andrade
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Instituto de Pesquisa em Fámacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - T K V L Costa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Odontologia, João Pessoa, PB, Brasil
| | - M G S S Salvadori
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Instituto de Pesquisa em Fámacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - R N Almeida
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Instituto de Pesquisa em Fámacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - R D Castro
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Departamento de Clínica e Odontologia Social, João Pessoa, PB, Brasil
| |
Collapse
|
11
|
Lins BR, Anyaegbu CC, Hellewell SC, Papini M, McGonigle T, De Prato L, Shales M, Fitzgerald M. Cannabinoids in traumatic brain injury and related neuropathologies: preclinical and clinical research on endogenous, plant-derived, and synthetic compounds. J Neuroinflammation 2023; 20:77. [PMID: 36935484 PMCID: PMC10026409 DOI: 10.1186/s12974-023-02734-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023] Open
Abstract
Traumatic brain injury is common, and often results in debilitating consequences. Even mild traumatic brain injury leaves approximately 20% of patients with symptoms that persist for months. Despite great clinical need there are currently no approved pharmaceutical interventions that improve outcomes after traumatic brain injury. Increased understanding of the endocannabinoid system in health and disease has accompanied growing evidence for therapeutic benefits of Cannabis sativa. This has driven research of Cannabis' active chemical constituents (phytocannabinoids), alongside endogenous and synthetic counterparts, collectively known as cannabinoids. Also of therapeutic interest are other Cannabis constituents, such as terpenes. Cannabinoids interact with neurons, microglia, and astrocytes, and exert anti-inflammatory and neuroprotective effects which are highly desirable for the management of traumatic brain injury. In this review, we comprehensively appraised the relevant scientific literature, where major and minor phytocannabinoids, terpenes, synthetic cannabinoids, and endogenous cannabinoids were assessed in TBI, or other neurological conditions with pathology and symptomology relevant to TBI, as well as recent studies in preclinical TBI models and clinical TBI populations.
Collapse
Affiliation(s)
- Brittney R Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
| | - Luca De Prato
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Matthew Shales
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| |
Collapse
|
12
|
Hemp Seed Oil in Association with β-Caryophyllene, Myrcene and Ginger Extract as a Nutraceutical Integration in Knee Osteoarthritis: A Double-Blind Prospective Case-Control Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020191. [PMID: 36837393 PMCID: PMC9960141 DOI: 10.3390/medicina59020191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Background and Objectives: Nutraceuticals are gaining more and more importance as a knee osteoarthritis (KOA) complementary treatment. Among nutraceuticals, hemp seed oil and terpenes are proving to be very useful as therapeutic support for many chronic diseases, but there are still few studies regarding their effectiveness for treating KOA, both in combination and separately. The aim of this study is thus to compare the effect of two dietary supplements, both containing hemp seed oil, but of which only one also contains terpenes, in relieving pain and improving joint function in patients suffering from KOA. Materials and Methods: Thirty-eight patients were recruited and divided into two groups. The control group underwent a 45 day treatment with a hemp seed oil-based dietary supplement, while the treatment group assumed a hemp seed oil and terpenes dietary supplement for the same period. Patients were evaluated at the enrollment (T0) and at the end of treatment (T1). Outcome measures were: Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), Short-Form-12 (SF-12), Knee Injury Osteoarthritis Outcome Score (KOOS), and Oxford Knee Score (OKS). Results: All outcome measures improved at T1 in both groups, but NRS, KOOS and OKS had a greater significant improvement in the treatment group only. Conclusions: Hemp seed oil and terpenes resulted a more effective integrative treatment option in KOA, improving joint pain and function and representing a good complementary option for patients suffering from osteoarthritis.
Collapse
|
13
|
Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:339. [PMID: 36679051 PMCID: PMC9860573 DOI: 10.3390/plants12020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Diseases such as cancer, neurological pathologies and chronic pain represent currently unmet needs. The existing pharmacotherapeutic options available for treating these conditions are limited by lack of efficiency and/or side effects. Transient receptor potential vanilloid 1 ion channel emerged as an attractive therapeutic target for developing new analgesic, anti-cancer and antiepileptic agents. Furthermore, various natural ingredients were shown to have affinity for this receptor. The aim of this narrative review was to summarize the diverse natural scaffolds of TRPV1 modulators based on their agonistic/antagonistic properties and to analyze the structure-activity relationships between the ligands and molecular targets based on the results of the existing molecular docking, mutagenesis and in vitro studies. We present here an exhaustive collection of TRPV1 modulators grouped by relevant chemical features: vanilloids, guaiacols, phenols, alkylbenzenes, monoterpenes, sesquiterpenoids, alkaloids, etc. The information herein is useful for understanding the key structural elements mediating the interaction with TRPV1 and how their structural variation impacts the interaction between the ligand and receptor. We hope this data will contribute to the design of novel effective and safe TRPV1 modulators, to help overcome the lack of effective therapeutic agents against pathologies with high morbidity and mortality.
Collapse
|
14
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
15
|
Ghasemi-Gojani E, Kovalchuk I, Kovalchuk O. Cannabinoids and terpenes for diabetes mellitus and its complications: from mechanisms to new therapies. Trends Endocrinol Metab 2022; 33:828-849. [PMID: 36280497 DOI: 10.1016/j.tem.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022]
Abstract
The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| | - Olga Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| |
Collapse
|
16
|
The Pharmacogenetics of Cannabis in the Treatment of Chronic Pain. Genes (Basel) 2022; 13:genes13101832. [PMID: 36292717 PMCID: PMC9601332 DOI: 10.3390/genes13101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The increase in the medical use of cannabis has revealed a number of beneficial effects, a variety of adverse side effects and great inter-individual variability. Association studies connecting consumption, addiction and side effects related to recreational cannabis use have led to the identification of several polymorphic genes that may play a role in the pharmacodynamics and pharmacokinetics of cannabis. Method: In total, 600 patients treated with cannabis were genotyped for several candidate polymorphic genes (single-nucleotide polymorphism; SNP), encoding receptors CNR1 and TRPV1; for the ABCB1 transporter; for biotransformation, bioactivation and biosynthesis; and CYP3A4, COMT and UGT2B7 conjugation. Results: Three polymorphic genes (ABCB1, TRPV1 and UGT2B7) were identified as being significantly associated with decline in pain after treatment with cannabis. Patients simultaneously carrying the most favourable allele combinations showed a greater reduction (polygenic effect) in pain compared to those with a less favourable combination. Considering genotype combinations, we could group patients into good responders, intermediate responders and poor or non-responders. Results suggest that genetic makeup is, at the moment, a significant predictive factor of the variability in response to cannabis. Conclusions: This study proves, for the first time, that certain polymorphic candidate genes may be associated with cannabis effects, both in terms of pain management and side effects, including therapy dropout. Significance: Our attention to pharmacogenetics began in 2008, with the publication of a first study on the association between genetic polymorphisms and morphine action in pain relief. The study we are presenting is the first observational study conducted on a large number of patients involving several polymorphic candidate genes. The data obtained suggest that genetic makeup can be a predictive factor in the response to cannabis therapy and that more extensive and planned studies are needed for the opening of new scenarios for the personalization of cannabis therapy.
Collapse
|
17
|
Jokić S, Jerković I, Pavić V, Aladić K, Molnar M, Kovač MJ, Vladimir-Knežević S. Terpenes and Cannabinoids in Supercritical CO 2 Extracts of Industrial Hemp Inflorescences: Optimization of Extraction, Antiradical and Antibacterial Activity. Pharmaceuticals (Basel) 2022; 15:ph15091117. [PMID: 36145338 PMCID: PMC9502342 DOI: 10.3390/ph15091117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 02/05/2023] Open
Abstract
Natural products are increasingly in demand in dermatology and cosmetology. In the present study, highly valuable supercritical CO2 (sCO2) extracts rich in bioactive compounds with antiradical and antibacterial activity were obtained from the inflorescences of industrial hemp. Volatile compounds were analyzed by gas chromatography in tandem with mass spectrometry (GC-MS), while cannabinoids were determined by high performance liquid chromatography (HPLC-DAD). Extraction yields varied from 0.75 to 8.83%, depending on the pressure and temperature applied. The extract obtained at 320 bar and 40 °C with the highest content (305.8 µg mg-1) of cannabidiolic acid (CBDA) showed the best antiradical properties. All tested extract concentrations from 10.42 µg mL-1 to 66.03 µg mL-1 possessed inhibitory activities against E. coli, P. aeruginosa, B. subtilis, and S. aureus. The sCO2 extract with the highest content of cannabidiol (CBD) and rich in α-pinene, β-pinene, β-myrcene, and limonene was the most effective. The optimal conditions for sCO2 extraction of cannabinoids and volatile terpenes from industrial hemp were determined. The temperature of 60 °C proved to be optimal for all responses studied, while the pressure showed a different effect depending on the compounds targeted. A low pressure of 131.2 bar was optimal for the extraction of monoterpenes, while extracts rich in sesquiterpenes were obtained at 319.7 bar. A high pressure of 284.78 bar was optimal for the extraction of CBD.
Collapse
Affiliation(s)
- Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Correspondence: ; Tel.: +385-21-329-461
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Krunoslav Aladić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Maja Molnar
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Martina Jakovljević Kovač
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Sanda Vladimir-Knežević
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Dvorakova M, Wilson S, Corey W, Billingsley J, Zimmowitch A, Tracey J, Straiker A, Mackie K. A Critical Evaluation of Terpenoid Signaling at Cannabinoid CB1 Receptors in a Neuronal Model. Molecules 2022; 27:molecules27175655. [PMID: 36080421 PMCID: PMC9457791 DOI: 10.3390/molecules27175655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
In addition to phytocannabinoids, cannabis contains terpenoids that are claimed to have a myriad of effects on the body. We tested a panel of five common cannabis terpenoids, myrcene, linalool, limonene, α-pinene and nerolidol, in two neuronal models, autaptic hippocampal neurons and dorsal root ganglion (DRG) neurons. Autaptic neurons express a form of cannabinoid CB1 receptor-dependent retrograde plasticity while DRGs express a variety of transient receptor potential (TRP) channels. Most terpenoids had little or no effect on neuronal cannabinoid signaling. The exception was nerolidol, which inhibited endocannabinoid signaling. Notably, this is not via inhibition of CB1 receptors but by inhibiting some aspect of 2-arachidonoylglycerol (2-AG) production/delivery; the mechanism does not involve reducing the activity of the 2-AG-synthesizing diacylglycerol lipases (DAGLs). Nerolidol was also the only terpenoid that activated a sustained calcium response in a small (7%) subpopulation of DRGs. In summary, we found that only one of five terpenoids tested had notable effects on cannabinoid signaling in two neuronal models. Our results suggest that a few terpenoids may indeed interact with some components of the cannabinoid signaling system and may therefore offer interesting insights upon further study.
Collapse
|
19
|
Cheung C, Baker JD, Byrne JM, Perrault KA. Investigating volatiles as the secondary metabolome of Piper methysticum from root powder and water extracts using comprehensive two-dimensional gas chromatography. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115346. [PMID: 35533912 DOI: 10.1016/j.jep.2022.115346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kava (Piper methysticum G. Forst) is a plant grown in the Pacific that is used in traditional medicines. The roots are macerated and powdered for consumption as a beverage in social settings as well as in ceremonies. Other types of preparations can also be used as traditional medicines. There has been an increase in demand for kava as there is continued traditional use and as it is becoming utilized more both socially and medicinally outside of Oceania. Currently, most research of this plant has focused on bioactive kavalactones and flavokawains, and there are few studies focusing on the other compounds that kava contains, such as volatile and semivolatile components. AIM OF THE STUDY This study investigated the kava volatile organic compound (VOC) profile from nine different commercially available samples of dried, powdered kava root sourced across the Pacific region. MATERIALS AND METHODS The headspace above the kava samples was analyzed, both from the root powder as originally purchased and by performing a scaled-down extraction into water mimicking traditional preparation of the beverage. The headspace of each sample was extracted using solid-phase microextraction arrow (SPME Arrow), followed by analysis using comprehensive two-dimensional gas chromatography - quadrupole mass spectrometry/flame ionization detection (GC×GC-qMS/FID). The superior peak capacity of GC×GC was invaluable in effectively separating the complex mixture of compounds found in all samples, which enabled improved monitoring of minor differences between batches. RESULTS Dry root powder samples contained high levels of β-caryophyllene while water extracted samples showed high levels of camphene. Many alcohols, aldehydes, ketones, terpenes, terpenoids, and aromatics were also characterized from both types of samples. All water extracted samples from the different brands followed similar trends in terms of compounds being detected or not. Additional major compounds found in water extracts included benzaldehyde, hexanal, methoxyphenyloxime, camphor, limonene, 1-hexanol, endoborneol, and copaene. While some samples could be differentiated based on brand, samples did not group by purported geographic origin. CONCLUSIONS This study provides foundational data about a different subset of compounds within kava than previous research has studied, and also informs the community of the compounds that transfer into the consumed beverage during the traditional means of preparing kava.
Collapse
Affiliation(s)
- Cynthia Cheung
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Jonathan D Baker
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Julianne M Byrne
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Katelynn A Perrault
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| |
Collapse
|
20
|
Anti-Inflammatory and Analgesic Properties of the Cannabis Terpene Myrcene in Rat Adjuvant Monoarthritis. Int J Mol Sci 2022; 23:ijms23147891. [PMID: 35887239 PMCID: PMC9319952 DOI: 10.3390/ijms23147891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabis-based terpenes are believed to modulate physiological responses to disease and alter the efficacy of cannabinoids in the so-called “entourage effect”. The monoterpene myrcene can reduce nociception produced by noxious thermal and mechanical stimuli as well as reducing acute inflammation. The current study examined the role of myrcene and cannabidiol (CBD) in controlling chronic joint inflammation and pain. Chronic arthritis was induced in male Wistar rats by intra-articular injection of Freund’s complete adjuvant into the right knee. On days 7 and 21 after arthritis induction, joint pain (von Frey hair algesiometry), inflammation (intravital microscopy, laser speckle contrast analysis) and joint histopathology were assessed. Local application of myrcene (1 and 5 mg/kg s.c.) reduced joint pain and inflammation via a cannabinoid receptor mechanism. The combination of myrcene and CBD (200 μg) was not significantly different from myrcene alone. Repeated myrcene treatment had no effect on joint damage or inflammatory cytokine production. These data suggest that topical myrcene has the potential to reduce chronic arthritis pain and inflammation; however, it has no synergistic effect with CBD.
Collapse
|
21
|
Alves Rodrigues Santos SA, de Barros Mamede Vidal Damasceno M, Alves Magalhães FE, Sessle BJ, Amaro de Oliveira B, Alves Batista FL, Vieira-Neto AE, Rolim Campos A. Transient receptor potential channel involvement in antinociceptive effect of citral in orofacial acute and chronic pain models. EXCLI JOURNAL 2022; 21:869-887. [PMID: 36172071 PMCID: PMC9489894 DOI: 10.17179/excli2022-5042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022]
Abstract
This study aimed to test for the possible antinociceptive effect of the naturally occurring terpene citral in rodent models of acute and chronic orofacial pain and to test for the possible involvement of transient receptor potential (TRP) channels in this effect. Acute nociceptive behavior was induced in one series of experiments by administering formalin, cinnamaldehyde, menthol or capsaicin to the upper lip. Nociceptive behavior was assessed by orofacial rubbing, and the effects of pre-treatment with citral (0.1, 0.3 or 1.0 mg/Kg) or vehicle (control) were tested on the behavior. Nociceptive behavior was also induced by formalin injected into the temporomandibular joint or mustard oil injected into the masseter muscle, preceded by citral or vehicle (control) treatment. The chronic pain model involved infraorbital nerve transection (IONX) that induced mechanical hypersensitivity which was assessed by von Frey hair stimulation of the upper lip. Motor activity was also evaluated. Docking experiments were performed using TRPV1 and TRPM8 channels. Citral but not vehicle produced significant (p<0.01, ANOVA) antinociception on all the acute nociceptive behaviors, and these effects were attenuated by TRPV1 antagonist capsazepine, TRPM3 antagonist mefenamic acid and by TRPM8 desensitization, but not by ruthenium red and TRPA1 antagonist HC-030031. The IONX animals developed facial mechanical hypersensitivity that was significantly reduced by citral but not by vehicle. The docking experiments revealed that citral may interact with TRPV1 and TRPM8 channels. These results indicate the potential use of citral as an inhibitor of orofacial nociception in both acute and chronic pain states through TRPV1, TRPM3 and TRPM8 channels. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
| | | | - Francisco Ernani Alves Magalhães
- Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
- Department of Nutrition and Health, State University of Ceará, Fortaleza, Brazil
| | - Barry John Sessle
- Department of Physiology and Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
22
|
Gallic Acid Inhibits Mesaconitine-Activated TRPV1-Channel-Induced Cardiotoxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5731372. [PMID: 35463061 PMCID: PMC9020955 DOI: 10.1155/2022/5731372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 01/17/2023]
Abstract
Aconiti Kusnezoffii Radix (Caowu) is often combined or processed with Chebulae Fructus (Hezi) to achieve attenuation purposes in Mongolian medicine. Mesaconitine (MA), a main bioactive ingredient of Caowu, is also famous for its high cardiotoxicity while exerting good anti-inflammatory and analgesic properties. Gallic acid (GA), one of the leading chemical components in Hezi, possesses cardiac protection. This study aimed to clarify the detoxification effects of GA from Hezi on MA-induced cardiotoxicity and whether the detoxification mechanism is related to the TRPV1 channel. Cell viability was determined by methyl thiazol tetrazolium (MTT), and lactate dehydrogenase (LDH) leakage rate was determined by ELISA. Hoechst 33258, JC-1, DCFH-DA, and Fluo-3 AM staining were conducted to detect apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS), and Ca2+ respectively; TRPV1 channel current was recorded by whole-cell patch-clamp technology to observe the effect of GA and MA alone or in combination on TRPV1 channel. The results showed that GA exhibited pronounced detoxification effects on MA-induced cardiotoxicity. GA significantly inhibited the MA-induced decrease in cell viability; suppressed the MA-induced LDH leakage rate, apoptosis, and the release of ROS and Ca2+; and alleviated the reduction of mitochondrial membrane potential. We found that MA-induced cardiotoxicity was significantly attenuated in H9c2 cells pretreated with the TRPV1 antagonist BCTC. In the whole-cell patch-clamp experiment, the TRPV1 channel current increase was caused by the GA and MA treatment, whereas it was reduced by the cotreatment of GA and MA. Our data demonstrate that GA in Hezi can reduce MA-induced cardiotoxicity by inhibiting intracellular Ca2+ influx, restoring mitochondrial membrane potential, and reducing apoptosis. The detoxification mechanism may be related to the desensitization of the TRPV1 channel by the combined application of MA and GA.
Collapse
|
23
|
Rodriguez CEB, Ouyang L, Kandasamy R. Antinociceptive effects of minor cannabinoids, terpenes and flavonoids in Cannabis. Behav Pharmacol 2022; 33:130-157. [PMID: 33709984 DOI: 10.1097/fbp.0000000000000627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabis has been used for centuries for its medicinal properties. Given the dangerous and unpleasant side effects of existing analgesics, the chemical constituents of Cannabis have garnered significant interest for their antinociceptive, anti-inflammatory and neuroprotective effects. To date, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) remain the two most widely studied constituents of Cannabis in animals. These studies have led to formulations of THC and CBD for human use; however, chronic pain patients also use different strains of Cannabis (sativa, indica and ruderalis) to alleviate their pain. These strains contain major cannabinoids, such as THC and CBD, but they also contain a wide variety of cannabinoid and noncannabinoid constituents. Although the analgesic effects of Cannabis are attributed to major cannabinoids, evidence indicates other constituents such as minor cannabinoids, terpenes and flavonoids also produce antinociception against animal models of acute, inflammatory, neuropathic, muscle and orofacial pain. In some cases, these constituents produce antinociception that is equivalent or greater compared to that produced by traditional analgesics. Thus, a better understanding of the extent to which these constituents produce antinociception alone in animals is necessary. The purposes of this review are to (1) introduce the different minor cannabinoids, terpenes, and flavonoids found in Cannabis and (2) discuss evidence of their antinociceptive properties in animals.
Collapse
Affiliation(s)
- Carl Erwin B Rodriguez
- Department of Psychology, California State University, East Bay, Hayward, California, USA
| | | | | |
Collapse
|
24
|
El-Hammadi MM, Small-Howard AL, Jansen C, Fernández-Arévalo M, Turner H, Martín-Banderas L. Potential use for chronic pain: Poly(Ethylene Glycol)-Poly(Lactic-Co-Glycolic Acid) nanoparticles enhance the effects of Cannabis-Based terpenes on calcium influx in TRPV1-Expressing cells. Int J Pharm 2022; 616:121524. [PMID: 35104595 DOI: 10.1016/j.ijpharm.2022.121524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 01/11/2023]
Abstract
The objective of these in vitro studies was to investigate the impact of the encapsulation of three cannabis-based terpenes, namely β-myrcene (MC), β-caryophyllene (CPh), and nerolidol (NL), on their potential efficacy in pain management. Terpene-encapsulated poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles (PEG-PLGA NPs) were prepared by an emulsion-solvent evaporation method. The terpene-loaded NPs were examined in HEK293 cells that express the nociceptive transient receptor potential vanilloid-1 (TRPV1), an ion channel involved in pain perception. TRPV1 activation was assessed by monitoring calcium influx kinetics over 1 h in cells pre-treated with the fluorescent indicator Fluo-4. In addition, the fluorescence intensity changes induced by the NPs in living cells were also explored by a fluorescence microscope. Furthermore, the cytotoxicity of the terpene-loaded NPs was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-3,5-diphenyl tetrazolium bromide (MTT) proliferation assay. The terpene-loaded NPs had a diameter in the range of 250-350 nm and a zeta potential of approximately -20 mV. The encapsulation efficiency was 18.5%, 51.3%, and 60.3% for MC, NL, and CPh NPs, respectively. The nano-formulations significantly increased the fluorescence intensity in comparison with free terpenes. Furthermore, combinations of terpene-loaded NPs produced significantly higher calcium responses when compared to combinations of free terpenes. Similar findings were shown by the fluorescence images. In conclusion, the terpene-PLGA NPs can be promising therapeutics for more effective pain management.
Collapse
Affiliation(s)
- Mazen M El-Hammadi
- Departmento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Prof. García González n°2, 41012, Sevilla, Spain.
| | | | - Chad Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI 96816, USA
| | - Mercedes Fernández-Arévalo
- Departmento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Prof. García González n°2, 41012, Sevilla, Spain
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI 96816, USA
| | - Lucía Martín-Banderas
- Departmento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Prof. García González n°2, 41012, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
25
|
Cannabis terpenes display variable protective and anti-aggregatory actions against neurotoxic β amyloid in vitro: highlighting the protective bioactivity of α-bisabolol in motorneuronal-like NSC-34 cells. Neurotoxicology 2022; 90:81-87. [PMID: 35278524 DOI: 10.1016/j.neuro.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Terpenes form a diverse class of naturally occurring chemicals ascribed various biological activities. Cannabis contains over 400 different terpenes of varying chemical complexity which may add to the known biological activities of phytocannabinoids of relevance to the increasing use of medical cannabis; however, to date have been incompletely characterized. We assessed three terpenes predominant in cannabis: α-bisabolol, myrcene and β-caryophyllene for neuroprotective and anti-aggregative properties in both undifferentiated and differentiated NSC-34 motorneuronal-like cells as a sensitive model for neurotoxicity to oxidative stress and amyloid β (Aβ1-42) protein exposure. METHODS Cell viability was assessed biochemically using the MTT assay in the presence of either α-bisabolol, myrcene and β-caryophyllene (1-1000µM) for 48hr. Sub-toxic threshold test concentrations of each terpene were then applied to cells, alone or with concomitant incubation with the lipid peroxidant tert-butyl hyrdroperoxide (t-BHP) or amyloid β (Aβ1-42; 0-1µM) to assess neuroprotective effects. Direct effects of each terpene on Aβ fibril formation and aggregation were also evaluated using the Thioflavin T (ThT) fluorometric kinetic assay, circular dichroism and transmission electron microscopy (TEM) to visualise fibril and aggregate morphology. RESULTS Terpenes were intrinsically benign to NSC-34 cells up to 100µM. No significant antioxidant effects were observed following t-BHP administration with myrcene and β-caryophyllene, however α-bisabolol provided a modest but significant increase in cell viability in undifferentiated cells. α-bisabolol also demonstrated a significant neuroprotective effect against amyloid β exposure, with β-caryophyllene also providing a lesser, but significant increase in cell viability. Protective effects of terpenes were more pronounced in undifferentiated versus differentiated cells, attributable more so to an attenuated loss of cell viability in response to Aβ1-42 following NSC-34 cell differentiation. Neuroprotection was associated with a direct inhibition of Aβ1-42 fibril and aggregate density, evidenced by both attenuated ThT fluorescence kinetics and both spectral and microscopic evidence of altered and diminished density of Aβ aggregates. While myrcene and β-caryophyllene also elicited reductions in ThT fluorescence and alterations in Aβ aggregation, these were less well associated with neuroprotective capacity. CONCLUSIONS These findings highlight a neuroprotective role of α-bisabolol against Aβ-mediated neurotoxicity associated with an inhibition of Aβ fibrillization and modest antioxidant effect against lipid peroxidation, while β-caryophyllene also provided a small but significant measure of protection to Aβ-mediated neurotoxicity. Anti-aggregatory effects were not directly correlated with neuroprotective efficacy. This demonstrates that bioactivity of selected terpenes should be a consideration in the emergent use of medicinal cannabis formulations for the treatment of neurodegenerative diseases.
Collapse
|
26
|
Vago R, Fiorio F, Trevisani F, Salonia A, Montorsi F, Bettiga A. The Mediterranean Diet as a Source of Bioactive Molecules with Cannabinomimetic Activity in Prevention and Therapy Strategy. Nutrients 2022; 14:468. [PMID: 35276827 PMCID: PMC8839035 DOI: 10.3390/nu14030468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
The endocannabinoid system is a complex lipid signaling network that has evolved to be a key regulator of pro-homeostatic pathways for the organism. Its involvement in numerous processes has rendered it a very suitable target for pharmacological studies regarding metabolic syndrome, obesity and other lifestyle-related diseases. Cannabinomimetic molecules have been found in a large variety of foods, most of which are normally present in the Mediterranean diet. The majority of these compounds belong to the terpene and polyphenol classes. While it is known that they do not necessarily act directly on the cannabinoid receptors CB1 and CB2, their ability to regulate their expression levels has already been shown in some disease-related models, as well as their ability to modulate the activity of other components of the system. In this review, evidence was gathered to support the idea that phytocannabinoid dietary intake may indeed be a viable strategy for disease prevention and may be helpful in maintaining the health status. In an era where personalized nutrition is becoming more and more a reality, having new therapeutic targets could become an important resource.
Collapse
Affiliation(s)
- Riccardo Vago
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Fiorio
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| | - Francesco Trevisani
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Arianna Bettiga
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| |
Collapse
|
27
|
Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022; 15:795285. [PMID: 35095438 PMCID: PMC8789748 DOI: 10.3389/fnbeh.2021.795285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a popular and valuable species used in many different biomedical research areas. The complex behavior that fish exhibit in response to different stimuli allows researchers to explore the biological and pharmacological basis of affective and mood disorders. In this sense, anxiety is commonly studied in preclinical research with animal models in rodents. During the last decade, those models have been successfully adapted to zebrafish. Stressful stimuli, such as novel environments, chemical substances, light conditions, and predator images, can trigger defensive behaviors considered indicators of an anxiety-like state. In the first stage, models were adapted and validated with different stressors and anxiolytic drugs with promising results and are now successfully used to generate scientific knowledge. In that sense, zebrafish allows several routes of administration and other methodological advantages to explore the anxiolytic effects of natural products in behavioral tests as novel tank, light-dark chamber, and black/white maze, among others. The present work will review the main findings on preclinical research using adult zebrafish to explore anxiolytics effects of natural products as plant secondary metabolites such as flavonoids, alkaloids and terpenes or standardized extracts of plants, among others. Scientific literature confirms the utility of zebrafish tests to explore anxiety-like states and anxiolytic-like effects of plant secondary metabolites, which represent a useful and ethical tool in the first stages of behavioral.
Collapse
Affiliation(s)
- Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Gabriel Guillén-Ruiz
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT) – Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/Área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | | |
Collapse
|
28
|
Gadotti VM, Huang S, Zamponi GW. The terpenes camphene and alpha-bisabolol inhibit inflammatory and neuropathic pain via Cav3.2 T-type calcium channels. Mol Brain 2021; 14:166. [PMID: 34775970 PMCID: PMC8591808 DOI: 10.1186/s13041-021-00876-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
T-type calcium channels are known molecular targets of certain phytocannabinoids and endocannabinoids. Here we explored the modulation of Cav3.2 T-type calcium channels by terpenes derived from cannabis plants. A screen of eight commercially available terpenes revealed that camphene and alpha-bisabolol mediated partial, but significant inhibition of Cav3.2 channels expressed in tsA-201 cells, as well as native T-type channels in mouse dorsal root ganglion neurons. Both compounds inhibited peak current amplitude with IC50s in the low micromolar range, and mediated an additional small hyperpolarizing shift in half-inactivation voltage. When delivered intrathecally, both terpenes inhibited nocifensive responses in mice that had received an intraplantar injection of formalin, with alpha-bisabolol showing greater efficacy. Both terpenes reduced thermal hyperalgesia in mice injected with Complete Freund's adjuvant. This effect was independent of sex, and absent in Cav3.2 null mice, indicating that these compounds mediate their analgesic properties by acting on Cav3.2 channels. Both compounds also inhibited mechanical hypersensitivity in a mouse model of neuropathic pain. Hence, camphene and alpha-bisabolol have a wide spectrum of analgesic action by virtue of inhibiting Cav3.2 T-type calcium channels.
Collapse
Affiliation(s)
- Vinicius M Gadotti
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, AB, T2N 4N1, Calgary, Canada
| | - Sun Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, AB, T2N 4N1, Calgary, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, AB, T2N 4N1, Calgary, Canada.
| |
Collapse
|
29
|
Thakkar K, Ruan CH, Ruan KH. Recent advances of cannabidiol studies in medicinal chemistry, pharmacology and therapeutics. Future Med Chem 2021; 13:1935-1937. [PMID: 34583522 DOI: 10.4155/fmc-2021-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Karishma Thakkar
- Center for Experimental Therapeutics & Pharmacoinformatics & Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77004, USA
| | - Cheng-Huai Ruan
- Texas Center of Lifestyle Medicine, Ruan Medical Group, Houston, TX 77040, USA
| | - Ke-He Ruan
- Center for Experimental Therapeutics & Pharmacoinformatics & Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
30
|
Bhandari R, Gupta R, Vashishth A, Kuhad A. Transient Receptor Potential Vanilloid 1 (TRPV1) as a plausible novel therapeutic target for treating neurological complications in ZikaVirus. Med Hypotheses 2021; 156:110685. [PMID: 34592564 DOI: 10.1016/j.mehy.2021.110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Zika virus was declared a national emergency by WHO (World Health Organization) in 2016 when its widespread outbreaks and life-threatening complications were reported, especially in newborns and adults. Numerous studies reported that neuroinflammation is one of the significant root-causes behind its major neurological complications like microcephaly and Guillain-Barré syndrome (GBS). In this hypothesis, we propose Transient Receptor Potential Vanilloid 1 channel (TRPV1) as a major culprit in triggering positive inflammatory loop, ultimately leading to sustained neuroinflammation, one of the key clinical findings in Zika induced microcephalic and GBS patients. Opening of TRPV1 channel also leads to calcium influx and oxidative stress that ultimately results in cellular apoptosis (like Schwann cell in GBS and developing fetal nerve cells in microcephaly), ultimately leading to these complications. Currently, no specific cure exists for these complications. Most of the antiviral candidates are under clinical trials. Though there is no direct research on TRPV1 as a cause of Zika virus's neurological complications, but similarity in mechanisms is undeniable. Thus, exploring pathobiological involvement of TRPV1 channels and various TRPV1 modulators in these complications can possibly prove to be an effective futuristic therapeutic strategy for treatment and management of these life-threatening complications.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Reetrakshi Gupta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anushka Vashishth
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
31
|
Liktor-Busa E, Keresztes A, LaVigne J, Streicher JM, Largent-Milnes TM. Analgesic Potential of Terpenes Derived from Cannabis sativa. Pharmacol Rev 2021; 73:98-126. [PMID: 34663685 PMCID: PMC11060501 DOI: 10.1124/pharmrev.120.000046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pain prevalence among adults in the United States has increased 25% over the past two decades, resulting in high health-care costs and impacts to patient quality of life. In the last 30 years, our understanding of pain circuits and (intra)cellular mechanisms has grown exponentially, but this understanding has not yet resulted in improved therapies. Options for pain management are limited. Many analgesics have poor efficacy and are accompanied by severe side effects such as addiction, resulting in a devastating opioid abuse and overdose epidemic. These problems have encouraged scientists to identify novel molecular targets and develop alternative pain therapeutics. Increasing preclinical and clinical evidence suggests that cannabis has several beneficial pharmacological activities, including pain relief. Cannabis sativa contains more than 500 chemical compounds, with two principle phytocannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Beyond phytocannabinoids, more than 150 terpenes have been identified in different cannabis chemovars. Although the predominant cannabinoids, Δ9-THC and CBD, are thought to be the primary medicinal compounds, terpenes including the monoterpenes β-myrcene, α-pinene, limonene, and linalool, as well as the sesquiterpenes β-caryophyllene and α-humulene may contribute to many pharmacological properties of cannabis, including anti-inflammatory and antinociceptive effects. The aim of this review is to summarize our current knowledge about terpene compounds in cannabis and to analyze the available scientific evidence for a role of cannabis-derived terpenes in modern pain management. SIGNIFICANCE STATEMENT: Decades of research have improved our knowledge of cannabis polypharmacy and contributing phytochemicals, including terpenes. Reform of the legal status for cannabis possession and increased availability (medicinal and recreational) have resulted in cannabis use to combat the increasing prevalence of pain and may help to address the opioid crisis. Better understanding of the pharmacological effects of cannabis and its active components, including terpenes, may assist in identifying new therapeutic approaches and optimizing the use of cannabis and/or terpenes as analgesic agents.
Collapse
Affiliation(s)
| | - Attila Keresztes
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Justin LaVigne
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - John M Streicher
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
32
|
Kim MH, Lee SM, An KW, Lee MJ, Park DH. Usage of Natural Volatile Organic Compounds as Biological Modulators of Disease. Int J Mol Sci 2021; 22:ijms22179421. [PMID: 34502333 PMCID: PMC8430758 DOI: 10.3390/ijms22179421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Plants produce a wide variety of natural volatile organic compounds (NVOCs), many of which are unique to each species. These compounds serve many purposes, such as fending off herbivores and adapting to changes in temperature and water supply. Interestingly, although NVOCs are synthesized to deter herbivores, many of these compounds have been found to possess several therapeutic qualities, such as promoting nerve stability, enhancing sleep, and suppressing hyperresponsiveness, in addition to acting as antioxidants and anti-inflammatory agents. Therefore, many NVOCs are promising drug candidates for disease treatment and prevention. Given their volatile nature, these compounds can be administered to patients through inhalation, which is often more comfortable and convenient than other administration routes. However, the development of NVOC-based drug candidates requires a careful evaluation of the molecular mechanisms that drive their therapeutic properties to avoid potential adverse effects. Furthermore, even compounds that appear generally safe might have toxic effects depending on their dose, and therefore their toxicological assessment is also critical. In order to enhance the usage of NVOCs this short review focuses not only on the biological activities and therapeutic mode of action of representative NVOCs but also their toxic effects.
Collapse
Affiliation(s)
- Min-Hee Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
| | - Seung-Min Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Wan An
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Jae Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| |
Collapse
|
33
|
Surendran S, Qassadi F, Surendran G, Lilley D, Heinrich M. Myrcene-What Are the Potential Health Benefits of This Flavouring and Aroma Agent? Front Nutr 2021; 8:699666. [PMID: 34350208 PMCID: PMC8326332 DOI: 10.3389/fnut.2021.699666] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Myrcene (β-myrcene) is an abundant monoterpene which occurs as a major constituent in many plant species, including hops and cannabis. It is a popular flavouring and aroma agent (food additive) used in the manufacture of food and beverages. This review aims to report on the occurrence, biological and toxicological profile of β-myrcene. The main reported biological properties of β-myrcene-anxiolytic, antioxidant, anti-ageing, anti-inflammatory, analgesic properties-are discussed, with the mechanisms of activity. Here we also discuss recent data regarding the safety of β-myrcene. Overall, β-myrcene has shown promising health benefits in many animal studies. However, studies conducted in humans is lacking. In the future, there is potential for the formulation and production of non-alcoholic beers, functional foods and drinks, and cannabis extracts (low in THC) rich in β-myrcene.
Collapse
Affiliation(s)
- Shelini Surendran
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Fatimah Qassadi
- Pharmacognosy and Phytotherapy, University College London (UCL) School of Pharmacy, London, United Kingdom
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | | | | | - Michael Heinrich
- Pharmacognosy and Phytotherapy, University College London (UCL) School of Pharmacy, London, United Kingdom
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Yan X, Zhang S, Zhao H, Liu P, Huang H, Niu W, Wang W, Zhang C. ASIC2 Synergizes with TRPV1 in the Mechano-Electrical Transduction of Arterial Baroreceptors. Neurosci Bull 2021; 37:1381-1396. [PMID: 34215968 DOI: 10.1007/s12264-021-00737-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Mechanosensitive ion channels (MSCs) are key molecules in the mechano-electrical transduction of arterial baroreceptors. Among them, acid-sensing ion channel 2 (ASIC2) and transient receptor potential vanilloid subfamily member 1 (TRPV1) have been studied extensively and documented to play important roles. In this study, experiments using aortic arch-aortic nerve preparations isolated from rats revealed that both ASIC2 and TRPV1 are functionally necessary, as blocking either abrogated nearly all pressure-dependent neural discharge. However, whether ASIC2 and TRPV1 work in coordination remained unclear. So we carried out cell-attached patch-clamp recordings in HEK293T cells co-expressing ASIC2 and TRPV1 and found that inhibition of ASIC2 completely blocked stretch-activated currents while inhibition of TRPV1 only partially blocked these currents. Immunofluorescence staining of aortic arch-aortic adventitia from rats showed that ASIC2 and TRPV1 are co-localized in the aortic nerve endings, and co-immunoprecipitation assays confirmed that the two proteins form a compact complex in HEK293T cells and in baroreceptors. Moreover, protein modeling analysis, exogenous co-immunoprecipitation assays, and biotin pull-down assays indicated that ASIC2 and TRPV1 interact directly. In summary, our research suggests that ASIC2 and TRPV1 form a compact complex and function synergistically in the mechano-electrical transduction of arterial baroreceptors. The model of synergism between MSCs may have important biological significance beyond ASIC2 and TRPV1.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Sitao Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haiyan Zhao
- Yanjing Medical College, Capital Medical University, Beijing, 101300, China
| | - Ping Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weizhen Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Beijing Laboratory for Cardiovascular Precision Medicine, Capital Medical University, Beijing, 100069, China.
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
35
|
Gimenes L, Silva JCRL, Facanali R, Hantao LW, Siqueira WJ, Marques MOM. Essential Oils of New Lippia alba Genotypes Analyzed by Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (GC×GC) and Chemometric Analysis. Molecules 2021; 26:2332. [PMID: 33923848 PMCID: PMC8073019 DOI: 10.3390/molecules26082332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/04/2022] Open
Abstract
Lippia alba (Mill.) N. E. Br. (Verbenaceae) is an aromatic shrub whose essential oils have stood out as a promising source for application in several industrial fields. In this study, the essential oils chemical characterization of eight new L. alba genotypes was performed. The selected materials were collected from the Active Germplasm Bank of the Agronomic Institute and the essential oils were extracted by hydrodistillation. Flow-modulated comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) was employed for chemical characterization and evaluation of possible co-eluted compounds. In addition, the chemical analyses were submitted to multivariate statistical analyses. From this investigation, 73 metabolites were identified in the essential oils of the genotypes, from which α-pinene, β-myrcene, 1,8-cineole, linalool, neral, geranial, and caryophyllene oxide were the most abundant compounds among the accessions. This is the first report disclosing α-pinene in higher amounts in L. alba (19.69%). In addition, sabinene, trans-verbenol, myrtenol, (E)-caryophyllene, α-guaiene, germacrene D, and α-bulnesene were also found in relevant quantities in some of the genotypes, and myrtenal and myrtenol could be well separated through the second dimension. Such results contributed to the understanding of the chemical composition of those new genotypes, being important to drive a future industrial applicability and studies in genetic breeding.
Collapse
Affiliation(s)
- Leila Gimenes
- Vegetable Genetic Resources Center, Agronomic Institute, Campinas 13075-630, Brazil; (J.C.R.L.S.); (W.J.S.)
| | - Júlio César R. Lopes Silva
- Vegetable Genetic Resources Center, Agronomic Institute, Campinas 13075-630, Brazil; (J.C.R.L.S.); (W.J.S.)
- School of Agriculture, São Paulo State University (Unesp), Botucatu 18610-034, Brazil
| | - Roselaine Facanali
- Institute of Chemistry, University of Campinas (Unicamp), Campinas 13083-970, Brazil; (R.F.); (L.W.H.)
| | - Leandro Wang Hantao
- Institute of Chemistry, University of Campinas (Unicamp), Campinas 13083-970, Brazil; (R.F.); (L.W.H.)
| | - Walter José Siqueira
- Vegetable Genetic Resources Center, Agronomic Institute, Campinas 13075-630, Brazil; (J.C.R.L.S.); (W.J.S.)
| | - Marcia Ortiz Mayo Marques
- Vegetable Genetic Resources Center, Agronomic Institute, Campinas 13075-630, Brazil; (J.C.R.L.S.); (W.J.S.)
| |
Collapse
|
36
|
Anand U, Pacchetti B, Anand P, Sodergren MH. Cannabis-based medicines and pain: a review of potential synergistic and entourage effects. Pain Manag 2021; 11:395-403. [PMID: 33703917 DOI: 10.2217/pmt-2020-0110] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent legalization of medicinal cannabis in several jurisdictions has spurred the development of therapeutic formulations for chronic pain. Unlike pure delta-9-tetrahydrocannabinol (THC), full-spectrum products contain naturally occurring cannabinoids and have been reported to show improved efficacy or tolerability, attributed to synergy between cannabinoids and other components in the cannabis plant. Although 'synergy' indicates that two or more active compounds may produce an additive or combined effect greater than their individual analgesic effect, potentiation of the biological effect of a compound by related but inactive compounds, in combination, was termed the 'entourage effect'. Here, we review current evidence for potential synergistic and entourage effects of cannabinoids in pain relief. However, definitive clinical trials and in vitro functional studies are still required.
Collapse
Affiliation(s)
- Uma Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | - Praveen Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | - Mikael Hans Sodergren
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
37
|
Jansen C, Baker JD, Kodaira E, Ang L, Bacani AJ, Aldan JT, Shimoda LMN, Salameh M, Small-Howard AL, Stokes AJ, Turner H, Adra CN. Medicine in motion: Opportunities, challenges and data analytics-based solutions for traditional medicine integration into western medical practice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113477. [PMID: 33098971 PMCID: PMC7577282 DOI: 10.1016/j.jep.2020.113477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional pharmacopeias have been developed by multiple cultures and evaluated for efficacy and safety through both historical/empirical iteration and more recently through controlled studies using Western scientific paradigms and an increasing emphasis on data science methodologies for network pharmacology. Traditional medicines represent likely sources of relatively inexpensive drugs for symptomatic management as well as potential libraries of new therapeutic approaches. Leveraging this potential requires hard evidence for efficacy that separates science from pseudoscience. MATERIALS AND METHODS We performed a review of non-Western medical systems and developed case studies that illustrate the epistemological and practical translative barriers that hamper their transition to integration with Western approaches. We developed a new data analytics approach, in silico convergence analysis, to deconvolve modes of action, and potentially predict desirable components of TM-derived formulations based on computational consensus analysis across cultures and medical systems. RESULTS Abstraction, simplification and altered dose and delivery modalities were identified as factors that influence actual and perceived efficacy once a medicine is moved from a non-Western to Western setting. Case studies on these factors highlighted issues with translation between non-Western and Western epistemologies, including those where epistemological and medicinal systems drive markets that can be epicenters for zoonoses such as the novel Coronavirus. The proposed novel data science approach demonstrated the ability to identify and predict desirable medicinal components for a test indication, pain. CONCLUSIONS Relegation of traditional therapies to the relatively unregulated nutraceutical industry may lead healthcare providers and patients to underestimate the therapeutic potential of these medicines. We suggest three areas of emphasis for this field: First, vertical integration and embedding of traditional medicines into healthcare systems would subject them to appropriate regulation and evidence-based practice, as viable integrative implementation mode. Second, we offer a new Bradford-Hill-like framework for setting research priorities and evaluating efficacy, with the goal of rescuing potentially valuable therapies from the nutraceutical market and discrediting those that are pseudoscience. Third, data analytics pipelines offer new capacity to generate new types of TMS-inspired medicines that are rationally-designed based on integrated knowledge across cultures, and also provide an evaluative framework against which to test claims of fidelity and efficacy to TMS made for nutraceuticals.
Collapse
Affiliation(s)
- C Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i, USA.
| | - J D Baker
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i, USA.
| | - E Kodaira
- Medicinal Plant Garden, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Kanagawa, Japan.
| | - L Ang
- Undergraduate Program in Biology, Chaminade University, Honolulu, Hawai'i, USA.
| | - A J Bacani
- Undergraduate Program in Biology, Chaminade University, Honolulu, Hawai'i, USA.
| | - J T Aldan
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i, USA; Graduate Program in Public Health, Eastern Washington University, Spokane, WA, USA.
| | - L M N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i, USA.
| | - M Salameh
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i, USA.
| | | | - A J Stokes
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, Honolulu, Hawai'i, USA; Hawai'i Data Science Institute, University of Hawai'i at Manoa, Honolulu, Hawai'i, USA; The Adra Institute, Boston, MA, USA.
| | - H Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i, USA; The Adra Institute, Boston, MA, USA.
| | - C N Adra
- The Adra Institute, Boston, MA, USA.
| |
Collapse
|
38
|
Cerino P, Buonerba C, Cannazza G, D'Auria J, Ottoni E, Fulgione A, Di Stasio A, Pierri B, Gallo A. A Review of Hemp as Food and Nutritional Supplement. Cannabis Cannabinoid Res 2021; 6:19-27. [PMID: 33614949 DOI: 10.1089/can.2020.0001] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The term "hemp" refers to Cannabis sativa cultivars grown for industrial purposes that are characterized by lower levels of tetrahydrocannabinol (THC), the active principle responsible for Cannabis psychotropic effects. Hemp is an extraordinary crop, with enormous social and economic value, since it can be used to produce food, textiles, clothing, biodegradable plastics, paper, paint, biofuel, and animal feed, as well as lighting oil. Various parts of the hemp plant represent a valuable source of food and ingredients for nutritional supplements. While hemp inflorescence is rich in nonpsychoactive, yet biologically active cannabinoids, such as cannabidiol (CBD), which exerts potent anxiolytic, spasmolytic, as well as anticonvulsant effects, hempseed has a pleasant nutty taste and represents a valuable source of essential amino acids and fatty acids, minerals, vitamins, and fibers. In addition, hempseed oil is a source of healthy polyunsaturated fatty acids, and hemp sprouts are rich in antioxidants. This review article aims to provide a comprehensive outlook from a multidisciplinary perspective on the scientific evidence supporting hemp beneficial properties when consumed as food or supplement. Marketing of hemp-derived products is subjected to diversified and complex regulations worldwide for several reasons, including the fact that CBD is also the active principal of pharmaceutical agents and that regulatory bodies in some cases ban Cannabis inflorescence regardless of its THC content. Some key regulatory aspects of such a complex scenario are also analyzed and discussed in this review article.
Collapse
Affiliation(s)
- Pellegrino Cerino
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Department of Public Health, "Federico II" University, Naples, Italy.,Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italy
| | - Carlo Buonerba
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Department of Oncology and Hematology, Regional Reference Center for Rare Tumors, AOU Federico II of Naples, Naples, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,CNR NANOTEC, Campus Ecotekne of the University of Salento, Lecce, Italy
| | - Jacopo D'Auria
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Ermete Ottoni
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Andrea Fulgione
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Antonio Di Stasio
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Biancamaria Pierri
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy
| | - Alfonso Gallo
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| |
Collapse
|
39
|
Heblinski M, Santiago M, Fletcher C, Stuart J, Connor M, McGregor IS, Arnold JC. Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Actions of Phytocannabinoids or Endocannabinoids on TRPA1 and TRPV1 Channels. Cannabis Cannabinoid Res 2020; 5:305-317. [PMID: 33376801 PMCID: PMC7759271 DOI: 10.1089/can.2019.0099] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction:Cannabis sativa produces hundreds of bioactive compounds, including cannabinoids and terpenoids. It has been proposed that cannabinoids act in synergy with terpenoids to produce the entourage effect, a concept used to explain the therapeutic benefits of medicinal cannabis. One molecular explanation for the entourage effect is that the terpenoids augment the actions of cannabinoids at their molecular drug targets in cells. We recently reported that terpenoids commonly found in cannabis do not influence the functional effects of Δ9-tetrahydrocannabinol (Δ9-THC) on cannabinoid 1 and cannabinoid 2 receptors. The present study aimed to extend on this research by examining whether terpenoids influence the effects of phytocannabinoids and endocannabinoids on human transient receptor potential ankyrin 1 (hTRPA1) and human transient receptor potential vanilloid 1 (hTRPV1) channels heterologously expressed in mammalian cells. Materials and Methods: The activity of terpenoids, phytocannabinoids, and endocannabinoids was assessed in inducible HEK Flp-In T-Rex cells transfected with hTRPA1 and hTRPV1 channels, respectively. Real-time changes in intracellular calcium ([Ca]i) were measured using the Calcium 5 dye and a FlexStation 3 plate reader. Results: α-pinene, β-pinene, β-caryophyllene, linalool, limonene, β-myrcene or α-humulene did not affect [Ca]i in hTRPA1 and hTRPV1 overexpressing cells. Cinnamaldehyde (CA), Δ9-THC, and 2-arachidonoylglycerol (2-AG) activated TRPA1 receptors with high efficacy and similar potency (EC50s of ∼10 μM). Capsaicin and anandamide (AEA) activated TRPV1 receptors with an EC50 of 61 nM and 4.3 μM, respectively, but TRPV1 showed no response to Δ9-THC, cannabidiol, and other minor cannabinoids. Terpenoids did not significantly affect the responses of TRPA1 and TRPV1 receptors to submaximal and maximal concentrations of CA and Δ9-THC or the endocannabinoids AEA and 2-AG. Discussion: We could not find any evidence that the terpenoids tested here activate TRPA1 and TRPV1 channels or modulate their activation by Δ9-THC and other agonists, including endocannabinoids.
Collapse
Affiliation(s)
- Marika Heblinski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Faculty of Medicine and Health and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Marina Santiago
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, Sydney, Australia
| | - Charlotte Fletcher
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Faculty of Science and School of Psychology, The University of Sydney, Sydney, Australia
| | - Jordyn Stuart
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, Sydney, Australia.,Faculty of Science and School of Psychology, The University of Sydney, Sydney, Australia
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, Sydney, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Faculty of Science and School of Psychology, The University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Faculty of Medicine and Health and School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Ghosh M, Schepetkin IA, Özek G, Özek T, Khlebnikov AI, Damron DS, Quinn MT. Essential Oils from Monarda fistulosa: Chemical Composition and Activation of Transient Receptor Potential A1 (TRPA1) Channels. Molecules 2020; 25:E4873. [PMID: 33105614 PMCID: PMC7659962 DOI: 10.3390/molecules25214873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Little is known about the pharmacological activity of Monarda fistulosa L. essential oils. To address this issue, we isolated essential oils from the flowers and leaves of M. fistulosa and analyzed their chemical composition. We also analyzed the pharmacological effects of M. fistulosa essential oils on transient receptor potential (TRP) channel activity, as these channels are known targets of various essential oil constituents. Flower (MEOFl) and leaf (MEOLv) essential oils were comprised mainly of monoterpenes (43.1% and 21.1%) and oxygenated monoterpenes (54.8% and 77.7%), respectively, with a high abundance of monoterpene hydrocarbons, including p-cymene, γ-terpinene, α-terpinene, and α-thujene. Major oxygenated monoterpenes of MEOFl and MEOLv included carvacrol and thymol. Both MEOFl and MEOLv stimulated a transient increase in intracellular free Ca2+ concentration ([Ca2+]i) in TRPA1 but not in TRPV1 or TRPV4-transfected cells, with MEOLv being much more effective than MEOFl. Furthermore, the pure monoterpenes carvacrol, thymol, and β-myrcene activated TRPA1 but not the TRPV1 or TRPV4 channels, suggesting that these compounds represented the TRPA1-activating components of M. fistulosa essential oils. The transient increase in [Ca2+]i induced by MEOFl/MEOLv, carvacrol, β-myrcene, and thymol in TRPA1-transfected cells was blocked by a selective TRPA1 antagonist, HC-030031. Although carvacrol and thymol have been reported previously to activate the TRPA1 channels, this is the first report to show that β-myrcene is also a TRPA1 channel agonist. Finally, molecular modeling studies showed a substantial similarity between the docking poses of carvacrol, thymol, and β-myrcene in the binding site of human TRPA1. Thus, our results provide a cellular and molecular basis to explain at least part of the therapeutic properties of these essential oils, laying the foundation for prospective pharmacological studies involving TRP ion channels.
Collapse
Affiliation(s)
- Monica Ghosh
- Department of Biological Sciences, School of Biological Sciences, Kent State University, Kent, OH 44242, USA; (M.G.); (D.S.D.)
| | - Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey; (G.Ö.); (T.Ö.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey; (G.Ö.); (T.Ö.)
- Medicinal Plant, Drug and Scientific Research and Application Center (AUBIBAM), Anadolu University, 26470 Eskişehir, Turkey
| | - Andrei I. Khlebnikov
- National Research Tomsk Polytechnic University, Tomsk 643050, Russia;
- Faculty of Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | - Derek S. Damron
- Department of Biological Sciences, School of Biological Sciences, Kent State University, Kent, OH 44242, USA; (M.G.); (D.S.D.)
| | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
41
|
Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem Biol Interact 2020; 330:109178. [DOI: 10.1016/j.cbi.2020.109178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
|
42
|
Myrcene Attenuates Renal Inflammation and Oxidative Stress in the Adrenalectomized Rat Model. Molecules 2020; 25:molecules25194492. [PMID: 33007969 PMCID: PMC7582976 DOI: 10.3390/molecules25194492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Physiological Glucocorticoids are important regulators of the immune system. Pharmacological GCs are in widespread use to treat inflammatory diseases. Adrenalectomy (ADX) has been shown to exacerbate renal injury through inflammation and oxidative stress that results in renal impairment due to depletion of GCs. In this study, the effect of myrcene to attenuate renal inflammation and oxidative stress was evaluated in the adrenalectomized rat model. Rats were adrenalectomized bilaterally or the adrenals were not removed after surgery (sham). Myrcene (50 mg/kg body weight, orally) was administered post ADX. Myrcene treatment resulted in significant downregulation of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) compared to untreated ADX rats. In addition, myrcene resulted in significant downregulation of immunomodulatory factors (IFNγ and NF-κB) and anti-inflammatory markers (IL-4 and IL-10) in treated ADX compared to untreated ADX. Myrcene significantly increased the antioxidant molecules (CAT, GSH, and SOD) and decreased MDA levels in treated ADX compared to untreated. Moreover, myrcene treatment reduced the expression of COX-2, iNOS, KIM-1, and kidney functional molecules (UREA, LDH, total protein, and creatinine) in ADX treated compared to ADX untreated. These results suggest that myrcene could be further developed as a therapeutic drug for treatment of kidney inflammation and injury.
Collapse
|
43
|
Nagpal R, Mishra SK, Deep G, Yadav H. Role of TRP Channels in Shaping the Gut Microbiome. Pathogens 2020; 9:pathogens9090753. [PMID: 32947778 PMCID: PMC7559121 DOI: 10.3390/pathogens9090753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential (TRP) channel family proteins are sensors for pain, which sense a variety of thermal and noxious chemicals. Sensory neurons innervating the gut abundantly express TRPA1 and TRPV1 channels and are in close proximity of gut microbes. Emerging evidence indicates a bi-directional gut–brain cross-talk in several entero-neuronal pathologies; however, the direct evidence of TRP channels interacting with gut microbial populations is lacking. Herein, we examine whether and how the knockout (KO) of TRPA1 and TRPV1 channels individually or combined TRPA1/V1 double-knockout (dKO) impacts the gut microbiome in mice. We detect distinct microbiome clusters among the three KO mouse models versus wild-type (WT) mice. All three TRP-KO models have reduced microbial diversity, harbor higher abundance of Bacteroidetes, and a reduced proportion of Firmicutes. Specifically distinct arrays in the KO models are determined mainly by S24-7, Bacteroidaceae, Clostridiales, Prevotellaceae, Helicobacteriaceae, Rikenellaceae, and Ruminococcaceae. A1KO mice have lower Prevotella, Desulfovibrio, Bacteroides, Helicobacter and higher Rikenellaceae and Tenericutes; V1KO mice demonstrate higher Ruminococcaceae, Lachnospiraceae, Ruminococcus, Desulfovibrio and Mucispirillum; and A1V1dKO mice exhibit higher Bacteroidetes, Bacteroides and S24-7 and lower Firmicutes, Ruminococcaceae, Oscillospira, Lactobacillus and Sutterella abundance. Furthermore, the abundance of taxa involved in biosynthesis of lipids and primary and secondary bile acids is higher while that of fatty acid biosynthesis-associated taxa is lower in all KO groups. To our knowledge, this is the first study demonstrating distinct gut microbiome signatures in TRPA1, V1 and dKO models and should facilitate prospective studies exploring novel diagnostic/ therapeutic modalities regarding the pathophysiology of TRP channel proteins.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Santosh Kumar Mishra
- Department of Molecular Biomedical Sciences, NC State Veterinary Medicine, Raleigh, NC 27606, USA;
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-713-5049
| |
Collapse
|
44
|
Hanuš LO, Hod Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med Cannabis Cannabinoids 2020; 3:25-60. [PMID: 34676339 PMCID: PMC8489319 DOI: 10.1159/000509733] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Cannabis sativa plant has not only cannabinoids as crucial compounds but also the other compounds that play important role as synergistic and/or entourage compound. Cannabis/hemp plant materials and essential oils were analyzed with the help of gas chromatography/mass spectrometry detector for the content of terpenes and terpenoids. The main terpenes/terpenoids and their abundance in the samples were evaluated. Results of this study will be helpful in the next evaluation of these compound in mixture with cannabinoids and their importance in medical treatment.
Collapse
Affiliation(s)
- Lumír Ondřej Hanuš
- Lumir Lab, Asana Bio Group Ltd., The Hadassah Medical Center, Hebrew University Biotechnology Park, Ein Kerem, Jerusalem, Israel
| | | |
Collapse
|
45
|
Assis DB, Aragão Neto HDC, da Fonsêca DV, de Andrade HHN, Braga RM, Badr N, Maia MDS, Castro RD, Scotti L, Scotti MT, de Almeida RN. Antinociceptive Activity of Chemical Components of Essential Oils That Involves Docking Studies: A Review. Front Pharmacol 2020; 11:777. [PMID: 32547391 PMCID: PMC7272657 DOI: 10.3389/fphar.2020.00777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Pain is considered an unpleasant sensory and emotional experience, being considered as one of the most important causes of human suffering. Computational chemistry associated with bioinformatics has stood out in the process of developing new drugs, through natural products, to manage this condition. OBJECTIVE To analyze, through literature data, recent molecular coupling studies on the antinociceptive activity of essential oils and monoterpenes. DATA SOURCE Systematic search of the literature considering the years of publications between 2005 and December 2019, in the electronic databases PubMed and Science Direct. ELIGIBILITY CRITERIA Were considered as criteria of 1) Biological activity: non-clinical effects of an OE and/or monoterpenes on antinociceptive activity based on animal models and in silico analysis, 2) studies with plant material: chemically characterized essential oils and/or their constituents isolated, 3) clinical and non-clinical studies with in silico analysis to assess antinociceptive activity, 4) articles published in English. Exclusion criteria were literature review, report or case series, meta-analysis, theses, dissertations, and book chapter. RESULTS Of 16,006 articles, 16 articles fulfilled all the criteria. All selected studies were non-clinical. The most prominent plant families used were Asteraceae, Euphorbiaceae, Verbenaceae, Lamiaceae, and Lauraceae. Among the phytochemicals studied were α-Terpineol, 3-(5-substituted-1,3,4-oxadiazol-2-yl)-N'-[2-oxo-1,2-dihydro-3H-indol-3-ylidene] propane hydrazide, β-cyclodextrin complexed with citronellal, (-)-α-bisabolol, β-cyclodextrin complexed with farnesol, and p-Cymene. The softwares used for docking studies were Molegro Virtual Docker, Sybyl®X, Vlife MDS, AutoDock Vina, Hex Protein Docking, and AutoDock 4.2 in PyRx 0.9. The molecular targets/complexes used were Nitric Oxide Synthase, COX-2, GluR2-S1S2, TRPV1, β-CD complex, CaV1, CaV2.1, CaV2.2, and CaV2.3, 5-HT receptor, delta receptor, kappa receptor, and MU (μ) receptor, alpha adrenergic, opioid, and serotonergic receptors, muscarinic receptors and GABAA opioid and serotonin receptors, 5-HT3 and M2 receptors. Many of the covered studies used molecular coupling to investigate the mechanism of action of various compounds, as well as molecular dynamics to investigate the stability of protein-ligand complexes. CONCLUSIONS The studies revealed that through the advancement of more robust computational techniques that complement the experimental studies, they may allow some notes on the identification of a new candidate molecule for therapeutic use.
Collapse
Affiliation(s)
- Davidson Barbosa Assis
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Diogo Vilar da Fonsêca
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Renan Marinho Braga
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Nader Badr
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Mayara dos Santos Maia
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo Dias Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
46
|
Cogan PS. The 'entourage effect' or 'hodge-podge hashish': the questionable rebranding, marketing, and expectations of cannabis polypharmacy. Expert Rev Clin Pharmacol 2020; 13:835-845. [PMID: 32116073 DOI: 10.1080/17512433.2020.1721281] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The concept of a cannabis 'entourage effect' was first coined as a hypothetical afterthought in 1998. Since then, multiple scientific reviews, lay articles, and marketing campaigns have promoted the effect as a wholly beneficial manifestation of polypharmacy expected to modulate the therapeutic effects of cannabis and its derivatives. There is reason to wonder at the authenticity of such claims. AREAS COVERED A broad definition of the entourage effect is presented, followed by brief summaries of the nature of cannabis polypharmacy and the commonly cited contributing phytochemicals, with special attention to their attendant adverse effects. A critical analysis is then offered of the primary literature that is often portrayed as suggestive of the effect in existing reviews, with further studies being drawn from PubMed and Google Scholar searches. A final discussion questions the therapeutic value of the entourage effect and offers alternate perspectives on how it might be better interpreted. EXPERT OPINION Claims of a cannabis entourage effect invoke ill-defined and unsubstantiated pharmacological activities which are commonly leveraged toward the popularization and sale of ostensible therapeutic products. Overestimation of such claims in the scientific and lay literature has fostered their misrepresentation and abuse by a poorly regulated industry.
Collapse
Affiliation(s)
- Peter S Cogan
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy , Denver, CO, USA
| |
Collapse
|
47
|
Lima MDCL, de Araújo JIF, Gonçalves Mota C, Magalhães FEA, Campos AR, da Silva PT, Rodrigues THS, Matos MGC, de Sousa KC, de Sousa MB, Saker-Sampaio S, Pereira AL, Teixeira EH, Dos Santos HS. Antinociceptive Effect of the Essential Oil of Schinus terebinthifolius (female) Leaves on Adult Zebrafish ( Danio rerio). Zebrafish 2020; 17:112-119. [PMID: 32105571 DOI: 10.1089/zeb.2019.1809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schinus terebinthifolius Raddi (Anacardiaceae) is popularly known in Brazil as aroeira-da-praia and has pharmacological use as an astringent, antidiarrheal, anti-inflammatory, depurative, diuretic, and antifebrile agent. Although the neuropathic antinociceptive potential of S. terebinthifolius fruits has already been investigated, this study is the first one to analyze the acute antinociceptive effect of the essential oil of S. terebinthifolius (female) leaves (EOFSt) on adult zebrafish. EOFSt was submitted to antioxidant activity evaluation by two methods (ferrous ion-chelating capacity [FIC] and β-carotene). The animals (n = 6/group) were treated orally (20 μL) with EOFSt (0.1, 0.5, or 1.0 mg/mL) or vehicle (0.9% sodium chloride [NaCl]; 20 μL), and submitted to nociception (formalin, cinnamaldehyde, capsaicin, glutamate, acidic saline, and hypertonic saline). Possible neuromodulation mechanisms, as well motor alterations and toxicity were also evaluated. In the FIC assay, EOFSt showed ferrous ion-chelating capacity in ∼40% to 90%. Regarding the β-carotene bleaching assay, EOFSt showed inhibition in a 58% to 80% range. Oral administration of EOFSt showed no acute toxicity and did not alter the locomotor system of aZF, and reduced the nociceptive behavior in all tested models. These effects of EOFSt were significantly similar to those of morphine, used as a positive control. The antinociceptive effect of EOFSt was inhibited by naloxone, L-NAME, ketamine, camphor, ruthenium red, and amiloride. The antinociceptive effect of the EOFSt cornea was inhibited by capsazepine. EOFSt has the pharmacological potential for acute pain treatment and this effect is modulated by the opioid system, NMDA receptors, and transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), and acid-sensing ion channels. The EOFSt also has the pharmacological potential for corneal pain treatment and this effect is modulated by the TRPV1 channel.
Collapse
Affiliation(s)
- Maria da Conceição L Lima
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - José Ismael F de Araújo
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Carolina Gonçalves Mota
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Francisco Ernani A Magalhães
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Adriana R Campos
- Experimental Biology Nucleus (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | - Priscila T da Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | | | | | - Karolina C de Sousa
- Laboratory of Marine Natural Products, Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | - Márcia B de Sousa
- Institute of Exact and Nature Sciences, Biological Sciences Course, University of the Integration of Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Silvana Saker-Sampaio
- Laboratory of Marine Natural Products, Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | - Anna L Pereira
- Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Legal Medicine, Fortaleza, Brazil
| | - Edson H Teixeira
- Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Legal Medicine, Fortaleza, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil.,Science and Technology Center-Chemistry Course, State University of Vale do Acarau, Sobral, Brazil
| |
Collapse
|