1
|
Bano S, Ansari JA, Ahsan F, Khan AR. Botanical scenario, phytochemical insights and therapeutic applications of Luffa acutangula in traditional herbal practices. Nat Prod Res 2025:1-19. [PMID: 39937924 DOI: 10.1080/14786419.2025.2462964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
Luffa acutangula (L. acutangula), commonly known as sponge gourd or ridge gourd, is a perennial plant found in various regions worldwide and has importance in traditional Indian medicine because of its wide-ranging pharmacological properties. This review examines the phytochemical composition of L. acutangula and its therapeutic potential. Phytochemical analysis has identified numerous bioactive compounds, including terpenoids, phenolic acids, flavonoids, and alkaloids, responsible for its diverse pharmacological activities. The review offers a comprehensive overview of L. acutangula, detailing its phytochemistry and pharmacological effects, which enhance our understanding of its therapeutic applications and inspire further research in natural medicine. However, additional research is required to elucidate the mechanisms involved, refine dosage schedules, and explore potential synergistic interactions with standard treatments. The findings presented here underscore the phytoconstituent and therapeutic potential of this plant, highlighting the need for ongoing research and development in the field of natural medicine.
Collapse
Affiliation(s)
- Shahzadi Bano
- Department of Chemistry, Integral University, Dasauli, Lucknow, India
| | | | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Lucknow, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, Lucknow, India
| |
Collapse
|
2
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
4
|
Mohammed S, Mahmood T, Shamim A, Ahsan F, Shariq M, Parveen S, Waseem R, Singh A. Encyclopaedic Review of Glipizide Pre-clinical and Clinical Status. Drug Res (Stuttg) 2024; 74:123-132. [PMID: 38408478 DOI: 10.1055/a-2237-8566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Glipizide is an oral glucose-lowering medication that is beneficial for the treatment of type 2 diabetes. This study compiles exhaustively all accessible information on glipizide, from preclinical to clinical studies. Glipizide may be used in concert with TRAIL to treat cancer cells; in vitro studies have shown that it suppresses angiogenesis and vasculogenesis while shielding cells from glycation-induced damage. Anticonvulsant effects and modifications in the pharmacokinetics of other medications, such as Divalproex Sodium, were seen in glipizide in vivo experiments. Propranolol amplifies glipizide's hypoglycemic effect briefly in normal animals but consistently enhances it in diabetic ones. In the treatment of cancer and neurodegenerative poly(Q) illnesses, glipizide has demonstrated to offer potential therapeutic advantages. It is ineffective in preventing DENA-induced liver cancer and may cause DNA damage over time. The way glipizide interacts with genetic variants may increase the risk of hypoglycemia. Combining Syzygium cumini and ARBE to glipizide may enhance glycemic and lipid control in type 2 diabetes. Individuals with coronary artery disease who take glipizide or glyburide have an increased risk of death. The risk of muscular responses and acute pancreatitis is minimal when glipizide and dulaglutide are combined. In conclusion, glipizide has shown promising therapeutic efficacy across a variety of disorders.
Collapse
Affiliation(s)
- Saad Mohammed
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Arshiya Shamim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Shariq
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Saba Parveen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Rufaida Waseem
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Hashim M, Badruddeen, Akhtar J, Khan MI, Ahmad M, Islam A, Ahmad A. Diabetic Neuropathy: An Overview of Molecular Pathways and Protective Mechanisms of Phytobioactives. Endocr Metab Immune Disord Drug Targets 2024; 24:758-776. [PMID: 37867264 DOI: 10.2174/0118715303266444231008143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Diabetic neuropathy (DN) is a common and debilitating complication of diabetes mellitus that affects the peripheral nerves and causes pain, numbness, and impaired function. The pathogenesis of DN involves multiple molecular mechanisms, such as oxidative stress, inflammation, and pathways of advanced glycation end products, polyol, hexosamine, and protein kinase C. Phytochemicals are natural compounds derived from plants that have various biological activities and therapeutic potential. Flavonoids, terpenes, alkaloids, stilbenes, and tannins are some of the phytochemicals that have been identified as having protective potential for diabetic neuropathy. These compounds can modulate various cellular pathways involved in the development and progression of neuropathy, including reducing oxidative stress and inflammation and promoting nerve growth and repair. In this review, the current evidence on the effects of phytochemicals on DN by focusing on five major classes, flavonoids, terpenes, alkaloids, stilbenes, and tannins, are summarized. This compilation also discusses the possible molecular targets of numerous pathways of DN that these phytochemicals modulate. These phytochemicals may offer a promising alternative or complementary approach to conventional drugs for DN management by modulating multiple pathological pathways and restoring nerve function.
Collapse
Affiliation(s)
- Mohd Hashim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
7
|
Khan A, Shal B, Khan AU, Baig MW, Haq IU, Khan S. Withametelin, a steroidal lactone, isolated from datura innoxa attenuates STZ-induced diabetic neuropathic pain in rats through inhibition of NF-kB/MAPK signaling. Food Chem Toxicol 2023; 175:113742. [PMID: 36958385 DOI: 10.1016/j.fct.2023.113742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Diabetic neuropathic pain is one of the microvascular complications of diabetes mellitus characterized by symmetrical pain and sensory abnormalities. A steroidal lactone isolated from the datura innoxa plant, withametelin (WMT), exhibited significant neuroprotective, anti-inflammatory, antioxidant, and anticancer properties. The current study aimed to investigate anti-neuropathic pain activity and the molecular mechanism of WMT against streptozotocin (STZ)-induced diabetic neuropathy. Rats were given a single injection of STZ (60 mg/kg, intraperitoneally (i.p.)) for induction of diabetes on the first day of the study. After the onset of diabetic neuropathy, pregabalin (10 mg/kg, i.p.) and WMT (0.1 and 1 mg/kg, i.p.) treatments were started from day 14 up to day 42. It was found that STZ-induced neuropathic pain behaviors were markedly reduced by WMT. It inhibited the STZ-associated histopathological changes and genotoxicity in the sciatic nerve and spinal cord. Additionally, Fourier transforms infrared (FTIR) spectroscopy results revealed that STZ-induced alterations in the biochemical components of the sciatic nerve's myelin sheath were inhibited by WMT. In the spinal cord, it markedly reduced the immunoreactivity of mitogen-activated protein kinases (MAPKs) signaling components such as p38-MAPK, c-Jun N-terminal kinase (JNK), extracellular-signal-regulated-kinase (ERK), and activator-protein 1 (AP-1). It also reduced the expression levels of nuclear factor-kappa-B (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). The production of inflammatory cytokines was considerably reduced by WMT. This study provides convincing evidence that WMT treatment attenuated STZ-induced diabetic neuropathic pain by inhibition of MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; DHQ Teaching Hospital Timergara, Lower Dir, KPK, Pakistan.
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan.
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Bhargava SK, Singh TG, Mannan A, Singh S, Singh M, Gupta S. Pharmacological evaluation of Thuja occidentalis for the attenuation of neuropathy via AGEs and TNF-α inhibition in diabetic neuropathic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60542-60557. [PMID: 35420347 DOI: 10.1007/s11356-022-20106-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
When diabetes neuropathy occurs, the oxidative stress caused by chronic hyperglycemia may result in chronic neuronal damage. To mitigate the effects of hyperglycemia-induced neuronal damage, it may be beneficial to address oxidative stress and inflammation in the body. The current study evaluated the neuroprotective efficacy of Thuja occidentalis in streptozotocin (STZ)-nicotinamide (NAD)-induced diabetic neuropathy in male Wistar rats. A single dose of STZ (65 mg/kg, i.p.) was used to induce diabetic neuropathy in Wistar rats. Serum insulin, glucose, hyperalgesia, oxidative stress, inflammatory markers, and histopathology of the sciatic nerve were evaluated for neuropathy. Wistar rats were treated with varying doses of hydroalcoholic extracts of Thuja occidentalis (HAETO) and gabapentin for 30 days. Thuja occidentalis considerably corrected the levels of inflammatory markers and oxidative stress caused by hyperglycemia; also, it led to the restoration of neuronal functions, indicating that it is effective in treating diabetic neuropathy. Furthermore, the molecular docking of thujone at the active pockets of various inflammatory mediators (IL-1β, IL-6, TGF-β1, and TNF-α) has shown good interactions with critical amino acid residues. These findings indicate that the hydroalcoholic extract of Thuja occidentalis effectively inhibits the development of diabetic neuropathy. The hypoglycemic, antioxidant, anti-hyperalgesia, and anti-inflammatory properties of Thuja occidentalis are thought to be responsible for the neuroprotective benefit.
Collapse
Affiliation(s)
| | | | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
9
|
Li Y, Yao W, Gao Y. Effects of Tang Luo Ning on diabetic peripheral neuropathy in rats revealed by LC-MS metabolomics approach. Biomed Chromatogr 2022; 36:e5374. [PMID: 35302257 DOI: 10.1002/bmc.5374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes with limited therapies. Tang Luo Ning (TLN), a traditional Chinese medicine compound, has been proved to be effective in the treatment of DPN in clinical and experimental studies. However, the potential metabolic mechanism of TLN for the treatment of DPN is still unclear. Here the therapeutic effect of TLN on DPN was studied, and HPLC-IT-TOF/MS was used to explore the metabolic changes related to DPN and to explore the mechanism of TLN on DPN induced by high glucose. Furthermore, metabolic pathway analysis was used to explore the metabolic changes induced by DPN and TLN. As a result, TLN could improve the peripheral nerve function of DPN rats, and TLN could reduce the demyelination of the sciatic nerve in DPN rats. Metabolomics analysis showed that 14 potential biomarkers (citrate, creatine, fumarate, glyceric acid, glycine, succinate, etc.) of both DPN and TLN treatment were identified. Pathway analysis showed that the changes in these metabolites were mainly related to the citrate cycle (TCA cycle), glycine, serine and threonine metabolism, and glyoxylate and dicarboxylate metabolism.
Collapse
Affiliation(s)
- Yangfan Li
- Department of Traditional Chinese Medcine, Beijing Friendship Hospital, Capital Medical University
| | - Weijie Yao
- Department of pharmacy, Beijing Maternity Hospital, Capital Medical University
| | - Yanbin Gao
- College of Traditional Chinese Medicine, Capital Medical University, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing, China
| |
Collapse
|
10
|
Ramanaiah I, Sudeep HV, Shyamprasad K. Viphyllin TM, a Standardized Black Pepper Extract Exerts Antihyperglycemic Effect and Improves Sciatic Nerve Conduction in High Fat Diet/Streptozotocin-Induced Diabetic Model Rats. Diabetes Metab Syndr Obes 2022; 15:1819-1829. [PMID: 35733641 PMCID: PMC9207258 DOI: 10.2147/dmso.s366609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Research on plant-based formulations has drawn considerable attention in the management of diabetic neuropathy (DN) for having lesser side effects than the synthetic counterparts. Here, we have investigated for the first time the therapeutic effects of a standardized Piper nigrum L., (black pepper) seed extract, ViphyllinTM in mitigating hyperglycemia and neuropathic pain of type 2 diabetes model rats. METHODS Type 2 diabetes was induced in male Wistar rats using high fat diet and a single dose of streptozotocin (60 mg/kg i.p.). The diabetic rats were orally administered with Viphyllin containing not less than 30% β-caryophyllene (BCP), at 25 mg, 50 mg and 100 mg/kg/day doses for 6 weeks. Changes in body weight, fasting blood glucose (FBG), glucose tolerance, and blood biochemical parameters were measured. The nociceptive response to thermal stimulus (tail flick test) and sciatic nerve conduction velocity (NCV) were recorded at the end of study. RESULTS Viphyllin treatment markedly improved the body weight and glucose tolerance in diabetic rats. Also, the extract could significantly reduce the diabetes-induced elevation in FBG, liver and kidney indices. Further, Viphyllin dose-dependently increased the nociception latency in tail flick test compared to untreated diabetic rats (p<0.05). Viphyllin at 100 mg/kg significantly increased the NCV (44.12±1.91*** m/s vs diabetic control 25.80±1.88 m/s). The antioxidant enzyme activities in sciatic nerve tissue were considerably increased in Viphyllin-treated groups compared to diabetic control. A 6-week treatment with Viphyllin markedly reversed the pathological manifestations of diabetes in vital organs such as liver, kidney and pancreas. CONCLUSION The study concludes that Viphyllin exerts antidiabetic effects and improves nerve conduction to mitigate neuropathic pain.
Collapse
Affiliation(s)
- Illuri Ramanaiah
- Department of Preclinical Studies, R&D Center for Excellence, Vidya Herbs Pvt Ltd, Bangalore, Karnataka, 560 105, India
| | - Heggar Venkataramana Sudeep
- Department of Preclinical Studies, R&D Center for Excellence, Vidya Herbs Pvt Ltd, Bangalore, Karnataka, 560 105, India
- Correspondence: Heggar Venkataramana Sudeep, Department of Preclinical Studies, R&D Center for Excellence, Vidya Herbs Pvt Ltd, Bangalore, Karnataka, 560 105, India, Tel +91 80-42094158, Email
| | - Kodimule Shyamprasad
- Department of Preclinical Studies, R&D Center for Excellence, Vidya Herbs Pvt Ltd, Bangalore, Karnataka, 560 105, India
| |
Collapse
|