1
|
Kulhari P, Dhole B, Verma S, Jala MA, Kumar P, Pandey D, Chaturvedi PK, Gupta S. Escitalopram, an antidepressant, stimulates steroidogenesis in mouse Leydig cells. Reprod Toxicol 2025; 135:108933. [PMID: 40300674 DOI: 10.1016/j.reprotox.2025.108933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are usually the first line of treatment for major depressive and generalized anxiety disorders. SSRIs have been shown to affect various aspects of male fertility including steroid production. The present work was conducted to investigate the in vitro effect of the SSRI, escitalopram on Leydig cell steroidogenesis and expression of steroidogenic enzymes. We measured the steroid production by Leydig cells treated with escitalopram using Chemiluminescent microparticle immunoassay. RNA and protein levels of steroidogenic pathway-related enzymes were measured by qRT-PCR and western blot respectively. Furthermore, MTT assay was performed to assess the viability of escitalopram-treated Leydig cells. This is the first study showing the direct effect of escitalopram on Leydig cell steroidogenesis. Higher doses of escitalopram increased the secretion of testosterone and progesterone compared to vehicle control. Escitalopram also modulated the expression of various steroidogenic enzymes at the mRNA and protein levels. Cell viability was decreased by escitalopram in a dose-dependent manner. Our results show that escitalopram stimulates steroid production by Leydig cells which could possibly be due to increase in extracellular serotonin levels. This indicates that escitalopram treatment for males may not have adverse effect on male steroidogenesis.
Collapse
Affiliation(s)
- Pramila Kulhari
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bodhana Dhole
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saloni Verma
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Moses Azaraiah Jala
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pramod Kumar
- Division of Molecular Biology, ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pradeep Kumar Chaturvedi
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Shi Z, Wu Z, Wang Z, Liu T, Xie T, Liu N, Li F, Yan J. Protective effects of dietary supplementation of Bacillus Subtilis MZ18 against the reproductive toxicity of zearalenone in pregnant rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117954. [PMID: 40054341 DOI: 10.1016/j.ecoenv.2025.117954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/28/2024] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
The microbial detoxification method demonstrates significant potential for detoxifying feed contaminated with mycotoxins, but the application of degrading bacteria in mammals was rarely investigated. In this study, the effects of dietary zearalenone on the growth performance, reproductive performance, reproductive organs, hormone levels of rats and the toxicity alleviation of Bacillus subtilis MZ18 were studied. From gestation day 0-20, pregnant SD rats received either a normal diet or a diet supplemented with zearalenone at a dose of 20 mg/kg⋅BW, and with or without supplementation of Bacillus subtilis MZ18 culture. In addition to the negative effects on the growth performance of dietary zearalenone, we found that the ovarian weight was increased, the number of follicles and granulosa lutein cells in the corpus luteum was reduced, and the placental tissue exhibited an enlarged interstitial space and signs of stasis. Further analysis revealed a reduction in serum levels of LH, FSH, and E2, followed by verification using quantitative RT-PCR analysis and Western blot analysis. Additionally, fetal weight and fetal brain weight were decreased, indicating that exposure to zearalenone during gestation has a negative impact on fetal development. As expected, our research revealed that dietary supplementation with MZ18 effectively mitigates reproductive toxicity caused by zearalenone exposure, including histopathological damage to reproductive organs, and disorders in reproductive hormone levels. The MZ18 treatment had no adverse effects on pregnant rats and fetal rats. The findings of this study provide a foundation for analyzing the mechanism of protective actions.
Collapse
Affiliation(s)
- Zhuo Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhibo Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhongyu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianshu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ting Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nengwen Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Feng Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Junshu Yan
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Moshfeghi E, Yilmazer Y, Dogan S, Aydin T, Findikli N, Ozbek T. Investigation of the effect of serotonin-activated semen washing medium on sperm motility at the molecular level: a pilot study. ZYGOTE 2024; 32:396-404. [PMID: 39523888 DOI: 10.1017/s0967199424000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In Assisted Reproductive Technologies (ART), efficient sperm preparation is vital for successful fertilization, with washing media enhancing the process. This pilot study examines the molecular-level impact of a new serotonin-containing sperm-washing medium (Prototype) on sperm motility and ROS metabolism, comparing it with commercially available media (Origio and Irvine). Semen samples from thirty-one individuals underwent preparation using the swim-up method post-semen analysis. Each sample was separately washed with the Prototype, Origio and Irvine mediums. ROS formation was determined through flow cytometric, and AT2R and PRDX2 protein levels, associated with sperm motility, were assessed via Western blot. Statistical evaluation compared the findings among the three outlined media. Significant differences were found among three washing media in terms of total and progressive motility. The Prototype medium showed the highest increase in both total (66%) and progressive motility (59%), while the control group exhibited the lowest increases (41% and 27.7%, respectively). Regarding ROS levels, the prototype (11.5%) and Origio (10.7%) groups demonstrated a notable decrease, contrasting with Irvine (25.8%). Molecular assessment revealed a significant elevation in AT2R protein levels in the prototype medium (59%), compared to other media. Additionally, an increase in PRDX2 protein levels was observed in the prototype medium, although this didn't reach statistical significance. Serotonin-activated washing media for sperm preparation can be a suitable choice for selecting high-quality sperm in ART. A broader molecular analysis with a larger sample size is required to explore the mechanisms and effectiveness of using a serotonin-containing sperm-washing medium in routine ART.
Collapse
Affiliation(s)
- Elnaz Moshfeghi
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Yasemin Yilmazer
- Department of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Sinem Dogan
- Department of Gynecology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Turgut Aydin
- Department of Gynecology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | | | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Frungieri MB, Mayerhofer A. Biogenic amines in the testis: sources, receptors and actions. Front Endocrinol (Lausanne) 2024; 15:1392917. [PMID: 38966220 PMCID: PMC11222591 DOI: 10.3389/fendo.2024.1392917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
Biogenic amines are signaling molecules with multiple roles in the central nervous system and in peripheral organs, including the gonads. A series of studies indicated that these molecules, their biosynthetic enzymes and their receptors are present in the testis and that they are involved in the regulation of male reproductive physiology and/or pathology. This mini-review aims to summarize the current knowledge in this field and to pinpoint existing research gaps. We suggest that the widespread clinical use of pharmacological agonists/antagonists of these signaling molecules, calls for new investigations in this area. They are necessary to evaluate the relevance of biogenic amines for human male fertility and infertility, as well as the potential value of at least one of them as an anti-aging compound in the testis.
Collapse
Affiliation(s)
- Monica Beatriz Frungieri
- Laboratorio de neuro-inmuno-endocrinología testicular, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Stein J, Jorge BC, Nagaoka LT, Reis ACC, Manoel BDM, Godoi AR, Fioravante VC, Martinez FE, Pinheiro PFF, Pupo AS, Arena AC. Can exposure to lisdexamfetamine dimesylate from juvenile period to peripubertal compromise male reproductive parameters in adult rats? Toxicol Appl Pharmacol 2024; 484:116867. [PMID: 38378049 DOI: 10.1016/j.taap.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Lisdexamfetamine (LDX) is a d-amphetamine prodrug used to treat attention deficit and hyperactivity disorder, a common neurodevelopmental disorder in children and adolescents. Due to its action mediated by elevated levels of catecholamines, mainly dopamine and noradrenaline, which influence hormonal regulation and directly affect the gonads, this drug may potentially disrupt reproductive performance. This study evaluated the effects of exposure to LDX from the juvenile to peripubertal period (critical stages of development) on systemic and reproductive toxicity parameters in male rats. Male Wistar rats (23 days old) were treated with 0; 5.2; 8.6 or 12.1 mg/kg/day of LDX from post-natal day (PND) 23 to 53, by gavage. LDX treatment led to reduced daily food and water consumption, as well as a decrease in social behaviors. The day of preputial separation remained unaltered, although the treated animals exhibited reduced weight. At PND 54, the treated animals presented signs of systemic toxicity, evidenced by a reduction in body weight gain, increase in the relative weight of the liver, spleen, and seminal gland, reduction in erythrocyte and leukocyte counts, reduced total protein levels, and disruptions in oxidative parameters. In adulthood, there was an increase in immobile sperm, reduced sperm count, morphometric changes in the testis, and altered oxidative parameters, without compromising male sexual behavior and fertility. These findings showed that LDX-treatment during the juvenile and peripubertal periods induced immediate systemic toxicity and adversely influenced reproductive function in adult life, indicating that caution is necessary when prescribing this drug during the peripubertal phase.
Collapse
Affiliation(s)
- Julia Stein
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lívia Trippe Nagaoka
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Beatriz de Matos Manoel
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Alana Rezende Godoi
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vanessa Caroline Fioravante
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Patrícia Fernanda Felipe Pinheiro
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Center of Information and Toxicological Assistance (CIATOX), Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
6
|
Jamu IM, Okamoto H. Recent advances in understanding adverse effects associated with drugs targeting the serotonin receptor, 5-HT GPCR. Front Glob Womens Health 2022; 3:1012463. [PMID: 36619589 PMCID: PMC9812521 DOI: 10.3389/fgwh.2022.1012463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
It has been acknowledged that more women suffer from adverse effects of drugs than men globally. A group of drugs targeting serotonin [5-hydroxytryptamine] (5-HT) binding G-protein-coupled receptors (GPCRs) have been reported to preferentially affect women more than men, causing adverse effects such as breast cancer and infertility. 5-HT GPCR-targeted drugs in the central nervous system (CNS) manage psychiatric conditions, such as depression or bipolar and in the peripheral nervous system (PNS) treat migraines. Physiological characteristics such as specific types of hormones, higher body fat density and smaller body mass in women result in disparities in pharmacodynamics of drugs, thus explaining sex-related differences in the observed adverse effects. In this review, we discuss the side effects of drugs targeting 5-HT GPCRs based on serotonin's roles in the CNS and PNS. We have systematically reviewed adverse effects of drugs targeting 5-HT GPCR using information from the Food and Drug Administration and European Medicines Agency. Further information on drug side effects and receptor targets was acquired from the SIDER and DrugBank databases, respectively. These drugs bind to 5-HT GPCRs in the CNS, namely the brain, and PNS such as breasts, ovaries and testes, potentially causing side effects within these areas. Oestrogen affects both the biosynthesis of 5-HT and the densities of 5-HT GPCRs in given tissues and cells. 5-HT GPCR-targeting drugs perturb this process. This is likely a reason why women are experiencing more adverse effects than men due to their periodic increase and the relatively high concentrations of oestrogen in women and, thus a greater incidence of the oestrogen-mediated 5-HT system interference. In addition, women have a lower concentration of serotonin relative to men and also have a relatively faster rate of serotonin metabolism which might be contributing to the former. We discuss potential approaches that could mitigate at least some of the adverse effects experienced by women taking the 5-HT GPCR-targeting drugs.
Collapse
|
7
|
Gallegos E, Ascona M, Monroy J, Castro-Manrreza ME, Aragón-Martínez A, Ayala ME. p-Chloroamphetamine decreases serotonin and induces apoptosis in granulosa cells and follicular atresia in prepubertal female rats. Reprod Toxicol 2022; 110:150-160. [PMID: 35460820 DOI: 10.1016/j.reprotox.2022.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Amphetamine derivatives negatively impact serotonin (5-HT) production, which triggers apoptosis in different tissues, depending on the receptor they bind. 5-HT in the ovary stimulates estradiol secretion, a survival factor of granulosa cells. The effect of amphetamine derivatives on the serotonergic system of the ovary and follicular development is unknown. Therefore, in this study, we investigated the effects of p-chloroamphetamine (pCA), derived from amphetamines, on estradiol production, follicular development, apoptosis of granulosa cells, and serotonin 5-HT7 receptor (R5-HT7) expression. Female rats (30 days old) were injected with 10mg/kg of pCA intraperitoneally and were euthanized 48 or 120h after treatment. The concentration of 5-HT in the hypothalamus decreased at 48 and 120h after treatment and in the ovary at 120h. The serum concentration of estradiol decreased at all times studied. Follicular atresia, TUNEL-positive (apoptotic) granulosa cells and Bax expression were elevated by pCA, but none of these effects was associated with R5-HT7 expression. These results suggest that pCA induces the dysregulation of the serotonergic system in the hypothalamus and the ovary, negatively impacting estradiol production and follicular development.
Collapse
Affiliation(s)
- Eloir Gallegos
- Laboratorio de Pubertad, Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, AP 9-020, C.P. 15000, Ciudad de México, Mexico
| | - Marisol Ascona
- Laboratorio de Pubertad, Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, AP 9-020, C.P. 15000, Ciudad de México, Mexico
| | - Juana Monroy
- Laboratorio de Pubertad, Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, AP 9-020, C.P. 15000, Ciudad de México, Mexico
| | - Marta Elena Castro-Manrreza
- Laboratorio de Inmunología y Células Madre, Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, AP 9-020, C.P. 15000, Ciudad de México, Mexico
| | - Andrés Aragón-Martínez
- Laboratorio de Gametos y Desarrollo tecnológico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla, C.P. 54090, Estado de México, Mexico
| | - María Elena Ayala
- Laboratorio de Pubertad, Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, AP 9-020, C.P. 15000, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Kara H, Orem A, Yulug E, Balaban Yucesan F, Kerimoglu G, Vanizor Kural B, Ozer Yaman S, Bodur A, Turedi S, Alasalvar C. Effects of hazelnut supplemented diet on doxorubicin-induced damage of reproductive system in male rats. J Food Biochem 2021; 45:e13973. [PMID: 34664725 DOI: 10.1111/jfbc.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
The present study was objected to investigate the effect of hazelnut supplemented diet on the levels of oxidative stress and fertility parameters against doxorubicin-induced testicular and epididymal tissue damage of male rats. Rats were randomly divided into four groups (each n = 8), namely control group (CG), doxorubicin group (DG), doxorubicin + hazelnut group (DHG), and doxorubicin + vitamin E group (DEG). This is the first study designed using DHG. Doxorubicin was intraperitoneally injected into all diet groups except CG at a dose of 3 mg/kg body weight on days 1, 7, 14, 21, and 28. In addition, DHG was supplemented with a hazelnut diet at a dose of 3 g/kg body weight/day and vitamin E was added to the drinking water of DEG at a dose of 50 mg/kg body weight/day. DHG reversed the side effects of doxorubicin and positively improved the epididymis sperm quality, testicular and epididymal tissue injury, testosterone level, epididymis oxidative stress index, and lipid peroxidation in male rats. These findings suggest that hazelnut has positive effects against doxorubicin dependent damage on male rats and it may be a promising supplement for amelioration of testicular toxicity. PRACTICAL APPLICATIONS: Hazelnut has numerous positive health effects due to its macronutrients, micronutrients, lipid-soluble compounds and bioactive phenolics. Studies have shown that regular consumption of hazelnut may have a positive effect on lipid parameters, oxidative stress, inflammation markers, and endothelial dysfunction in both healthy people and patients with chronic diseases. Although doxorubicin (Adriamycin, DOX) is an antibiotic that has been widely used in cancer treatment for nearly 30 years, it causes organ toxicity including testicular tissue. Hazelnut may have positive effects on the damage caused by DOX in the reproductive system. However, studies on the effect of hazelnut on male reproductive health are scarce. Therefore, this study provided a basis for the clinical evaluation of the effects of hazelnut on the reproductive system.
Collapse
Affiliation(s)
- Hanife Kara
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Amasya University, Amasya, Turkey.,Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Asım Orem
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Esin Yulug
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Fulya Balaban Yucesan
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gokcen Kerimoglu
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Birgul Vanizor Kural
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Akın Bodur
- Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Sibel Turedi
- Faculty of Medicine, Department of Histology and Embryology, Harran University, Sanlıurfa, Turkey
| | | |
Collapse
|