1
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
He L, Sun F, Wu Y, Li Z, Fu Y, Huang Q, Li J, Wang Z, Cai J, Feng C, Deng X, Gu H, He X, Yu J, Sun F. L(1)10Bb serves as a conservative determinant for soma-germline communications via cellular non-autonomous effects within the testicular stem cell niche. Mol Cell Endocrinol 2024; 591:112278. [PMID: 38795826 DOI: 10.1016/j.mce.2024.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
The testicular stem cell niche is the central regulator of spermatogenesis in Drosophila melanogaster. However, the underlying regulatory mechanisms are unclear. This study demonstrated the crucial role of lethal (1) 10Bb [l(1)10Bb] in regulating the testicular stem cell niche. Dysfunction of l(1)10Bb in early-stage cyst cells led to male fertility disorders and compromised cyst stem cell maintenance. Moreover, the dysfunction of l(1)10Bb in early-stage cyst cells exerted non-autonomous effects on germline stem cell differentiation, independently of hub signals. Notably, our study highlights the rescue of testicular defects through ectopic expression of L(1)10Bb and the human homologous protein BUD31 homolog (BUD31). In addition, l(1)10Bb dysfunction in early-stage cyst cells downregulated the expression of spliceosome subunits in the Sm and the precursor RNA processing complexes. Collectively, our findings established l(1)10Bb as a pivotal factor in the modulation of Drosophila soma-germline communications within the testicular stem cell niche.
Collapse
Affiliation(s)
- Lei He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Feiteng Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yunhao Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Zhiran Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yangbo Fu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Ruan T, Zhou R, Yang Y, Guo J, Jiang C, Wang X, Shen G, Dai S, Chen S, Shen Y. Deficiency of IQCH causes male infertility in humans and mice. eLife 2024; 12:RP88905. [PMID: 39028117 PMCID: PMC11259432 DOI: 10.7554/elife.88905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
IQ motif-containing proteins can be recognized by calmodulin (CaM) and are essential for many biological processes. However, the role of IQ motif-containing proteins in spermatogenesis is largely unknown. In this study, we identified a loss-of-function mutation in the novel gene IQ motif-containing H (IQCH) in a Chinese family with male infertility characterized by a cracked flagellar axoneme and abnormal mitochondrial structure. To verify the function of IQCH, Iqch knockout (KO) mice were generated via CRISPR-Cas9 technology. As expected, the Iqch KO male mice exhibited impaired fertility, which was related to deficient acrosome activity and abnormal structures of the axoneme and mitochondria, mirroring the patient phenotypes. Mechanistically, IQCH can bind to CaM and subsequently regulate the expression of RNA-binding proteins (especially HNRPAB), which are indispensable for spermatogenesis. Overall, this study revealed the function of IQCH, expanded the role of IQ motif-containing proteins in reproductive processes, and provided important guidance for genetic counseling and genetic diagnosis of male infertility.
Collapse
Affiliation(s)
- Tiechao Ruan
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Ruixi Zhou
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan UniversityChengduChina
| | - Junchen Guo
- Sichuan University-The Chinese University of Hong Kong (SCU-CUHK) Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynaecologic, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Chuan Jiang
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Xiang Wang
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Gan Shen
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Siyu Dai
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Suren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Ying Shen
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Pei C, Todorov P, Cao M, Kong Q, Isachenko E, Rahimi G, Mallmann-Gottschalk N, Uribe P, Sanchez R, Isachenko V. Comparative Transcriptomic Analyses for the Optimization of Thawing Regimes during Conventional Cryopreservation of Mature and Immature Human Testicular Tissue. Int J Mol Sci 2023; 25:214. [PMID: 38203385 PMCID: PMC10778995 DOI: 10.3390/ijms25010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Cryopreservation of human testicular tissue, as a key element of anticancer therapy, includes the following stages: saturation with cryoprotectants, freezing, thawing, and removal of cryoprotectants. According to the point of view existing in "classical" cryobiology, the thawing mode is the most important consideration in the entire process of cryopreservation of any type of cells, including cells of testicular tissue. The existing postulate in cryobiology states that any frozen types of cells must be thawed as quickly as possible. The technologically maximum possible thawing temperature is 100 °C, which is used in our technology for the cryopreservation of testicular tissue. However, there are other points of view on the rate of cell thawing, according to how thawing should be carried out at physiological temperatures. In fact, there are morphological and functional differences between immature (from prepubertal patients) and mature testicular tissue. Accordingly, the question of the influence of thawing temperature on both types of tissues is relevant. The purpose of this study is to explore the transcriptomic differences of cryopreserved mature and immature testicular tissue subjected to different thawing methods by RNA sequencing. Collected and frozen testicular tissue samples were divided into four groups: quickly (in boiling water at 100 °C) thawed cryopreserved mature testicular tissue (group 1), slowly (by a physiological temperature of 37 °C) thawed mature testicular tissue (group 2), quickly thawed immature testicular tissue (group 3), and slowly thawed immature testicular tissue (group 4). Transcriptomic differences were assessed using differentially expressed genes (DEG), the Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), and protein-protein interaction (PPI) analyses. No fundamental differences in the quality of cells of mature and immature testicular tissue after cryopreservation were found. Generally, thawing of mature and immature testicular tissue was more effective at 100 °C. The greatest difference in the intensity of gene expression was observed in ribosomes of cells thawed at 100 °C in comparison with cells thawed at 37 °C. In conclusion, an elevated speed of thawing is beneficial for frozen testicular tissue.
Collapse
Affiliation(s)
- Cheng Pei
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria;
| | - Mengyang Cao
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Qingduo Kong
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Evgenia Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Gohar Rahimi
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
- Medizinisches Versorgungszentrum AMEDES für IVF- und Pränatalmedizin in Köln GmbH, 50968 Cologne, Germany
| | - Nina Mallmann-Gottschalk
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Pamela Uribe
- Center of Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco 4810296, Chile; (P.U.); (R.S.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
| | - Raul Sanchez
- Center of Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco 4810296, Chile; (P.U.); (R.S.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
| | - Volodimir Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| |
Collapse
|
5
|
Fan Q, He R, Li Y, Gao P, Huang R, Li R, Zhang J, Li H, Liang X. Studying the effect of hyperoside on recovery from cyclophosphamide induced oligoasthenozoospermia. Syst Biol Reprod Med 2023; 69:333-346. [PMID: 37578152 DOI: 10.1080/19396368.2023.2241600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Oligoasthenozoospermia is becoming a serious problem, but effective prevention or treatment is lacking. Hyperoside, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. In this study, we used cyclophosphamide (CTX: 50 mg/kg) to establish a mouse model of Oligoasthenozoospermia to investigate the therapeutic effect of hyperoside (30 mg/kg) on CTX-induced oligoasthenozoospermia. All mice were divided into four groups: blank control group (Control), treatment control group (Hyp), disease group (CTX) and treatment group (CTX + H). Mice body weight, testicular weight, sperm parameters and testicular histology were used to assess the reproductive capacity of mice and to explore the underlying mechanism of hyperoside in the treatment of oligoasthenozoospermia by assessing hormone levels, protein levels of molecules related to hormone synthesis and transcript levels of important genes related to spermatogenesis. Treatment with hyperoside significantly improved sperm density, sperm viability and testicular function compared to untreated oligoasthenozoospermia mice. In mechanism, treatment with hyperoside resulted in significant improvement in pathological changes in spermatogenic tubules, with an increase in testosterone production, and upregulations of Protein Kinase CAMP-Activated Catalytic Subunit Beta (PRKACB), Steroidogenic Acute Regulatory Protein (STAR), and Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17A1) for testosterone production. Hyperoside also promoted the cell cycle of germ cells and up-regulated meiosis and spermatogenesis-related genes, including DNA Meiotic Recombinase 1 (Dmc1), Ataxia telangiectasia mutated (Atm) and RAD21 Cohesin Complex Component (Rad21). In conclusion, hyperoside exerted protective effects on oligoasthenozoospermia mice by regulating testosterone production, meiosis and sperm maturation of germ cells.
Collapse
Affiliation(s)
- Qigang Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pu Gao
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Rong Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
6
|
Pei S, Luo J, Weng X, Xu Y, Bai J, Li F, Li W, Yue X. iTRAQ-based proteomic analysis provides novel insight into the postnatal testicular development of Hu sheep. J Proteomics 2023; 286:104956. [PMID: 37390892 DOI: 10.1016/j.jprot.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Testicular development is an intricate and coordinated process in which thousands of proteins are involved in the regulation of somatic cells development and spermatogenesis. However, knowledge about the proteomic changes during postnatal testicular development in Hu sheep is still elusive. The study was conducted to characterize the protein profiles at four key stages during postnatal testicular development, including infant (0-month-old, M0), puberty (3-month-old, M3), sexual maturity (6-month-old, M6) and body maturity (12-month-old, M12), and between the large- and small-testis groups at 6 months in Hu sheep. Consequently, 5252 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods, and 465, 1261, 231 and 1080 differentially abundant proteins (DAPs) were found between M0_vs_M3, M3_vs_M6L, M6L_vs_M12, and M6L_vs_M6S, respectively. GO and KEGG analysis revealed that the majority of DAPs were involved in cellular process, metabolic process and immune system-related pathways. Furthermore, a protein-protein interaction network was constructed using 86 fertility-related DAPs, and five proteins with the highest degree were represented as hub proteins, including CTNNB1, ADAM2, ACR, HSPA2 and GRB2. This study provided new insights into the regulation mechanisms of postnatal testicular development and identified several potential biomarkers for selecting the high-fertility rams. SIGNIFICANCE OF THE STUDY: Testicular development is an intricate developmental process in which thousands of proteins are involved in regulating the somatic cells development and spermatogenesis. However, knowledge about the proteome changes during postnatal testicular development in Hu sheep is still elusive. This study provides comprehensive insights into the dynamic changes in the sheep testis proteome during postnatal testicular development. Additionally, testis size is positively correlated with semen quality and ejaculation volume, also for the merits of easy measurement, high heritability and selection efficiency, is an important indicator to select candidate rams with high fertility. The functional analyses of the acquired candidate proteins may help us gain a better understanding of the molecular regulatory mechanisms of testicular development.
Collapse
Affiliation(s)
- Shengwei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jing Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiuxiu Weng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanli Xu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830057, China
| | - Jingjing Bai
- Animal Husbandry and Veterinary Extension Station of Wuwei City, Wuwei 733000, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
7
|
Dong F, Ping P, Wang SQ, Ma Y, Chen XF. Identification and validation of CCL2 as a potential biomarker relevant to mast cell infiltration in the testicular immune microenvironment of spermatogenic dysfunction. Cell Biosci 2023; 13:94. [PMID: 37221631 DOI: 10.1186/s13578-023-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Spermatogenic dysfunction is an important cause of azoospermia. Numerous studies have focused on germ-cell-related genes that lead to spermatogenic impairment. However, based on the immune-privileged characteristics of the testis, the relationship of immune genes, immune cells or immune microenvironment with spermatogenic dysfunction has rarely been reported. RESULTS Using integrated methods including single-cell RNA-seq, microarray data, clinical data analyses and histological/pathological staining, we found that testicular mast cell infiltration levels were significantly negatively related to spermatogenic function. We next identified a functional testicular immune biomarker, CCL2, and externally validated that testicular CCL2 was significantly upregulated in spermatogenic dysfunctional testes and was negatively correlated with Johnsen scores (JS) and testicular volumes. We also demonstrated that CCL2 levels showed a significant positive correlation with testicular mast cell infiltration levels. Moreover, we showed myoid cells and Leydig cells were two of the important sources of testicular CCL2 in spermatogenic dysfunction. Mechanistically, we drew a potential "myoid/Leydig cells-CCL2-ACKR1-endothelial cells-SELE-CD44-mast cells" network of somatic cell-cell communications in the testicular microenvironment, which might play roles in spermatogenic dysfunction. CONCLUSIONS The present study revealed CCL2-relevant changes in the testicular immune microenvironment in spermatogenic dysfunction, providing new evidence for the role of immunological factors in azoospermia.
Collapse
Affiliation(s)
- Fan Dong
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ping Ping
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Si-Qi Wang
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Ma
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
- Shanghai Human Sperm Bank, Shanghai, China.
| |
Collapse
|
8
|
Luo X, Liang M, Huang S, Xue Q, Ren X, Li Y, Wang J, Shi D, Li X. iTRAQ-based comparative proteomics reveal an enhancing role of PRDX6 in the freezability of Mediterranean buffalo sperm. BMC Genomics 2023; 24:245. [PMID: 37147584 PMCID: PMC10163707 DOI: 10.1186/s12864-023-09329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/22/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Semen cryopreservation is a critical tool for breed improvement and preservation of biodiversity. However, instability of sperm freezability affects its application. The Mediterranean buffalo is one of the river-type buffaloes with the capacity for high milk production. Until now, there is no specific cryopreservation system for Mediterranean buffalo, which influences the promotion of excellent cultivars. To improve the semen freezing extender used in cryopreservation of Mediterranean buffalo, different protein datasets relating to freezability sperm were analyzed by iTRAQ-based proteomics. This study will be beneficial for further understanding the sperm freezability mechanism and developing new cryopreservation strategy for buffalo semen. RESULTS 2652 quantified proteins were identified, including 248 significantly differentially expressed proteins (DEP). Gene Ontology (GO) analysis indicated that many these were mitochondrial proteins, enriched in the molecular function of phospholipase A2 activity and enzyme binding, and biological processes of regulation of protein kinase A signaling and motile cilium assembly. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis identified 17 significant pathways, including oxidative phosphorylation (OXPHOS). Furthermore, 7 DEPs were verified using parallel reaction monitoring or western blot, which confirmed the accuracy of the iTRAQ data. Peroxiredoxin 6 (PRDX6), which expressed 1.72-fold higher in good freezability ejaculate (GFE) compared to poor freezability ejaculate (PFE) sperms, was selected to explore the function in sperm freezability by adding recombinant PRDX6 protein into the semen freezing extender. The results showed that the motility, mitochondrial function and in vitro fertilization capacity of frozen-thawed sperm were significantly increased, while the oxidation level was significantly decreased when 0.1 mg/L PRDX6 was added compared with blank control. CONCLUSIONS Above results revealed the metabolic pattern of freezability of Mediterranean buffalo sperms was negatively associated with OXPHOS, and PRDX6 had protective effect on cryo-damage of frozen-thawed sperms.
Collapse
Affiliation(s)
- Xi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Mingming Liang
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, Guangxi, China
| | - Shihai Huang
- College of life science and technology, Guangxi University, Nanning, China
| | - Qingsong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Xuan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Yanfang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Jinli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
9
|
Abstract
The global analysis of the proteome is an important tool in cell biology. Comparative proteomic evaluations can identify and compare the composition, dynamics, and modifications between different samples. Comparing tissue proteomes under different conditions is crucial for advancing the biomedical field. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a sensitive and robust biochemical method that can compare multiple protein samples over a broad dynamic range on the same analytical gel and can be used to establish differentially expressed protein profiles between different sample groups. 2D-DIGE involves fluorescently labeling protein samples with CyDye flours, via a two-dye or a three-dye system, pre-separation by isoelectric point, and molecular weight. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization, thus enabling accurate high-resolution analysis of differences in protein abundance between samples. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of two-dye and three-dye DIGE minimal labeling.
Collapse
|