1
|
D’Almeida AP, Neta AAI, de Andrade-Lima M, de Albuquerque TL. Plant-based probiotic foods: current state and future trends. Food Sci Biotechnol 2024; 33:3401-3422. [PMID: 39493382 PMCID: PMC11525375 DOI: 10.1007/s10068-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract Plant-based probiotic foods (PBPFs) have recently become a notable choice for many consumers. While less recognized than dairy products, these foods offer efficient alternatives for individuals with lactose intolerance, vegans, or those aiming for more sustainable dietary practices. Traditional fermented PBPFs, such as kimchi, sauerkraut, and kombucha, are part of cultures from different countries and have gained more significant popularity in recent years globally due to their peculiar flavors and health benefits. However, new plant-based probiotic products have also been studied and made available to consumers of the growing demand in this sector. Therefore, this review discusses trends in plant-based probiotic production, known benefits, and characteristics. Challenges currently faced in manufacturing, distribution, marketing, consumer acceptance, and legislation are also discussed. Graphical abstract
Collapse
Affiliation(s)
- Alan Portal D’Almeida
- Department of Chemical Engineering, Technology Center, Federal University of Ceará, Fortaleza, CE 60455-760 Brazil
| | - Aida Aguilera Infante Neta
- Department of Food Engineering, Center for Agricultural Sciences, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| | - Micael de Andrade-Lima
- Natural Resources Institute (NRI), University of Greenwich, Medway Campus, Chatham, ME4 4TB UK
| | - Tiago Lima de Albuquerque
- Department of Food Engineering, Center for Agricultural Sciences, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| |
Collapse
|
2
|
Zhai S, Gao Y, Jiang Y, Li Y, Fan Q, Tie S, Wu Y, Gu S. Weizmannia coagulans BC99 affects valeric acid production via regulating gut microbiota to ameliorate inflammation and oxidative stress responses in Helicobacter pylori mice. J Food Sci 2024; 89:9985-10002. [PMID: 39556495 DOI: 10.1111/1750-3841.17514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Helicobacter pylori is a highly prevalent pathogen in human gastric mucosa epithelial cells with strong colonization ability. Weizmannia coagulans is a kind of active microorganism that is beneficial to the improvement of host gut microbiota balance and can prevent and treat intestinal diseases. We investigated the beneficial effects of W. coagulans BC99 in H. pylori infected mice and measured inflammation response, oxidative stress, and gut microbiota. Results showed that BC99 could alleviate the gastric inflammation, inhibit the increasing of inflammation parameters endotoxin, interleukin-10, transforming growth factor-β, and interferon-γ and oxidative stress myeloperoxidase and malondialdehyde, promote the levels of superoxide dismutase and catalase. Furthermore, 16S rRNA gene sequencing analysis revealed that BC99 reversed the change of gut microbiota by reducing the abundance of Olsenella, Candidatus_Saccharimonas, Monoglobus, and increasing the abundance of Tyzzerella. Meanwhile, BC99 caused elevated levels of Ligilactobacillus and Lactobacillus. In view of the beneficial effect of BC99 on the content of short-chain fatty acid, valeric acid with sodium valerate interfered with H. pylori infection in mice found that valeric acid had a good restorative effect of H. pylori infection relating inflammation and oxidative stress responses. These results suggest that W. coagulans BC99 can be used as a potential probiotic to prevent and treat H. pylori infection by regulating the inflammation, oxidative stress, and gut microbiota.
Collapse
Affiliation(s)
- Shirui Zhai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yinyin Gao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yiru Jiang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yuwan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Qiuxia Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| |
Collapse
|
3
|
Huang YE, Chen SY, Li TJ, Tsai YS, Chen CC, Yen GC. Gastroprotective effects of Pediococcus acidilactici GKA4 and Lactobacillus brevis GKL93 against ethanol-induced gastric ulcers via regulation of the immune response and gut microbiota in mice. Food Funct 2024; 15:11491-11507. [PMID: 39480654 DOI: 10.1039/d4fo04106b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Excessive alcohol consumption is a significant pathogenic factor involved in the initiation of noninfectious gastric ulcers. Probiotics based on a specific strain can mitigate gastric damage. However, the protective effects of Pediococcus acidilactici (GKA4) and Lactobacillus brevis (GKL93) against alcohol-induced gastric mucosal damage remain unclear. Hence, the gastroprotective effects of these probiotic strains were investigated in BALB/c mice with gastric mucosa damage induced by absolute alcohol. The results revealed that preadministration of GKA4 and GKL93 increased the expression of antioxidative enzymes (SOD, catalase, GPx), anti-inflammatory cytokines (IL-4 and IL-10), and heat shock protein genes (HSP70 and HSP90) and decreased the expression of apoptosis-related genes (Bax, cytochrome c, and caspase-3), MDA, and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Mechanistically, GKA4 and GKL93 increased the relative abundance of beneficial flora (Coriobacteriia, Lachnospiraceae_NK4A136_group, Roseburia, f__Oscillospiraceae unclassified, Ruminococcus, Adlercreutzia, and [Eubacterium]_xylanophilum_group) that may promote antioxidant and anti-inflammatory effects via upregulation of the expression of proteins in the Nrf2/HO-1 pathway and downregulation of the expression of proteins in the NF-κB/iNOS/COX-2 signaling pathway, subsequently attenuating gastrointestinal permeability and ulcer symptoms. Furthermore, correlation analysis revealed that [Eubacterium]_xylanophilum_group and f_Oscillospiraceae_unclassified were two significant beneficial flora associated with ethanol-induced gastric ulcers after preadministration of GKA4 and GKL93. In summary, the gastroprotective effects of P. acidilactici GKA4 and L. brevis GKL93 against ethanol-induced gastric ulcers in mice include suppressing oxidative- and inflammatory-related pathways and modulation of the gut microbiota. This novel finding highlights the potential of these probiotics as functional materials in preventing alcohol-induced gastric mucosal damage.
Collapse
Affiliation(s)
- Yun-En Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan 32542, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan 32542, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan 32542, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Payne J, Bellmer D, Jadeja R, Muriana P. The Potential of Bacillus Species as Probiotics in the Food Industry: A Review. Foods 2024; 13:2444. [PMID: 39123635 PMCID: PMC11312092 DOI: 10.3390/foods13152444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The demand for probiotics is increasing, providing opportunities for food and beverage products to incorporate and market these foods as a source of additional benefits. The most commonly used probiotics belong to the genera of Lactobacillus and Bifidobacterium, and traditionally these bacteria have been incorporated into dairy products, where they have a wider history and can readily survive. More recently, there has been a desire to incorporate probiotics into various food products, including baked goods. In recent years, interest in the use of Bacillus species as probiotics has greatly increased. The spores of various Bacillus species such as Bacillus coagulans and Bacillus subtilis, have significantly improved viability and stability under harsher conditions during heat processing. These characteristics make them very valuable as probiotics. In this review, factors that could affect the stability of Bacillus probiotics in food products are highlighted. Additionally, this review features the existing research and food products that use Bacillus probiotics, as well as future research opportunities.
Collapse
Affiliation(s)
- Jessie Payne
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Danielle Bellmer
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ravi Jadeja
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Peter Muriana
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
5
|
Kim T, Heo S, Lee JH, Jeong DW. Deficiency in Opu Systems Imparts Salt-Sensitivity to Weizmannia coagulans. J Microbiol Biotechnol 2024; 34:1443-1451. [PMID: 38960875 PMCID: PMC11294647 DOI: 10.4014/jmb.2404.04016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Weizmannia coagulans can be used as a starter strain in fermented foods or as a probiotic. However, it is salt-sensitive. Here, W. coagulans genomes were compared with the genomes of strains of Bacillus species (B. licheniformis, B. siamensis, B. subtilis, and B. velezensis) that were isolated from fermented foods and show salt tolerance, to identify the basis for the salt-sensitivity of W. coagulans. Osmoprotectant uptake (Opu) systems transport compatible solutes into cells to help them tolerate osmotic stress. B. siamensis, B. subtilis, and B. velezensis each possess five Opu systems (OpuA, OpuB, OpuC, OpuD, and OpuE); B. licheniformis has all except OpuB. However, W. coagulans only has the OpuC system. Based on these findings, the opuA and opuB operons, and the opuD and opuE genes, were amplified from B. velezensis. Expression of each of these systems, respectively, in W. coagulans increased salt-tolerance. W. coagulans expressing B. velezensis opuA, opuD, or opuE grew in 10.5% NaCl (w/v), whereas wild-type W. coagulans could not grow in 3.5% NaCl. The salt resistance of B. subtilis was also increased by overexpression of B. velezensis opuA, opuB, opuD, or opuE. These results indicate that the salt-susceptibility of W. coagulans arises because it is deficient in Opu systems.
Collapse
Affiliation(s)
- Tao Kim
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
- Pulmuone Institute of Technology, Cheongju 28220, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
6
|
Daysita LE, Aulia HR, Pradiva MI, Nandyawati D, Illaningtyas F, Gebrina AD, Mustafawi WZ, Benigna K, Nuraida L, Wulandari N. Characterization and shelf life of synbiotic drink powder from porang ( Amorphophallus muelleri). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1272-1282. [PMID: 38910933 PMCID: PMC11189888 DOI: 10.1007/s13197-023-05894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/19/2023] [Accepted: 11/04/2023] [Indexed: 06/25/2024]
Abstract
Amorphophallus muelleri BI was included in the Araceae family, which is a type of tuber. It is a tuber with high potential due to its abundant bioactive compounds. Amorphophallus muelleri BI flour (AF) contains a high glucomannan and carbon compounds that serve as nutrients for probiotic bacteria. Although Amorphophallus muelleri BI thrives in Indonesia, its utilization rate in the country remains relatively low and haven't been any studies conducted regarding synbiotic powder from AF. The primary objective of this research is to develop a synergistic beverage enriched with varying concentrations of Amorphophallus muelleri BI as a prebiotic and LA as probiotic (synbiotic). The process starts with culture preparation, synbiotic drink process, synbiotic and microencapsulation, includes the examination of solubility, proximate analysis, calorie content, viability, and shelf life. Results showed that the proximate and solubility had no significant effect. Synbiotic drink powder from AF can be produced using spray dry technology. The highest LA growth was observed when augmenting the AF quantity at a 0.4% concentration, which can be seen from the viability parameter with a value of 7.29 log CFU/g. Samples shelf life at -21 and 3 °C with LA viability critical parameter was determined to be 4 days.
Collapse
Affiliation(s)
- Lulu Eki Daysita
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | - Hasna Rahma Aulia
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | - Molina Indah Pradiva
- Research Center for Agroindustry, National Research and Innovation Agency, Bogor, Indonesia
| | - Dewi Nandyawati
- Research Center for Agroindustry, National Research and Innovation Agency, Bogor, Indonesia
| | - Fatim Illaningtyas
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | - Amanda Dwi Gebrina
- Research Center for Agroindustry, National Research and Innovation Agency, Bogor, Indonesia
| | - Wike Zahra Mustafawi
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, Indonesia
| | - Kristin Benigna
- Department of Food Science and Technology, Faculty of Agricultural Technology, IPB University, 16680 Bogor, Indonesia
| | - Lilis Nuraida
- Department of Food Science and Technology, Faculty of Agricultural Technology, IPB University, 16680 Bogor, Indonesia
| | - Nur Wulandari
- Department of Food Science and Technology, Faculty of Agricultural Technology, IPB University, 16680 Bogor, Indonesia
| |
Collapse
|
7
|
Umeano L, Iftikhar S, Alhaddad SF, Paulsingh CN, Riaz MF, Garg G, Mohammed L. Effectiveness of Probiotic Use in Alleviating Symptoms of Irritable Bowel Syndrome: A Systematic Review. Cureus 2024; 16:e58306. [PMID: 38752062 PMCID: PMC11094478 DOI: 10.7759/cureus.58306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal (GI) condition, and changes in the gut microbiota's composition contribute to the development of symptoms. Although the precise mechanisms of probiotic use in the human body are not fully understood, probiotic supplements are believed to reduce symptoms, such as abdominal pain, by regulating neurotransmitters and receptors associated with pain modulation in IBS patients compared to placebo by altering the gut flora. This systematic review aimed to assess the most current randomized controlled trials (RCTs) on how probiotic supplementation affects the symptoms in people with IBS. The effects of probiotic supplements on IBS symptoms were studied in RCTs published between January 2018 and June 2023. After a search through PubMed and Google Scholar using the keywords probiotics, gut microbiota, irritable bowel syndrome, and IBS; eight articles matched the inclusion criteria and were reviewed. Four trials used a multistrain probiotic, whereas the remaining four trials examined the effects of a monostrain supplement. All eight trials came to the same conclusion: Probiotic treatment may significantly reduce symptoms.
Collapse
Affiliation(s)
- Lotanna Umeano
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sadaf Iftikhar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sarah F Alhaddad
- Pediatric, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Christian N Paulsingh
- Pathology, St. George's University School of Medicine, St. George's, GRD
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Gourav Garg
- Orthopedics, King's Mill Hospital, Sutton-in-Ashfield, GBR
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
8
|
Bauter MR, Brutscher LM, Dolan LC, Spears JL. Subchronic oral toxicity assessment of Bacillus velezensis strain BV379 in sprague-dawley rats. Hum Exp Toxicol 2024; 43:9603271241278977. [PMID: 39326930 DOI: 10.1177/09603271241278977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
INTRODUCTION The spore-forming bacterial species Bacillus velezensis is commonly utilized in feed for livestock and aquaculture. In recent years, there has been increased interest in introducing B. velezensis into human supplements and food. Before it can be safely administered in humans, the safety of each B. velezensis strain needs to be established. The objective of this study was to evaluate the in vivo safety of Bacillus velezensis strain BV379 by high-dose oral administration to rats in a 28-day subchronic toxicity study. METHODS In this study, 80 animals were assigned to four groups: vehicle control, 1 × 1010, 4 × 1010, or 10 × 1010 CFU/kg bw/day by gavage. The following toxicological assessments were performed: ophthalmological examinations; observations for viability, signs of gross toxicity, and behavioral changes; in-life parameters, including body weight and food consumption; urinalysis, hematology, clinical chemistry, and coagulation assessments; macroscopic and microscopic tissue assessments; and bacterial enumeration in selected tissues. RESULTS Under the conditions of this study, no adverse clinical endpoints were attributed to the administration of Bacillus velezensis strain BV379, which was well-tolerated up to the highest dose of 10 × 1010 CFU/kg bw/day. CONCLUSION These results support the in vivo pre-clinical safety of Bacillus velezensis strain BV379 for use in food and supplements.
Collapse
|
9
|
Rathi A, Pagare R. Efficacy and Safety of Bacillus coagulans LBSC in Drug Induced Constipation Associated With Functional Gastrointestinal Disorder: A Double-Blind, Randomized, Interventional, Parallel, Controlled Trial a Clinical Study on Bacillus coagulans LBSC for Drug Induced Constipation Associated With FGIDs. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241286511. [PMID: 39295947 PMCID: PMC11409293 DOI: 10.1177/27536130241286511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/21/2024]
Abstract
Background Active drugs and nutraceutical supplements commonly induce various gastrointestinal illnesses, and constipation is a major gastrointestinal symptom accompanied with functional gastrointestinal disorders. Drug-induced imbalance in gut microbiota may play critical role in such physiological disturbances. Probiotics have been known for resuming normal and healthy gut microbiome. Objective To investigate the clinical efficacy and safety of Bacillus coagulans LBSC in the treatment of drug induced constipation associated with functional gastrointestinal disorder (FGID) symptoms. Methods A prospective, interventional, randomized, double-blind, parallel, multi-arm, controlled trial with 168 patients experiencing drug induced constipation associated with FGID symptoms (DICAWFGID) screened through Rome IV criteria were randomized into 2 arms, i.e. placebo arm (n = 28) and atorvastatin, atenolol, metformin, amitriptyline, and calcium in test arm (n = 28/arm). Patients in both arms received similar dosages (1 g sachet, 3 times a day) for 35 days. The occurrence of constipation using Bristol Stool Form Scale, assessment of degree of constipation on 4-point Likert scale, occurrence of hard stool and degree of stool expulsion on 3-point scale, and defecation frequency were primary endpoints. While, secondary outcomes consisted of the changes in severity of FGID symptoms, visual analogue scale and tolerance to IP, along with reports of adverse events (AEs) and severe adverse events (SAEs). Results There was a significant reduction in occurrence of constipation (≥98.6% and P-value <0.05) in test arm over the placebo arm. Assessment of co-primary endpoints showed significant improvements in degree of stool consistency (P-value 0.0232; CI: 0.1870, 1.1629), borderline significantly superior in degree of stool expulsion (P-value 0.0553; CI: 0.0378, -0.4939), while the other co-primary efficacy endpoints displayed considerably improved advancement (non-significant, P-value ≥0.05). The intra group analysis of symptoms at start of treatment (SOT) and end of treatment (EOT) revealed a significant reduction in scores for occurrence of constipation and degree of constipation, whereas significant improvement in the scores for degree of stool consistency and degree of stool expulsion (P-value <0.001) after the intervention period. In secondary endpoints, the processed responses clearly signified a considerable positive improvement (non-significant, P-value ≥0.05) in other symptoms of constipation associated with FGIDs as determined by the changes in the EOT-SOT score. The study data also highlighted the safety of Bacillus coagulans LBSC at the studied dose. No AEs and/or SAEs were documented during the investigation. Conclusion At the studied dose, Bacillus coagulans LBSC was safe for oral consumption and effective in the management of the drug induced constipation associated with FGIDs symptoms.
Collapse
Affiliation(s)
- Ankit Rathi
- Department of Biological Sciences, School of Science, Sandip University, Nashik, Maharashtra, India
| | - Ravikiran Pagare
- Department of Biological Sciences, School of Science, Sandip University, Nashik, Maharashtra, India
| |
Collapse
|
10
|
Majeed M, Nagabhushanam K, Mundkur L, Paulose S, Divakar H, Rao S, Arumugam S. Probiotic modulation of gut microbiota by Bacillus coagulans MTCC 5856 in healthy subjects: A randomized, double-blind, placebo-control study. Medicine (Baltimore) 2023; 102:e33751. [PMID: 37335737 DOI: 10.1097/md.0000000000033751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Probiotics are known to rebalance the gut microbiota in dysbiotic individuals, but their impact on the gut microbiome of healthy individuals is seldom studied. The current study is designed to assess the impact and safety of Bacillus coagulans (Weizmannia coagulans) microbial type culture collection 5856 (LactoSpore®) supplementation on microbiota composition in healthy Indian adults. METHODS The study participants (N = 30) received either LactoSpore (2 billion colony-forming units/capsule) or placebo for 28 days. The general and digestive health were assessed through questionnaires and safety by monitoring adverse events. Taxonomic profiling of the fecal samples was carried out by 16S rRNA amplicon sequencing using the Illumina MiSeq platform. The bacterial persistence was enumerated by quantitative reverse transcription-polymerase chain reaction. RESULTS Gut health, general health, and blood biochemical parameters remained normal in all the participants. No adverse events were reported during the study. Metataxonomic analysis revealed minimal changes to the gut microbiome of otherwise healthy subjects and balance of Bacteroidetes and Firmicutes was maintained by LactoSpore. The relative abundance of beneficial bacteria like Prevotella, Faecalibacterium, Blautia, Megasphaera, and Ruminococcus showed an increase in probiotic-supplemented individuals. The quantitative polymerase chain reaction analysis revealed highly variable numbers of B. coagulans in feces before and after the study. CONCLUSION The present study results suggest that LactoSpore is safe for consumption and does not alter the gut microbiome of healthy individuals. Minor changes in a few bacterial species may have a beneficial outcome in healthy individuals. The results reiterate the safety of B. coagulans microbial type culture collection 5856 as a dietary supplement and provide a rationale to explore its effect on gut microbiome composition in individuals with dysbiosis.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bangalore, Karnataka, India
- Sabinsa Corporation, East Windsor, NJ
| | | | | | - Shaji Paulose
- Sami-Sabinsa Group Limited, Bangalore, Karnataka, India
| | - Hema Divakar
- Divakars Speciality Hospital, Bangalore, Karnataka, India
| | - Sudha Rao
- Genotypic Technology Private Limited, Bangalore, Karnataka, India
| | | |
Collapse
|
11
|
Majeed M, Nagabhushanam K, Paulose S, Arumugam S, Mundkur L. The effects of Bacillus coagulans MTCC 5856 on functional gas and bloating in adults: A randomized, double-blind, placebo-controlled study. Medicine (Baltimore) 2023; 102:e33109. [PMID: 36862903 PMCID: PMC9982755 DOI: 10.1097/md.0000000000033109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Gut microbiome dysbiosis is a major cause of abdominal gas, bloating, and distension. Bacillus coagulans MTCC 5856 (LactoSpore) is a spore-forming, thermostable, lactic acid-producing probiotic that has numerous health benefits. We evaluated the effect of Lacto Spore on improving the clinical symptoms of functional gas and bloating in healthy adults. METHODS Multicenter, randomized, double-blind, placebo-controlled study at hospitals in southern India. Seventy adults with functional gas and bloating with a gastrointestinal symptom rating scale (GSRS) indigestion score ≥ 5 were randomized to receive B coagulans MTCC 5856 (2 billion spores/day, N = 35) or placebo (N = 35) for 4 weeks. Changes in the GSRS-Indigestion subscale score for gas and bloating and global evaluation of patient's scores from screening to the final visit were the primary outcomes. The secondary outcomes were Bristol stool analysis, brain fog questionnaire, changes in other GSRS subscales, and safety. RESULTS Two participants from each group withdrew from the study and 66 participants (n = 33 in each group) completed the study. The GSRS indigestion scores changed significantly (P < .001) in the probiotic group (8.91-3.06; P < .001) compared to the placebo (9.42-8.43; P = .11). The median global evaluation of patient's scores was significantly better (P < .001) in the probiotic group (3.0-9.0) than in the placebo group (3.0-4.0) at the end of the study. The cumulative GSRS score, excluding the indigestion subscale, decreased from 27.82 to 4.42% (P < .001) in the probiotic group and 29.12 to 19.33% (P < .001) in the placebo group. The Bristol stool type improved to normal in both the groups. No adverse events or significant changes were observed in clinical parameters throughout the trial period. CONCLUSIONS Bacillus coagulans MTCC 5856 may be a potential supplement to reduce gastrointestinal symptoms in adults with abdominal gas and distension.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Karnataka, India
- Sabinsa Corporation, NJ
| | | | | | | | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, Karnataka, India
- * Correspondence: Lakshmi Mundkur, Sami-Sabinsa Group Limited, 19/1& 19/2, I Main, II Phase, Peenya Industrial Area, Bangalore, Karnataka 560 058, India (e-mail: )
| |
Collapse
|
12
|
Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. Biomed Pharmacother 2023; 161:114468. [PMID: 36868015 DOI: 10.1016/j.biopha.2023.114468] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.
Collapse
Affiliation(s)
- Carmen Purdel
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania.
| | - Ines Adam-Dima
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Denisa Margină
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
13
|
Al-Qadami G, Bowen J, Van Sebille Y, Secombe K, Dorraki M, Verjans J, Wardill H, Le H. Baseline gut microbiota composition is associated with oral mucositis and tumour recurrence in patients with head and neck cancer: a pilot study. Support Care Cancer 2023; 31:98. [PMID: 36607434 DOI: 10.1007/s00520-022-07559-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Mounting evidence suggests that the gut microbiome influences radiotherapy efficacy and toxicity by modulating immune signalling. However, its contribution to radiotherapy outcomes in head and neck cancer (HNC) is yet to be investigated. This study, therefore, aimed to uncover associations between an individual's pre-therapy gut microbiota and (i) severity of radiotherapy-induced oral mucositis (OM), and (ii) recurrence risk in patients with HNC. METHODS In this prospective pilot study, 20 patients with HNC scheduled to receive radiotherapy or chemoradiotherapy were recruited. Stool samples were collected before treatment and microbial composition was analysed using 16S rRNA gene sequencing. OM severity was assessed using the NCI-CTCAE scoring system. Patients were also followed for 12 months of treatment completion to assess tumour recurrence. RESULTS Overall, 80% of the patients were male with a median age of 65.5 years. Fifty-three percent experienced mild/moderate OM while 47% developed severe OM. Furthermore, 18% experienced tumour relapse within 1 year of treatment completion. A pre-treatment microbiota enriched of Eubacterium, Victivallis, and Ruminococcus was associated with severe OM. Conversely, a higher relative abundance of immunomodulatory microbes Faecalibacterium, Prevotella, and Phascolarctobacterium was associated with a lower risk of tumour recurrence. CONCLUSION Our results indicate that a patient's gut microbiota composition at the start of treatment is linked to OM severity and recurrence risk. We now seek to validate these findings to determine their ability to predict treatment outcomes in HNC, with the goal of using this data to inform second-generation microbial therapeutics to optimise treatment outcomes for patients with HNC.
Collapse
Affiliation(s)
- Ghanyah Al-Qadami
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Joanne Bowen
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ysabella Van Sebille
- UniSA Online, University of South Australia, Adelaide, South Australia, Australia
| | - Kate Secombe
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Mohsen Dorraki
- Australian Institute for Machine Learning (AIML), University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme (Platform AI), South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Johan Verjans
- Australian Institute for Machine Learning (AIML), University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme (Platform AI), South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hannah Wardill
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Precision Medicine Theme (Cancer), South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Application of Weizmannia coagulans in the medical and livestock industry. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Products enriched with probiotics have always been fashionable. Weizmannia coagulans has become a hot research topic in the academic community due to their multiple functional properties and high resistance to stress, which can retain their activity in a variety of harsh environments. This review aims to evaluate the probiotic effects of different strains of Weizmannia coagulans in animals and humans and to inspire better exploitation of the value of this strain.
Methods
This review summarizes the latest research progress of Weizmannia coagulans from two major applications in animal breeding and human health.
Results
The functional properties of Weizmannia coagulans are extensively recognized. In animals, the strain can promote nutrient absorption, reduce mortality, and enhance the slaughter rate in livestock and poultry. In humans, the strain can be used to treat gastrointestinal disorders, immunomodulation, depressive symptoms, and non-alcoholic fatty liver. Weizmannia coagulans is projected as an ideal substitute for antibiotics and other chemical drugs.
Conclusion
Despite the outstanding functional properties of Weizmannia coagulans, there are numerous strains of Weizmannia coagulans and significant differences between strains in functional and physiological properties. Currently, there are few literature reports on the probiotic mechanism and functional gene identification of Weizmannia coagulans, which is crucial for the commercialization of Weizmannia coagulans and the benefit of human society.
Collapse
|
15
|
Abstract
BACKGROUND To collect the published trials of probiotics in the treatment of diarrhea and to strictly evaluate and systematically analyze the efficacy of probiotics use for the prevention and treatment of patients with diarrhea. METHODS We searched domestic and foreign literature published between January 2016 and July 2022 to find randomized control trials that used probiotics to treat diarrhea. Only studies published in English were considered. The quality of the included literatures was assessed by using the methods provided in the Cochrane Handbook. Valid data were extracted and analyzed by meta- analysis using the Software RevMan5.2. RESULTS Total 16 trials and 1585 patients were included. The results of the meta- analysis showed that in comparison with the simple Western medicine treatment group or placebo, the added use of probiotics could improve stool frequency, stool morphology, and related irritable bowel syndrome symptoms. CONCLUSION The added use of probiotics can further improve clinical outcomes in the patients with diarrhea; however, the implementation of larger and higher quality clinical trials is necessary to verify this conclusion.
Collapse
Affiliation(s)
- Fujie Wang
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhao
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Dai
- Nutritional Department, Xuzhou Cancer Hospital, Xuzhou China
| | - Xianghua Ma
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xianghua Ma, Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu, China (e-mail: )
| |
Collapse
|
16
|
Zhou X, Chen Y, Ma X, Yu Y, Yu X, Chen X, Suo H. Efficacy of Bacillus coagulans BC01 on loperamide hydrochloride-induced constipation model in Kunming mice. Front Nutr 2022; 9:964257. [PMID: 36211526 PMCID: PMC9533339 DOI: 10.3389/fnut.2022.964257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, the laxative effect of Bacillus coagulans BC01 (BC01) in mice was investigated using a functional constipation mouse model. Six-week-old male specific pathogen-free (SPF) Kunming mice were randomly divided into five groups: normal control group (saline), model group (loperamide hydrochloride), drug control group (bisacodyl), BC01 low-dose group (4.0 × 108 CFU/mL) and BC01 high-dose group (4.0 × 109 CFU/mL). Except for the normal group, the functional constipation model was established by administering 0.25 mL of a loperamide hydrochloride suspension (1 mg/mL) twice daily for four consecutive days by oral gavage. After modeling, the BC01 groups were administered 0.25 mL of BC01. The bisacodyl served as a control and was administered orally at a dose of 100 mg/kg, while the other groups were administered 0.25 mL of sterile saline. After 7 days of continuous administration, the experimental mice were again induced by loperamide hydrochloride. During this period, the mechanism of BC01 to improve constipation symptoms in mice was analyzed by measuring the changes in body weight, fecal water content, small intestine propulsion rate, histology of small intestinal tissue sections, fecal microbial diversity, serum indices, as well as mRNA and protein expression levels in the small intestinal tissue. BC01 was found to significantly promote the intestinal propulsion rate and increase the fecal water content in the mice. BC01 could also alleviates constipation by regulating gastrointestinal motility (substance P, motilin, endothelin-1, somatostatin, and vasoactive intestinal peptide), gene expression (c-Kit, SCF, COX-2, NF-κB, iNOS, and eNOS), intestinal inflammation (eNOS, iNOS, NF-κB), and the intestinal microbiota composition in the constipated mice. In addition, the high-dose BC01 treatment had the best preventive effect on constipation. BC01 is a probiotic strain to effectively relieve the adverse effects of constipation.
Collapse
Affiliation(s)
- Xu Zhou
- College of Food Science, Southwest University, Chongqing, China
| | - Yafang Chen
- The First People's Hospital of Kunshan, Suzhou, China
| | - Xin Ma
- Thankcome Biological Science and Technology Suzhou Co., Ltd., Suzhou, China
| | - Yang Yu
- Thankcome Biological Science and Technology Suzhou Co., Ltd., Suzhou, China
| | - Xueping Yu
- Thankcome Biological Science and Technology Suzhou Co., Ltd., Suzhou, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
- *Correspondence: Huayi Suo
| |
Collapse
|
17
|
The Roles of Probiotics in the Gut Microbiota Composition and Metabolic Outcomes in Asymptomatic Post-Gestational Diabetes Women: A Randomized Controlled Trial. Nutrients 2022; 14:nu14183878. [PMID: 36145254 PMCID: PMC9504400 DOI: 10.3390/nu14183878] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
Probiotics are widely used as an adjuvant therapy in various diseases. Nonetheless, it is uncertain how they affect the gut microbiota composition and metabolic and inflammatory outcomes in women who have recently experienced gestational diabetes mellitus (post-GDM). A randomized, double-blind, placebo-controlled clinical trial involving 132 asymptomatic post-GDM women was conducted to close this gap (Clinical Trial Registration: NCT05273073). The intervention (probiotics) group received a cocktail of six probiotic strains from Bifidobacterium and Lactobacillus for 12 weeks, while the placebo group received an identical sachet devoid of living microorganisms. Anthropometric measurements, biochemical analyses, and 16S rRNA gene sequencing results were evaluated pre- and post-intervention. After the 12-week intervention, the probiotics group’s fasting blood glucose level significantly decreased (mean difference −0.20 mmol/L; p = 0.0021). The HbA1c, total cholesterol, triglycerides, and high-sensitivity C-reactive protein levels were significantly different between the two groups (p < 0.05). Sequencing data also demonstrated a large rise in the Bifidobacterium adolescentis following probiotic supplementation. Our findings suggest that multi-strain probiotics are beneficial for improved metabolic and inflammatory outcomes in post-GDM women by modulating gut dysbiosis. This study emphasizes the necessity for a comprehensive strategy for postpartum treatment that includes probiotics to protect post-GDM women from developing glucose intolerance.
Collapse
|
18
|
Jung SM, Ha AW, Choi SJ, Kim SY, Kim WK. Effect of Bacillus coagulans SNZ 1969 on the Improvement of Bowel Movement in Loperamide-Treated SD Rats. Nutrients 2022; 14:nu14183710. [PMID: 36145085 PMCID: PMC9500726 DOI: 10.3390/nu14183710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Bacillus coagulans SNZ 1969 (B. coagulans SNZ 1969) is a spore-forming bacterium reported to be effective in attenuating constipation. However, there is no study on whether B. coagulans SNZ 1969 could improve constipation through mucin secretion and changes in intestinal hormones. To address this knowledge gap, rats were orally administrated with various treatments for four weeks. The normal control (NOR) group received saline only. There were four constipation-induced groups. The LOP group received only loperamide (LOP), a constipation-inducing agent. The BIS group received both LOP and Bisacodyl (BIS, a constipation treatment agent). The SNZ-L group received both LOP and B. coagulans SNZ 1969 at 1 × 108 CFU/day. The SNZ-H group received LOP and B.coagulans SNZ 1969 at 1 × 1010 CFU/day. As indicators of constipation improvement, fecal pellet weight, fecal water content, gastrointestinal transit time, and intestinal motility were measured. Mucus secretion in the colon was determined by histological colon analysis and mucin-related gene expressions. Gastrointestinal (GI) hormones were also measured. SNZ-L and SNZ-H groups showed significantly increased fecal weights, fecal water contents, and intestinal motility than the LOP group. SNZ-L and SNZ-H groups also showed higher secretion of mucin in the colon and mRNA expression levels of Mucin 2 and Aquaporin 8 than the LOP group. The SNZ-H group showed significantly increased substance P but significantly decreased somatostatin and vasoactive intestinal peptide than the LOP group. The results of this study suggest that B. coagulans SNZ 1969 intake could attenuate constipation through mucin secretion and alteration of GI hormones.
Collapse
Affiliation(s)
- Soo-Min Jung
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Ae-Wha Ha
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Su-Jin Choi
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Se-Young Kim
- R&D Center, CTCBIO, Inc., Hwaseong 18576, Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Woo-Kyoung Kim
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Correspondence:
| |
Collapse
|
19
|
Sreenadh M, Kumar KR, Nath S. In Vitro Evaluation of Weizmannia coagulans Strain LMG S-31876 Isolated from Fermented Rice for Potential Probiotic Properties, Safety Assessment and Technological Properties. Life (Basel) 2022; 12:life12091388. [PMID: 36143423 PMCID: PMC9504688 DOI: 10.3390/life12091388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Weizmanniacoagulans strain LMG S-31876, isolated from fermented rice, is Gram-positive bacilli, a spore-forming, motile, and facultative anaerobe, with an optimum temperature requirement of 40 °C. The strain is able to tolerate acidic gastric juice, bile, and pancreatin. It is non-virulent and exhibits sensitivity to most of the tested antibiotics. The strain shows antagonistic activity against pathogenic bacteria. The 16S rDNA gene sequence of W.coagulans strain LMG S-31876 has been submitted to NCBI–GenBank, archiving accession number MZ687045. The strain has also been deposited to BCCM/LMG and MTCC-IDA with reference numbers LMG S-31876 and MTCC 25396, respectively. Abstract Bacillus coagulans, which has been taxonomically reclassified as Weizmannia coagulans, has been the focus of research due to its wide distribution in fermented foods, probiotic properties, and tolerance to extreme environments. The purpose of this study was to characterise putative probiotic bacteria in a fermented rice sample, followed by an in vitro screening of presumptive probiotic properties and a safety assessment to ensure their safety for human consumption. The predominant isolate was Gram-positive, rod-shaped, catalase-positive, spore-forming, motile, and facultatively anaerobic. The biochemical test and 16S rDNA sequencing identify the isolate as Weizmannia coagulans strain LMG S-31876. The strain showed significant viability in acidic gastric juice, pancreatin, and bile. The strain showed tolerance to 5% NaCl, and a low-to-moderate percentage of hydrophobicity and auto-aggregation was recorded. It met all safety criteria, including haemolytic activity, DNase activity, antibiotic sensitivity, and growth inhibition of other bacteria. Evaluation of its technological properties showed positive results for amylolytic and lipolytic activities; however, negative results were obtained for proteolytic activity. It could be concluded from the gathered data that W. coagulans strain LMG S-31876 isolated from fermented rice, might serve as a potential functional probiotic food. However, extended follow-up durations and larger-scale trials by assessing the therapeutic effects in managing various clinical gastrointestinal conditions are required to warranty such effects.
Collapse
Affiliation(s)
- Madapati Sreenadh
- Abode Biotec India Private Limited, MLA Colony, Banjara Hills, Hyderabad 500033, Telangana, India
| | - Kallur Ranjith Kumar
- Abode Biotec India Private Limited, MLA Colony, Banjara Hills, Hyderabad 500033, Telangana, India
| | - Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar 788004, Assam, India
- Correspondence:
| |
Collapse
|
20
|
Zhang T, Zhang C, Zhang J, Sun F, Duan L. Efficacy of Probiotics for Irritable Bowel Syndrome: A Systematic Review and Network Meta-Analysis. Front Cell Infect Microbiol 2022; 12:859967. [PMID: 35433498 PMCID: PMC9010660 DOI: 10.3389/fcimb.2022.859967] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundIrritable bowel syndrome (IBS) is a common gastrointestinal condition. Studies regarding the treatment of IBS with probiotics have not yielded consistent results, and the best probiotics has not yet been confirmed. Therefore, we performed a network meta-analysis (NMA) to assess the relative rank order of different probiotics for IBS.MethodWe searched for RCTs on the efficacy of probiotics for IBS until August 25, 2021. The primary outcome was the symptom relief rate, as well as global symptoms, abdominal pain, bloating, and straining scores. The NMA was conducted using Stata 15.0. We also used meta-regression to explore whether the treatment length and dose influenced the efficacy.ResultsForty-three RCTs, with 5,531 IBS patients, were included in this analysis. Firstly, we compared the efficacy of different probiotic species. B.coagulans exhibited the highest probability to be the optimal probiotic specie in improving IBS symptom relief rate, as well as global symptom, abdominal pain, bloating, and straining scores. In regard to the secondary outcomes, L.plantarum ranked first in ameliorating the QOL of IBS patients, but without any significant differences compared with other probiotic species in standardized mean differences (SMD) estimates. Moreover, patients received L.acidophilus had lowest incidence of adverse events. The meta-regression revealed that no significant differences were found between participants using different doses of probiotics in all outcomes, while the treatment length, as a confounder, can significantly influence the efficacy of probiotics in ameliorating abdominal pain (Coef = -2.30; p = 0.035) and straining (Coef = -3.15; p = 0.020) in IBS patients. Thus, we performed the subgroup analysis on treatment length subsequently in these two outcomes, which showed that efficacy of B.coagulans using 8 weeks ranked first both in improving the abdominal pain and straining scores. Additionally, B. coagulans still had significant efficacy compared to different types of probiotic combinations in present study.ConclusionsThe findings of this NMA suggested that B.coagulans had prominent efficacy in treating IBS patients, and incorporating B.coagulans into a probiotic combination, or genetically engineering it to amplify its biological function may be a future research target to treat IBS patients. With few direct comparisons available between individual therapies today, this NMA may have utility in forming treatment guideline for IBS with probiotics.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Feng Sun
- China Center for Evidence Based Medical and Clinical Research, Peking University, Beijing, China
- Institute of Public Health, Peking University, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- *Correspondence: Liping Duan,
| |
Collapse
|
21
|
Maity C, Bagkar P, Dixit Y, Tiwari A. Alkalihalobacillus clausii
088AE as a functional and medical food ingredient: assessment of
in vitro
protein digestibility and food calorie reduction. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chiranjit Maity
- Advanced Enzyme Technologies Ltd. 5Th Floor, A‐Wing, Sun Magnetica Thane (W) ‐ 400 604 Maharashtra India
| | - Pratik Bagkar
- Advanced Enzyme Technologies Ltd. 5Th Floor, A‐Wing, Sun Magnetica Thane (W) ‐ 400 604 Maharashtra India
| | - Yogini Dixit
- Advanced Enzyme Technologies Ltd. 5Th Floor, A‐Wing, Sun Magnetica Thane (W) ‐ 400 604 Maharashtra India
| | - Amit Tiwari
- Advanced Enzyme Technologies Ltd. 5Th Floor, A‐Wing, Sun Magnetica Thane (W) ‐ 400 604 Maharashtra India
| |
Collapse
|
22
|
Alibeik N, Pishgar E, Bozorgmehr R, Aghaaliakbari F, Rahimian N. Potential role of gut microbiota in patients with COVID-19, its relationship with lung axis, central nervous system (CNS) axis, and improvement with probiotic therapy. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:1-9. [PMID: 35611351 PMCID: PMC9085538 DOI: 10.18502/ijm.v14i1.8794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic disease caused by a new corona virus. COVID-19 affects different people in different ways. COVID-19 could affect the gastrointestinal system via gut microbiota impairment. Gut microbiota could affect lung health through a relationship between gut and lung microbiota, which is named gut-lung axis. Gut microbiota impairment plays a role in pathogenesis of various pulmonary disease states, so GI diseases were found to be associated with respiratory diseases. Moreover, most infected people will develop mild to moderate gastrointestinal (GI) symptoms such as diarrhea, vomiting, and stomachache, which is caused by impairment in gut microbiota. Therefore, the current study aimed to review potential role of gut microbiota in patients with COVID-19, its relation with lung axis, Central Nervous System (CNS) axis and improvement with probiotic therapy. Also, this review can be a guide for potential role of gut microbiota in patients with COVID-19.
Collapse
Affiliation(s)
- Nazanin Alibeik
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Pishgar
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Bozorgmehr
- Department of Surgery, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Farshad Aghaaliakbari
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
23
|
Bagkar P, Gupta AK, Maity C. Effect of high pressure processing (HPP) on spore preparation of probiotic Bacillus coagulans LBSC [DSM 17654]. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2020-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
High pressure processing (HPP) has become a mainstream technology for modern age food processing. HPP conditions are detrimental to inherent microbial flora, including food pathogens. A probiotic intended for supplementation in a high-pressured processed food should therefore be stable to processing and subsequent storage conditions. The present study reports the viability of Bacillus coagulans LBSC [DSM 17654] spores at high hydrostatic pressures (HHP, 450 and 550 MPa) processing. B. coagulans LBSC spores were viable under both pressure condition at pH 2.60, 5.00, 7.00, and 8.25. Similar HPP conditions completely inactivated a reference strain Escherichia coli ATCC 25922. The HPP treated B. coagulans LBSC spore preparation showed no reduction in the viability on room temperature storage for a duration of six months. Results demonstrated the resilience of probiotic B. coagulans LBSC spores under HPP treatment, suggesting its potential incorporation in a range of functional foods and beverages.
Collapse
Affiliation(s)
- Pratik Bagkar
- Advanced Enzyme Technologies Ltd. , 5th Floor, A-Wing, Sun Magnetica, LIC Service Road, Louiswadi , Thane (W) 400 604 , Maharashtra , India
| | - Anil Kumar Gupta
- Advanced Enzyme Technologies Ltd. , 5th Floor, A-Wing, Sun Magnetica, LIC Service Road, Louiswadi , Thane (W) 400 604 , Maharashtra , India
| | - Chiranjit Maity
- Advanced Enzyme Technologies Ltd. , 5th Floor, A-Wing, Sun Magnetica, LIC Service Road, Louiswadi , Thane (W) 400 604 , Maharashtra , India
| |
Collapse
|
24
|
Barajas-Álvarez P, González-Ávila M, Espinosa-Andrews H. Recent Advances in Probiotic Encapsulation to Improve Viability under Storage and Gastrointestinal Conditions and Their Impact on Functional Food Formulation. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Paloma Barajas-Álvarez
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Zapopan, Jalisco, Mexico
| | - Marisela González-Ávila
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Guadalajara, Jalisco, Mexico
| | - Hugo Espinosa-Andrews
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Zapopan, Jalisco, Mexico
| |
Collapse
|
25
|
Gupta AK, Maity C. Efficacy and safety of Bacillus coagulans LBSC in irritable bowel syndrome: A prospective, interventional, randomized, double-blind, placebo-controlled clinical study [CONSORT Compliant]. Medicine (Baltimore) 2021; 100:e23641. [PMID: 33545934 PMCID: PMC7837859 DOI: 10.1097/md.0000000000023641] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
GOALS To evaluate safety and efficacy of Bacillus coagulans LBSC [DSM17654] in irritable bowel syndrome (IBS) through a prospective, interventional, randomized, double-blind, and placebo-controlled, CONSORT compliant clinical trial. BACKGROUND Bacteriotherapy shows promising impact on alleviating clinical conditions of IBS and associated functional gastrointestinal disorders. B coagulans LBSC is a genetically and phenotypically safe probiotic strain used in this study to study its impact on ameliorating IBS symptoms and improving quality of life. METHODS In this interventional, randomized, double-blind, placebo-controlled clinical study, total 40 subjects (18-65 years) were screened through Rome IV criteria and randomized into 2 groups, that is, interventional and placebo arm (n = 20/arm). Similar dosages were received by both the arm, that is, placebo (vehicle) and interventional arm (B coagulans LBSC, 6 billion/d) for a period of 80 days. Study completed with per protocol subjects (n = 38) and results were considered to evaluate the primary and secondary endpoints. RESULTS Assessment through Digestive Symptom Frequency Questionnaire 5 point Likert scale showed significant improvement in interventional arm compared to placebo on symptoms such as bloating/cramping, abdominal pain, diarrhea, constipation, stomach rumbling, nausea, vomiting, headache, and anxiety. Maximum of "no symptoms" cases and mild to moderate gastrointestinal symptoms along with improved stool consistency were from interventional arm tested following IBS severity scoring system and Bristol stool form scale. Upper gastrointestinal endoscopy revealed no clinical difference of gastrointestinal mucosa between both the arms. B coagulans LBSC was well tolerated with no serious adverse events. CONCLUSIONS B coagulans LBSC was safe for human consumption and efficacious in alleviating overall pathophysiological symptoms of IBS and thereby improving inclusive quality of life evaluated.
Collapse
|