1
|
Quintans MDS, Vianna RADO, Velarde LGC, de Oliveira SA, Fernandes AR, Bueno AC, Cardoso CAA. Neurodevelopmental Outcomes in Children Vertically Exposed to Chikungunya Virus: A Two Years Follow-up Study. Pediatr Infect Dis J 2025; 44:154-160. [PMID: 39264193 DOI: 10.1097/inf.0000000000004534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
OBJECTIVES To monitor by the first 24 months of life, children born to mothers with laboratory evidence of chikungunya virus (CHIKV) infection during pregnancy or up to 8 weeks before it, and to describe abnormalities in head circumference (HC), auditory and ophthalmological assessments and neuroimaging tests during the follow-up period. METHOD This is a observational, descriptive, longitudinal and prospective study of children born to mothers who had a rash and a positive test for CHIKV during pregnancy or up to 8 weeks before it. They were admitted between November 2015 and May 2019 in the outpatient multidisciplinary clinic to investigate acute exanthematous disease. The exposed children were followed up by a multidisciplinary team and underwent periodic measurements of the HC. The Denver II test was applied, in addition to transfontanellar ultrasound (TU) to evaluate neurodevelopmental outcomes during the study period. Ophthalmological and auditory examinations, echocardiography and laboratory tests were also included. RESULTS We included in the study 27 children vertically exposed to CHIKV. All children had a negative polymerase chain reaction test for the virus collected at the first outpatient visit (mean age of 16.8 days and standard deviation of 8 days). No clinical condition compatible with congenital infection at birth was reported. A change in HC characterized by macrocephaly and mild global delay development was observed in a 1-year-old child whose mother was infected in the peripartum, but with normal TU. Changes in the TU were observed in 2 other children with nonspecific subependymal cystic malformation that was not evident by the cranial computed tomography. The other children monitored showed normal results in the Denver II test, in the HC and TU. No changes were identified on ocular ophthalmoscopy or auditory brainstem response test. Two children had an increase in serum ferritin levels during the first year of life, with the others' inflammatory disease markers normal. CONCLUSIONS Our study added knowledge about the neurodevelopment of children exposed to CHIKV during pregnancy by a longitudinal and prospective follow-up, throughout their first 24 months of life. We did not observe a negative impact of exposure to the virus on the neurological examination, global developmental test or measurements of the HC of these children.
Collapse
Affiliation(s)
- Maria D S Quintans
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
| | - Renata A de O Vianna
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
| | - Luis G C Velarde
- Department of Statistics, Universidade Federal Fluminense
- Multi-User Laboratory for Support in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense
| | - Solange A de Oliveira
- Multi-User Laboratory for Support in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense
- Department of Clinical Medicine, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Alexandre R Fernandes
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
| | - Arnaldo C Bueno
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
| | - Claudete A A Cardoso
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
- Multi-User Laboratory for Support in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense
| |
Collapse
|
2
|
Ruiz-Triviño J, Álvarez D, Cadavid J. ÁP, Alvarez AM. From gut to placenta: understanding how the maternal microbiome models life-long conditions. Front Endocrinol (Lausanne) 2023; 14:1304727. [PMID: 38161976 PMCID: PMC10754986 DOI: 10.3389/fendo.2023.1304727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
The microbiome -defined as the microbiota (bacteria, archaea, lower and higher eukaryotes), their genomes, and the surrounding environmental conditions- has a well-described range of physiological functions. Thus, an imbalance of the microbiota composition -dysbiosis- has been associated with pregnancy complications or adverse fetal outcomes. Although there is controversy about the existence or absence of a microbiome in the placenta and fetus during healthy pregnancy, it is known that gut microbiota can produce bioactive metabolites that can enter the maternal circulation and may be actively or passively transferred through the placenta. Furthermore, the evidence suggests that such metabolites have some effect on the fetus. Since the microbiome can influence the epigenome, and modifications of the epigenome could be responsible for fetal programming, it can be experimentally supported that the maternal microbiome and its metabolites could be involved in fetal programming. The developmental origin of health and disease (DOHaD) approach looks to understand how exposure to environmental factors during periods of high plasticity in the early stages of life (e.g., gestational period) influences the program for disease risk in the progeny. Therefore, according to the DOHaD approach, the influence of maternal microbiota in disease development must be explored. Here, we described some of the diseases of adulthood that could be related to alterations in the maternal microbiota. In summary, this review aims to highlight the influence of maternal microbiota on both fetal development and postnatal life, suggesting that dysbiosis on this microbiota could be related to adulthood morbidity.
Collapse
Affiliation(s)
- Jonathan Ruiz-Triviño
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Daniel Álvarez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Ángela P. Cadavid J.
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
- Grupo de Investigación en Trombosis, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Angela M. Alvarez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
| |
Collapse
|
3
|
Zhang Y, Sheng Z, Chen Q, Zhou A, Cao J, Xue F, Ye Y, Wu N, Gao N, Fan D, Liu L, Li Y, Wang P, Liang L, Zhou D, Zhang F, Li F, An J. Neutrophil infiltration leads to fetal growth restriction by impairing the placental vasculature in DENV-infected pregnant mice. EBioMedicine 2023; 95:104739. [PMID: 37544202 PMCID: PMC10432184 DOI: 10.1016/j.ebiom.2023.104739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection during pregnancy increases the risk of adverse fetal outcomes, which has become a new clinical challenge. However, the underlying mechanism remains unknown. METHODS The effect of DENV-2 infection on fetuses was investigated using pregnant interferon α/β receptor-deficient (Ifnar1-/-) mice. The histopathological changes in the placentas were analyzed by morphological techniques. A mouse inflammation array was used to detect the cytokine and chemokine profiles in the serum and placenta. The infiltration characteristics of inflammatory cells in the placentas were evaluated by single-cell RNA sequencing. FINDINGS Fetal growth restriction observed in DENV-2 infection was mainly caused by the destruction of the placental vasculature rather than direct damage from the virus in our mouse model. After infection, neutrophil infiltration into the placenta disrupts the expression profile of matrix metalloproteinases, which leads to placental dysvascularization and insufficiency. Notably, similar histopathological changes were observed in the placentas from DENV-infected puerperae. INTERPRETATION Neutrophils play key roles in placental histopathological damage during DENV infection, which indicates that interfering with aberrant neutrophil infiltration into the placenta may be an important therapeutic target for adverse pregnancy outcomes in DENV infection. FUNDING The National Key Research and Development Plans of China (2021YFC2300200-02 to J.A., 2019YFC0121905 to Q.Z.C.), the National Natural Science Foundation of China (NSFC) (U1902210 and 81972979 to J. A., 81902048 to Z. Y. S., and 82172266 to P.G.W.), and the Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan, China (IDHT20190510 to J. A.).
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Qiaozhu Chen
- Department of Ob&Gyn, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Anni Zhou
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiaying Cao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Feiyang Xue
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yanzhen Ye
- Department of Obstetrics and Gynecology, People's Hospital of Nanhai District, Foshan City, 528200, Guangdong, China
| | - Na Wu
- Laboratory Animal Center, Capital Medical University, Beijing, 100069, China
| | - Na Gao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Libo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuetong Li
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peigang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Li Liang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fang Li
- Department of Ob&Gyn, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Carrasco-Wong I, González-Ortiz M, Araujo GG, Lima VV, Giachini FR, Stojanova J, Moller A, Martín SS, Escudero P, Damiano AE, Sosa-Macias M, Galaviz-Hernandez C, Teran E, Escudero C. The Placental Function Beyond Pregnancy: Insights from Latin America. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:287-307. [PMID: 37466779 DOI: 10.1007/978-3-031-32554-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Currently, more than 100,000 papers had been published studying the placenta in both physiological and pathological contexts. However, relevant health conditions affecting placental function, mostly found in low-income countries, should be evaluated deeper. This review will raise some - of what we think necessary - points of discussion regarding challenging topics not fully understood, including the paternal versus maternal contribution on placental genes imprinting, placenta-brain communication, and some environmental conditions affecting the placenta. The discussions are parts of an international effort to fulfil some gaps observed in this area, and Latin-American research groups currently evaluate that.
Collapse
Affiliation(s)
- Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
| | - Gabriel Gomes Araujo
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, Brazil
| | - Victor V Lima
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, Brazil
| | - Fernanda R Giachini
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, Brazil
| | - Jana Stojanova
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar, Chile
| | - Alejandra Moller
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Pablo Escudero
- Faculty of Medicine, Universidad San Sebastian, Sede Concepcion, Chile
| | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)- CONICET- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martha Sosa-Macias
- Genomics Academia, Instituto Politécnico Nacional-CIIDIR Durango, Durango, Mexico
| | | | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
- Vascular Physiology Laboratory, Basic Sciences Department, Faculty of Sciences, Universidad del Bio-Bio, Chillan, Chile.
| |
Collapse
|